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Abstract. The normal incidence of circularly polarized optical field (POF) of tunable intensity on the 

topological insulator Bi2Se3  film is shown to give rise to the quantum spin Hall (QSH) effect,  in the presence 

of the magnetic impurities (MI), starting with a low-energy two-dimensional, time-dependent Hamiltonian in 

the framework of the Floquet theory. The quantized topological number- the Kane–Mele index Z2 for QSH 

phase- strongly support this topological state.    

 Keywords:; Circularly polarized optical field; Floquet theory; Magnetic impurities, Kane–Mele index Z2, 
Quantum spin Hall phase . 

Introduction 

The strong spin orbit coupling (SOC) is responsible for many of the distinctive properties of 

topological insulators, such as the compound Bi2Se3. For example, the direct backscattering immunity 

of the surface spin-momentum locked (SML) electrons when coming up against edge or surface 

defects. The  electron energy quantization in these materials is more Dirac-like than bulk-electron-

like.In this paper we consider a thin film of  Bi2Se3  together with magnetic impurities(MI) with 

normal parallel to the z crystal growth direction. The compound Bi2Se3 is generally n-type due to Se 

vacancies, though it can be transformed to a p-type material by small amounts of alkaline earth metal 

doping. The compound is based on the stacking of “quintuple layer” building blocks to yield a 

crystallographic cell with rhombohedral symmetry. The struture parameters are a = b = 0.41 nm, c = 

2.853 nm, a =b = 90o, and γ =120o. Along the z-direction, Se and Bi hexagonal planes stacked on top 

of each other in the bulk. The (Se-Bi-Se-Bi-Se) pentagonal layer is the basic building block of thin 

film structures. The layers  interact weakly through van der Waals force. 

 

The model Hamiltonian [1-10] of the system in momentum space could be written down in the basis  

comprising of the hybridized states of  pz Bi orbital (of odd parity) and pz Se orbital (of even parity). 

The hybridization between the orbitals is assumed to be strong. The presence of magnetic impurities 

(MI) together with strong SOC  in Bi2Se3 system leads to a QAH state.A common trait of all the QAH 

system band structure is that those bands, which are close to the Fermi level, correspond to chiral/ 

helical fermions (Dirac-like). The quantum spin Hall (QSH) effect, on the other hand, is  a  spin genre 

of quantum Hall effect.  A twisted Hilbert space is one of the characteristics of a QSH system which 

leads to a pair of counter-propagating helical edge states with opposite spins under topological 

protection. This leads to inducement of a transverse spin current near the system boundary due to an 

electric current. Such abstruse states with SML gives rise to two-dimensional strong topological 

insulator. In what follows we show that emergent quantum spin Hall (QSH) phase [11] is possible by 

the normal incidence of circularly polarized optical field (CPOF) on our system though we have 

broken time reversal symmetry (TRS) due to the presence of MI. For this purpose, we impart the time-

dependence to our low-energy two-dimensional model Hamiltonian. The time dependence arises due 

to circularly polarized optical light (POF) describable by the associated  electromagnetic gauge field. 

The coupling between the lattice electrons and the gauge field is established by the Peierls 

substitution.We make use of the Floquet theory, where a time-dependent problem is mapped into a 

stationary one[12,13] in terms of quasi-energies. We use this theory in the high-frequency limit. 

Interestingly, the optical field tuneability leads to the emergence of QSH phase in the presence of MI, 

when intensity of the incident radiation is high, from the quantum anomalous Hall phase. The 
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conclusive evidence of this emergence is obtained calculating the topological index Z2.It is worth 

mentioning that periodic POF provides a potent  way to carry out theoretical proposition and 

experimental realization, detection, and manipulation of diverse novel optical and electronic 

properties and applications of materials, such as the polarization-dependent optoelectronic device 

applications in 2D materials and their heterostructures [14], the topological phase transitions in semi-

metals [15,16], the Floquet engineering of magnetism in topological insulator thin films [17,18], and 

so on. The Floquet theory leads to a highly powerful  means to engineer, and detect exotic Floquet 

topological phases with a high tunability. We model the interaction between the itinerant electrons in 

the system and impurity moment with the coupling term (J) ∑ j Sj . s j , where Sj is the j th-site impurity 

spin, s𝑗   =  (
1

2
) 𝑑†𝑗𝜎  𝜏𝑧 𝑑𝑗𝜎  ,𝑑†𝑗𝜎   is the fermion creation operator at site-j,  spin-state σ (=↑,↓), and 

τz  is the z-component of the Pauli matrices.    For |𝑺| >1, we  can make the approximation of treating 

the impurity spins as classical vectors. Upon doing so, we write M =  | 𝐽 ||𝑺|  where we  absorb the 

magnitude of the impurity spin into the coupling constant 𝐽.  
   

We have organized the paper in the following manner: In section 2, we present  a model for a TI   in 

the basis of the hybridized states of  pz Bi orbital (of odd parity) and pz Se orbital (of even parity). 

The energy eigenvalues of the insulator surface and the eigenvectors corresponding to these values 

are calculated. In section 3, we study the interaction of  the TI film with  normally incident POF in 

the framework of the Floquet formalism which transforms our time-dependent Hamiltonian into a 

time-independent Hamiltonian represented by an infinite matrix. The paper ends with a brief 

concluding remark in section 4. 
 

2. Surface State Hamiltonian 

The Bi2Se3 thin films have been attracted a lot due to their unique electrical and optical properties. 

This enables the development of topological insulator-based devices and applications including 

thermoelectric, and optoelectronics devices.  In this section, we consider a thin film of Bi2Se3  together 

with magnetic impurities with normal parallel to the z crystal growth direction. We denote the 

thickness of the thin film (along z direction) as W. Accordingly, the corresponding Hamiltonian 𝐻(𝐤) 

given below contains constant terms and the z derivatives. In the basis   ( ∣ 𝑝1z,↑
even⟩  ∣ 𝑝2z,↑

odd⟩ ∣

𝑝1z,↓  
even⟩   ∣ 𝑝2z,↓  

odd⟩)of the hybridized states of pz Se orbital (of even parity) and pz Bi orbital (of odd 

parity), the momentum space dimensionless model Hamiltonian[1-10] of the system could be written 

as 

 

  𝐻(k) = (𝜖(k) 𝜎0 +  𝑀𝜎𝑧 )⨂𝜏0 + 𝜗(k)𝜎0⨂𝜏𝑧 + 𝐴1{(𝑎𝑥𝑘𝑥𝜎𝑥 + 𝑎𝑦𝑘𝑦𝜎𝑦) + 𝜂𝑎𝑧𝑘𝑧𝜎𝑧}⨂𝜏𝑥,    (1) 

 

where in the ket ∣ 𝑝𝑗z,σ

even

odd ⟩ the symbol  = ↑↓  stands for the  real spin , 𝑘 =  (𝑘𝑥, 𝑘𝑦),  𝜂 < 1, M is the 

exchange field from the magnetic dopants, σx,y,z , and τx,y,z , respectively, are the Pauli matrices for the 

spin and the orbital degrees of freedom. If one wishes to work with a lattice model, the following 

replacements are necessary: 𝑎𝑗𝑘𝑗 → sin(𝑎𝑗𝑘𝑗) and (𝑎𝑗
2𝑘𝑗
2) → 2(1 − cos(𝑎𝑗𝑘𝑗)) where j = ( x, y, z), 

and 𝑎𝑗 is the lattice constant along j direction. It may be mentioned that the lattice constants of bulk 

Bi2Se3 are in the basal plane a = 4.14 Å and along the c-axis c = 28.64 Å. Here 𝑎𝑥 = 𝑎𝑦 = 𝑎 and 

𝑎𝑧 = 𝑐. The energies 𝜖(𝑘) = 𝜖0− 𝐷1𝑐
2 ∂z

2 + 𝐷2𝑎
2𝑘2, and 𝜗(k)= 𝜗0+ B1 𝑐 2 ∂z

2  − B2𝑎2𝑘2, and 𝑘2 =
(𝑘x 
2 + 𝑘𝑦

2). Thus, it is easy to see that the coefficients 𝐵2 and 𝐷2 serve as the first neighbor hopping 

in a lattice model. Here 𝜗0 denotes the term, whose magnitude corresponds to that of the band gap. 

𝐷2 corresponds to conduction and  valence band curvatures. 𝐴1  is the strength of hybridization 

between the orbitals. Furthermore,  𝜗0/𝐵2 > 0 (𝜗0/B2< 0) corresponds  to the topologically nontrivial 

(trivial) phase. A transition  between these topologically distinct sectors occurs at 𝜗0 = 0, 



 

 

accompanied by a band-gap closing at k = 0. We have made the Hamiltonian dimensionless by 

dividing every term in 𝐻(𝐤) by the first neighbor hopping 𝐵2 =  3.31 eV[𝟏, 𝟐] 
which is the highest energy value. In this scheme we have 𝜖0 = −0.003, 𝐴1 = 0.31, 𝜂 = 0.16, 𝐵1= 

0.18,  𝐵2 =  1,𝑀 = 0.08 , D1 = 0.024, and 𝐷2= 0.34 following  the values of these quantities given 

in ref. [1,2].  

 

In order to obtain surface state Hamiltonian (𝐻𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑘, 𝜆)) we make the replacement  

𝑐𝑘𝑧 → −𝑖𝑐 ∂z and  look for states localized within the surface of  the form 𝑒𝑥𝑝(−𝑖𝜆𝑧) . Under the 
open  boundary condition(OBC),we seek such a value of λ for which this exponential will be  

vanishingly small for z =  ±
W

2
. From above we find Hsurface(𝑘, 𝜆)= (𝜖1(𝑘, 𝜆) 𝜎0 +  𝑀𝜎𝑧 )⨂𝜏0 +

𝜗(𝑘, 𝜆)𝜎0⨂𝜏𝑧 + 𝐴1{(𝑎𝑘𝑥𝜎𝑥 + 𝑎𝑘𝑦𝜎𝑦) − 𝜂𝑐𝜆𝜎𝑧}⨂𝜏𝑥 , where 𝜖1(𝑘, 𝜆)  =   𝜖0+ 𝐷1𝑐
2𝜆2 + 𝐷2𝑎

2𝑘2, 

and 𝜗(k, λ)= 𝜗0 −B1 c
2 𝜆2  − B2𝑎2𝑘2. It is worth mentioning that if one intends to take disorder into 

consideration, one may replace 𝜖1(𝑘, 𝜆) in the Hamiltonian above by 𝜖(𝑘, 𝜆) =  (𝜖1(𝑘, 𝜆) +
Г0)where Г0   corresponds to a  random disorder potential (RDP) which has continuous uniform 

distribution in the interval [−Г/2, Г/2] with a positive parameter Г. If a uniform distribution is 

continuous (discrete), it has an infinite (finite) number of equally likely measurable values. The 

eigenvalues (∈𝑗) of this matrix is given by the quartic ∈𝑗
4+ 𝛾3(𝑘, 𝜆) ∈𝑗

3+ 𝛾2(𝑘, 𝜆) ∈𝑗
2+ 𝛾1(𝑘, 𝜆) ∈𝑗+

𝛾0(𝑘, 𝜆) = 0 where  

 

       𝛾0(𝑘,𝜆) = (𝜂𝐴1𝑐𝜆)4+2(𝜂𝐴1𝑐𝜆)
2((𝐴1𝑎𝑘)

2 + 𝜗2(k) − 𝜖2(𝑘) − 𝑀2)  
 

                                                                   +((𝐴1𝑎𝑘)
2 + 𝜗2(k))2 − 2(𝐴1𝑎𝑘)

2(𝜖2(𝑘) − 𝑀2), 
 

       𝛾1(𝑘,𝜆) = 4((𝜂𝐴1𝑐)2𝜆2+(𝐴1𝑎𝑘)2)𝜖(𝑘) + 4(𝜗2(k)𝜖(𝑘) − 𝜖3(𝑘) + 𝜖(𝑘) 𝑀2), 
 

        𝛾2(𝑘,𝜆) = −2((𝜂𝐴1𝑐)2𝜆2+(𝐴1𝑎𝑘)2) − 2(𝜗2(k) − 3𝜖2(𝑘) + 𝑀2), 𝛾3(𝑘,𝜆) = −4𝜖(𝑘).                 
 

In view of the Ferrari’s solution of a quartic equation, we find the roots as 

 

    ∈𝑗 (𝑠, 𝜎, 𝑘, 𝜆) =    σ √
𝜂0(𝑘,𝜆)

2
−
𝛾3(𝑘,𝜆)

4
 + 𝑠 (𝑏0(𝑘, 𝜆) − (

𝜂0(𝑘,𝜆)

2
) +

                                                                                                                      𝜎 𝑐0(𝑘, 𝜆)√
2

𝜂0(𝑘,𝜆)
 )

1

2

 ,                 (2) 

 

where j = 1,2,3,4,  σ = ±1 is the spin index and s = ±1 is the band-index. Since, the spin index 𝜎 

oc-curs twice in Eq. (3), the term √
𝜂0(𝑘,𝜆)

2
 does not act like magnetic energy. The functions appea-

ring in (3) are given by 
 

             𝜂0(𝑘, 𝜆) =
2𝑏0(𝑘,𝜆)

3
+ (∆(𝑘, 𝜆) − ∆0(𝑘, 𝜆))

1

3 − (∆(𝑘, 𝜆) + ∆0(𝑘, 𝜆))
1

3,     

        

                                       ∆0(𝑘, 𝜆) = (
𝑏0
3(𝑘,𝜆)

27
−
𝑏0(𝑘,𝜆)𝑑0(𝑘,𝜆)

3
− 𝑐0

2(𝑘, 𝜆)),   

 

                      ∆(𝑘) = (
2

729
𝑏0
6 +

4𝑑0
2𝑏0
2

27
+ 𝑐0

4 −
𝑑0𝑏0

4

81
−
2𝑏0
3

27
+ 
2𝑐0
2𝑏0𝑑0

3
 + 
𝑑0
3

27
)1/2,   

 

       𝑏0(𝑘, 𝜆) = {
3𝛾3
2(𝑘,𝜆)−8𝛾2(𝑘,𝜆)

16
 }, 𝑐0(𝑘, 𝜆) =  { 

−𝛾3 
3(𝑘,𝜆)+4𝛾3(𝑘,𝜆)𝛾2 (𝑘,𝜆)−8𝛾1 (𝑘,𝜆)

32
 } 



 

 

 

                  𝑑0(𝑘, 𝜆) =
−3𝛾3 

4(𝑘,𝜆)+256𝛾0(𝑘,𝜆)−64𝛾3(𝑘,𝜆)𝛾1(𝑘,𝜆)+16𝛾3
2(𝑘,𝜆)𝛾2(𝑘,𝜆)

256
.            (3)    

 

The eigenvectors corresponding to the energy eigenvalues ∈𝑗 (𝑠, 𝜎, 𝑘, 𝜆) are  

 

                            |𝑢(𝑗)(𝑘,𝜆, 𝑧)〉 = ϛ𝑗−1/2(𝑘,𝜆)𝑒𝑥𝑝(−𝑖𝜆𝑧) 

(

  
 

𝜓1
𝑗
(𝑘,𝜆)

𝜓2
𝑗
(𝑘,𝜆)

𝜓3
𝑗
(𝑘,𝜆)

𝜓4
𝑗
(𝑘,𝜆))

  
 

,  j =1, 2,3,4, 

                          Ϛ𝑗(𝑘,𝜆) =  |𝜓1
𝑗
(𝑘)|2 +  |𝜓2

𝑗
(𝑘)|2 +  |𝜓3

𝑗
(𝑘)|2  +  |𝜓4

𝑗
(𝑘)|2     

 

                                  𝜓1
𝑗(𝑘,𝜆) = 1,     𝜓𝜈

𝑗(𝑘,𝜆)=  ∆𝜈
(𝑗)

(k, 𝜆) /∆(𝑗)(k, 𝜆), ν = 2,3,4                          (4) 

 ∆2
(𝑗)

(k, 𝜆) =  ((𝐴1𝑎𝑘−))[(𝐴1𝑎𝑘)
2 + (𝜂𝐴1𝑐𝜆)

2) − ((∈𝑗  (𝑠, 𝜎, 𝑘, λ) − 𝜖(𝑘) )
2 − (𝑀 + 𝜗(k))

2
)] 

                                       ∆3
(𝑗)

(k, 𝜆) = −(𝜂𝐴1𝑐𝜆)
2{∈𝑗 (𝑠, 𝜎, 𝑘, λ) −  𝜖(𝑘)  + 𝑀 + 𝜗(k)} 

    −((∈𝑗  (𝑠, 𝜎, 𝑘, λ) −  𝜖(𝑘))
2 − (𝑀 + 𝜗(k))

2
+ (𝐴1𝑎𝑘)

2){∈𝑗 (𝑠, 𝜎, 𝑘, λ) −  𝜖(𝑘)  − 𝑀 + 𝜗(k)} 

                                  ∆4
(𝑗)

(k,𝜆) = −(𝜂𝐴1𝑐𝜆)(𝐴1𝑎𝑘)
2 + ((𝜂𝐴1𝑐𝜆)

3) − 

−{(∈𝑗  (𝑠, 𝜎, 𝑘, λ) −  𝜖(𝑘)  − 𝑀)
2 − 𝜗2(k)}(𝜂𝐴1𝑐𝜆) 

                                                                ∆(𝑗)(k, 𝜆) =  (2𝑀(𝜂𝐴1𝑐𝜆)(𝐴1𝑎𝑘−)) .                                           (5)   

These eigenvectors specify surface states. The wave number λ is an unknown in Eq. (2). As already 

stated under OBC, we seek solution for this in the form (±𝑖𝑏), b >0, for ensuring an exponentially 

decaying term with plus sign for z < 0( minus sign for z > 0) in the surface states. To determine an 

approximate value of λ graphically we first write the energy eigenvalue equation given by the quartic 

above as an equation for x = λ2, for a given energy eigenvalue 𝐸𝑓 ,  at the Γ point. We obtain a quartic 

given as 𝐵1𝑥
4 + 𝐴𝑥3 + 𝐵𝑥2 + 𝐶(𝑀)𝑥 + 𝐷(𝑀) = 0. Here 

𝐴 = [2(𝜂𝐴1)
2𝐵1

2 + (𝜂𝐴1)
2𝐷1

2 + 𝐵1
2𝐷1𝐸𝑓 − 4𝐷1

3𝐸𝑓 − 2𝜗0𝐵1
3], 

𝐵 = [ (𝜂𝐴1)
4 − 4(𝜂𝐴1)

2𝜗0𝐵1 + 2 (𝜂𝐴1)
2𝜖0𝐷1 + 4 (𝜂𝐴1)

2𝐷1𝐸𝑓 + 3(2𝐷1
2 − 𝐵1

2)𝐸𝑓
2 

                                                    −12𝜖0𝐷1
2𝐸𝑓 + 4𝜖0𝐵1

2𝐸𝑓 − 8 𝜗0𝐵1𝐷1𝐸𝑓 + 6𝜗0
2𝐵1

2], 

𝐶(𝑀) = [4(𝜂𝐴1)
2𝜖0𝐸𝑓+ (𝜖0

2 +𝑀2)(𝜂𝐴1)
2+2(𝜂𝐴1)

2𝜗0
2 − 2𝜗0𝐵1

3 − 2(𝜂𝐴1)
2𝐸𝑓

2+2𝜖0𝐷1𝐸𝑓
2 

                            −2𝜗0𝐵1𝐸𝑓
2 − 4𝐷1𝐸𝑓

3 + 4𝐷1𝐸𝑓𝑀
2 − 12𝜖0

2𝐷1𝐸𝑓 − 8 𝜗0𝐵1𝜖0𝐸𝑓 + 4𝜗0
2𝐷1𝐸𝑓], 

 



 

 

             𝐷(𝑀) = [ 𝐸𝑓
4 + 𝜗0

4 − 2𝜗0
3𝐵1+ 4𝜖0𝐸𝑓𝑀

2 − 4𝜖0
3𝐸𝑓 + 4𝜖0𝜗0

2𝐸𝑓 + 6𝜖0
2𝐸𝑓

2 − 12𝑀2𝐸𝑓
2 

                                                                                                      −12𝜗0
2𝐸𝑓

2 − 4𝜖0𝐸𝑓
3];              (6) 

the coefficients C ( D ) is increasing (decreasing)function of the exchange field M. Next, we plot 

f1 =𝐵1𝑥
4 + 𝐴𝑥3 + 𝐵𝑥2 and f2 =  𝐶(𝑀)𝑥 + 𝐷(𝑀) as functions of the dimensionless number  𝑥 =

(𝑐𝜆)2 for a given M. In Figure 1 these plots are shown for M = 0.10 , 0,30, 0.50, and 0.80. As the 

value of M increases, the point of intersection of the two curves (which corresponds a solution sought 

for of the equation 𝐵1𝑥
4 + 𝐴𝑥3 + 𝐵𝑥2 + 𝐶(𝑀)𝑥 + 𝐷(𝑀) = 0) shifts to the right. In Figure 1(e) we 

have shown a plot of exp(−𝑏(
𝑧

𝑐
)) as a function of (z/c) where  b  ≈ 1 forM = 0.5 (see Figure 1(c)). It 

is clear from the from Figure 1(e) that a thickness of the film (W/c) must be of O(10) to ensure surface 

state practically equal zero at z =  ±
W

2
. Since c = 28.64 Å, the thickness  may be taken as W ≈ 30 𝑛𝑚.  

In the next section we discuss the effect of  the normal incidence of circularly polarized optical field 

(CPOF)on the film. We shall assume the frequency of the incident light as 2.3× 1014Hz and  there- 

                                                                          

(a)                                                                                       (b) 

          

(c)                                                                                      (d) 



 

 

                                      

                                                                                (e) 

Figure 1.  (a)-(d)  The plots of f1 =𝐵1𝑥
4 + 𝐴𝑥3 + 𝐵𝑥2 (in red ink)and f2 =  𝐶(𝑀)𝑥 + 𝐷(𝑀)  (in green ink) as functions 

of the (𝜆)2 for a given M.(a) M = 0.10 (b) M = 0,30 (c) M= 0.50 and (d) M= 0.80.The point of intersection of the two 

curves corresponds to a solution sought for of the equation 𝐵1𝑥
4 + 𝐴𝑥3 + 𝐵𝑥2 + 𝐶(𝑀)𝑥 + 𝐷(𝑀) = 0). The numerical 

values of the parameters are 𝜖0 = −0.003, 𝐴1 = 0.31, 𝜂 = 0.16, 𝐵1= 0.18, 𝐵2 =  1, 𝐸𝑓 = 0.05 , D1 = 0.024, and 𝐷2= 

0.34.(e) A plot of exp(−𝑏(
𝑧

𝑐
)) as a function of (z/c) where  b  ≈ 1 forM = 0.5 (see Figure 1(c) ).   

fore the ratio W/𝜆𝑖𝑛 ≈ 0.023 ≪ 1 , where 𝜆𝑖𝑛 ≈ 1300 𝑛𝑚 is the wavelength of the incident 

radiation. In the next section we use the Floquet theory in the high-frequency limit of the incident 

radiation to investigate the system. 

3. Floquet Theory 

The circularly polarized optical radiation of wavelength  𝜆𝑖𝑛 incident is supposedly incident on the 

thin film of Bi2Se3  of thickness W where  𝜆𝑖𝑛/𝑊 ≫ 1. We assume the normal incidence Suppose the 

angular frequency of the optical Field incident on the film is ω = 2
𝜋

𝑇
 where 𝑇 is the time period. We 

also assume that the wavelength λin of the radiation is much larger than the film thickness W. Upon 

taking the periodic optical field perturbation into account the hermitian Hamiltonian Hsurface 
becomes time periodic too (Hsurface(𝑡) =  Hsurface (𝑡 + 𝑇)). This stipulation is similar to that in the 

Bloch theory where a spatially periodic potential changes the Bloch function  into spatially periodic 

function with the same periodicity. The Floquet theory is now applied to our time-periodic 

Hamiltonian operator. As in the Bloch theory (where we replace real momentum by quasi-

momentum), the wave function,   in terms of the quasi-energies  ε , has the form Ψ(t) = 

∑ exp ( −𝑖 ( 
ε

ℏ
+ 𝜈𝜔) t)𝜈 𝜓𝜈  where 𝜈  is an integer. The element 𝐻 𝜇,𝜈

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
 of the Hamiltonian is given 

by ∑ 𝐻 𝜇,𝜈
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝜓𝜈𝜈 = ε 𝜓𝜇, where  𝐻 𝜇,𝜈
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

= 𝜇ℏω𝛿𝜇,𝜈 +
1

𝑇
∫ Hsurface(𝑡)𝑒𝑖(𝜇−𝜈)ω𝑡𝑑𝑡,   
𝑇

0
where (μ, ν) 

are integers. This is the Floquet surface state Hamiltonian of the Bi2Se3thin film. With 𝜇 ≠ 𝜈, one 

can write the matrix as    

 

                          H𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =

(

  
 

⋯ ⋯ ⋯ ⋯ ⋯

⋯ 𝐻−1,−1
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐻−1,0
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐻−1,1
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

⋯

⋯ 𝐻0,−1
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐻0,0
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐻0,1
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

⋯

⋯ 𝐻1,−1
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐻1,0
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐻1,1
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

⋯
⋯ ⋯ ⋯ ⋯ ⋯)

  
 
.                           (7) 

A time-varying gauge field  𝐴(𝑡) = A0(sin(ωt) , sin(ωt +  φ)) represents CPOF. In particular, when 

the phase φ =   π or 0, the optical field is linearly polarized.  When φ = − π/2 ( φ = +π/2), the optical 



 

 

field is right-handed (left-handed) circularly polarized. Once we have included a gauge field, it is 

necessary that we make the Peierls substitution 𝐻𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑡) = 𝐻𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (𝐤 −
𝑒

ℏ
𝐀(𝑡)). In view of the 

Floquet formalism in ref. [19-24] our system now can be described by a time-independent effective 

Hamiltonian  𝐻𝑒𝑓𝑓
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 in the high-frequency limit, where   

 

𝐻𝑒𝑓𝑓
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

= ( 𝜖(𝑘, 𝜆)̃ 𝜎0 +  𝑀𝜎𝑧 )⨂𝜏0)  + 𝜗(k, λ)̃  𝜎0⨂𝜏𝑧  +{𝐴1̃(𝑎𝑘𝑥𝜎𝑥 + 𝑎𝑘𝑦𝜎𝑦) − 𝜂𝐴1̃𝑐𝜆𝜎𝑧}⨂𝜏𝑥,  

                                                                                                                                                  (8) 

  

Here, 

                     𝜖(𝑘, 𝜆)̃   = 𝜖(𝑘, 𝜆) + 𝛼2𝐴0
2𝐷2 , 𝜗(k, λ)̃ = 𝜗(k, λ) − 𝛼2𝐴0

2𝐵2 ∓ (
𝑎2𝐴0

2

ℏ𝜔
)𝐴1

2,  

 

                        𝐴1̃ = 𝐴1 (1 ∓ 2𝐵2 (
𝛼2𝐴0

2

ℏ𝜔
)), 𝜖(𝑘, 𝜆) =   𝜖0+ 𝐷1𝑐

2𝜆2 + 𝐷2𝑎
2𝑘2, 𝛼 =

𝑒𝑎𝜔

𝐵2
, 

  

                              𝜗(k, λ)= 𝜗0 −B1 c
2 𝜆2  − B2𝑎2𝑘2.                                                              (9) 

  

The value of 𝛼2𝐴0
2( this quantity is the intensity of the radiation ) is taken to be  0.65 − 0.90  

which is good for the radiation field of frequency 𝜈~4 × 1014𝐻𝑧 under consideration. Moreover, + 

sign ( − sign) prefixed corresponds to the left-handed (right-handed) circularly polarized radiation. 

The eigenvalues (𝐸𝑗) of this matrix is given by the quartic 

  

                𝐸𝑗
4 + 𝛾3𝐹(𝑘, 𝑏)𝐸𝑗

3 + 𝛾2𝐹(𝑘, 𝑏)𝐸𝑗
2 + 𝛾1𝐹(𝑘, 𝑏)𝐸𝑗 + 𝛾0𝐹(𝑘, 𝑏) = 0                         (10) 

where 

 

   𝛾0𝐹(𝑘,𝑏) = (𝜂𝐴1𝑐)4𝑏4 − 2(𝜂𝐴1𝑐)
2((𝐴1̃𝑎𝑘)

2 + 𝜗(k, b)̃ 2 − 𝜖(𝑘, 𝑏)2  ̃ − 𝑀2) 𝑏2 
 

                                                             +((𝐴1̃𝑎𝑘)
2 + 𝜗(k, b)̃ 2)2 − 2(𝐴1̃𝑎𝑘)

2(𝜖(𝑘, 𝑏)2̃ −𝑀2), 
 

 

   𝛾1𝐹(𝑘,𝑏) = 4(−(𝜂𝐴1𝑐)2𝑏2+(𝐴1̃𝑎𝑘)
2)𝜖(𝑘, 𝑏)̃ + 4(𝜗(k, b)̃ 2𝜖(𝑘, 𝑏)̃ − 𝜖(𝑘, 𝑏)3̃ +𝜖(𝑘, 𝑏)̃  𝑀2), 

 

  𝛾2𝐹(𝑘,𝑏) = 2((𝜂𝐴1𝑐)2𝑏2 − (𝐴1̃𝑎𝑘)2) − 2(𝜗(k, b)̃ 2 − 3𝜖(𝑘, 𝑏)2̃ +𝑀2), 𝛾3𝐹(𝑘,𝑏) = −4𝜖(𝑘, 𝑏)̃ .  
 

                                                                                                                                                 (11)  

We now invoke the Ferrari’s solution of a quartic equation(10). We find the roots Ej similar to Eq. 

(2) albeit with the replacements 𝜆 ⟶ (±𝑖𝑏), 𝑏 > 0, ∈𝑗  (𝑠, 𝜎, 𝑘, λ) 𝜀𝑘 −𝑀) ⟶ 𝜖(𝑘, 𝑏)̃ ,𝜗(k) ⟶

𝜗(k, b)̃ ,and  𝐴1⟶ 𝐴1̃, as it is evident from Eq. (9). The corresponding eigenvectors are given by 

Eq.(5) with the same replacements. In Figure  2 (a) we have plotted these energy eigenvalues Ej  as a 

function of (ak) for a given  𝛼𝐴0 = 0.60. In Figure 2(b), however, the value of 𝛼𝐴0 = 0.80. The value 

of the other parameters are 𝜖0 = −0.003, 𝐴1 = 0.31, 𝜂 = 0.16, 𝐵1= 0.18,  𝐵2 =  1,𝑀 = 0.30 , D1 =
0.024,  𝐷2= 0.34, and μ = 0 . Here μ is the chemical potential of the fermion number. We find that the 

band structure does not change much when the exchange energy M is increased from 0.3 upto 0.6. 

Also, with mild random dosorder potential ( W0 < 1) we have not noticed any significant change in 

the band structure. The 3D  plots of  𝐸31 =∈ (𝑠 = −1, 𝜎 =  +1, 𝑘, 𝜆), as a function of the 



 

 

dimensionless wave number (𝑎𝑘) and the intensity of the incident radiation  (𝛼𝐴0)
2 ( left handed as 

well as right handed CPOF), are shown in Figures 2(c) and 2(d). As the latter is increased the system 

makes a crossover to QSH state( blue ) starting from quantum anomalous Hall (QAH) state (red).The 

mild disorder potential ( Г0 < 1) is found to have no significant effect on the film band structure. 

                                                       

 It must be mentioned that the time reversal symmetry (TRS) identity  𝐻𝑠𝑢𝑟𝑓𝑎𝑐𝑒(−𝑘𝑥, −𝑘𝑦) = 

Θ𝐻𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑘𝑥, 𝑘𝑦) Θ −1  is satisfied by the 2D surface state Hamiltonian of  TI (or QSH insulator), 

where the anti-unitary operator   Θ = ∑y K and ∑ =j  (
σj 0

0 σj
) and σj are Pauli matrices.  When, for 

a TRS complaint system, a momentum +k satisfies the relation k + G = −k, where G is a reciprocal 

lattice vector, +k becomes equivalent to −k due to the periodicity of the BZ. The degeneracy of the 

momentum pair ( ±𝒌), called Kramer pair, accrues from TRS. These momenta are referred to as the 

TR-invariant momentum (TRIM).We consider now Figures 2(a) and 2(b). A look-over yields that, in  

    

                                                                                                                    

 

 

                                                                       

                                   

 

                                                                

                                                                 

  

 

(a)                                                                                (b)                                                                                          

        

  

                (c ) Left handed CPOF                                                         (d)Right handed CPOF 
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Intensity of  
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Figure 2.  (a),and (b)  The plots of Ej as functions of the dimensionless wave number (𝑎𝑘) for a given (  𝛼𝐴0).  

The numerical values of the other parameters are 𝜖0 = −0.003, 𝐴1 = 0.31, 𝜂 = 0.16, 𝐵1= 0.18,  𝐵2 =
 1, 𝐸𝑓 = 0.05 , D1 = 0.024, μ = 0,M = 0.30, Г0 = 0.3, and 𝐷2= 0.34.  The Fermi energy EF = 0 is represented 

by a horizontal line. (c),and(d ) The 3D  plots of  𝐸31 =∈ (𝑠 = −1, 𝜎 =  +1, 𝑘, 𝜆) as a function of the 

dimensionless wave number (𝑎𝑘) and the intensity of the incident radiation  (𝛼𝐴0)
2 ( left handed as well as 

right handed CPOF). As the latter is increased the system makes a crossover to QSH state( blue ) starting from 

quantum anomalous Hall (QAH) state (red).                                                        

 

the band in Figure 2(b), particularly, the band 𝐸31 =∈ (𝑠 = −1, 𝜎 =  +1, 𝑘, 𝜆) possesses the above 

mentioned momentum ktrim = (±2,0), (0, ±2) (In Figure 2(a), however, this is not true).The reason is 

that ktrim (referred to as TRIM)  satisfies  the  condition  𝒌𝒕𝒓𝒊𝒎 + 𝑮 = −𝒌𝒕𝒓𝒊𝒎. The vector 
𝑮 here  is equal to (∓4, 0)or (0, ∓4). Let us now note that the Fermi energy EF ≈ 𝜇 = 0 inside the 

gap intersects the  surface state band  𝐸31 =∈ (𝑠 = −1, 𝜎 =  +1, 𝑘, 𝜆)    in the same BZ only once as 

the TRIM pair. While for odd pair of surface state crossings (SSC) we have a topologically non-trivial 

(strong TI), an even number of pairs of SSC corresponds to a topologically trivial (weak TI or 

conventional insulator) [11]. Thus, there is strong evidence that the system under consideration is a 

strong topological insulator or a quantum spin Hall (QSH) insulator. We shall show below 

conclusively, calculating the topological index Z2, that the QSH state is possible even when the time 

reversal symmetry (TRS) is broken due to the finite value of the exchange field M. The material band 

structures are usually characterized by topological (Kane–Mele) index Z2 = +1 (ν = 0) and Z2 = −1 (ν 

= 1). The former corresponds to weak TI, while the latter to strong TI. In Figure 2(c) and (d), we have 

the 3D plots of ∈ (𝑠 = −1, 𝜎 = +1, 𝑎𝑘, 𝜆) as a function of the dimensionless wave number (𝑎𝑘) and 

the intensity of the incident radiation  (𝛼𝐴0)
2.  As the latter is increased the system makes a crossover 

to QSH state (blue ) starting from quantum anomalous Hall (QAH) region (red). Coming back to 

Figure 4(a), where the exchange field is M= 0.3 and 𝛼𝐴0 = 0.60, there is no TRIM pair.  Thus, for 

this value of 𝛼𝐴0 the system is expected to be in quantum anomalous Hall (QAH)phase. A twisted 

Hilbert space is the important feature of a QSH system or a strong topological insulator. In what 

follows we show that the Hilbert space of our system is twisted as it is characterized by the Kane–

Mele index Z2= −1 (ν = 1).   

 

The quantized topological numbers, the Kane–Mele index Z2  (or, the topological invariant ν )[11] 

for the quantum spin Hall phase and the Chern number C for the quantum anomalous Hall phase,  

strongly support topological states. We, therefore, feel necessary now to provide a method to calculate 

the topological invariant ν. This ascertains whether the state attained under intense CPOF is indeed a 

QSH. For this purpose we require the eigenvectors corresponding to the energy eigenvalues 

𝐸𝑗   obtainable from Eq. (10). The eigenvectors are Bloch states given by 

 

                                       |𝜓(𝛼)(𝑘, 𝑏)〉 = 𝜂𝛼
−1/2(𝑘, 𝑏)

(

 

𝜑1
𝛼(𝑘, 𝑏)

𝜑2
𝛼(𝑘, 𝑏)

𝜑3
𝛼(𝑘, 𝑏)

𝜑4
𝛼(𝑘, 𝑏))

 ,  α =1, 2,3,4,                        (12)                      

                     𝜂𝛼(𝑘, 𝑏) =  |𝜑1
𝛼(𝑘, 𝑏)|2 +  |𝜑2

𝛼(𝑘, 𝑏)|2 +  |𝜑3
𝛼(𝑘, 𝑏)|2  +  |𝜑4

𝛼(𝑘, 𝑏)|2      

                                        𝜑1
𝛼(𝑘) = 1,     𝜑𝑛

𝛼(𝑘, 𝑏)=  ∆𝑛
(𝛼)

(k,b) /∆(𝛼)(k,b), n = 2,3,4 

                                                  ∆(𝛼)(k,b) = (±2𝑖𝑀𝜂𝐴1̃𝑐𝑏)(𝐴1̃𝑎𝑘−), 𝑘− = 𝑘𝑥 − 𝑖𝑘𝑦,               (13) 



 

 

         ∆2
(𝛼)

(k, 𝑏) = ((𝐴1̃𝑎𝑘−))[(𝐴1̃𝑎𝑘)
2 − (𝜂𝐴1̃𝑐𝑏)

2) −  ((𝐸𝑗  − 𝜖(𝑘, 𝑏)̃ )2 − (𝑀 + 𝜗(k, b)̃ )
2
)] 

 

                               ∆3
(𝛼)

(k, 𝑏) = (𝜂 𝐴1̃𝑐𝑏)
2
{𝐸𝑗 (𝑠, 𝜎, 𝑘, 𝑏) − 𝜖(𝑘, 𝑏)̃  +𝑀 + 𝜗(k, b)̃  } 

 

 −((𝐸𝑗  (𝑠, 𝜎, 𝑘, 𝑏) − 𝜖(𝑘, 𝑏)̃ )2 − (𝑀 + 𝜗(k, b)̃ )
2
+ ( 𝐴1̃ 𝑎𝑘)

2) ×{𝐸𝑗 − 𝜖(𝑘, 𝑏)̃ −𝑀 + 𝜗(k, b)̃  }  

 

                 ∆4
(𝛼)

(k,𝜆) = (∓𝑖𝜂𝐴1̃𝑐𝑏)(( 𝐴1̃𝑎𝑘)
2 + (𝜂𝐴1̃𝑐𝑏)

2) −   

                                                

                                        (∓𝑖𝜂𝐴1̃𝑐𝑏) {(𝐸𝑗 (𝑠, 𝜎, 𝑘, 𝑏) − 𝜖(𝑘, 𝑏)̃ −𝑀)2 − 𝜗2(k, b)̃ }                 (14) 

The Hamiltonian H(k) in Eq.(1) satisfies Θ-1H (−k) Θ = H(k) for M = 0, where, for a spin 1/2 particle, 

the time reversal operator Θ assumes the form Θ = I⨂𝜎𝑦𝐾.  The symbol 𝐼 stands  for 2 × 2 identity 

matrix, 𝜎𝑗  are Pauli matrices on  two dimensional 𝒌 -space, and the operator K corresponds to the 

complex conjugation. We consider now a matrix representation of the TR operator In the Bloch wave 

function basis, the matrix representation of Θ is  ϑαβ (k, b) = ⟨𝜓(α)(−𝑘, 𝑏)|𝛩|𝜓(β)(𝑘, 𝑏)⟩, where α  

and β are band indices. Upon using (11) one can easily show that  ϑαβ (k) is a unitary matrix.  Quite 

interestingly, we also find that it has the property: 

   𝜗αβ (−𝑘) = 𝑖[ 𝜑2
∗𝛽(𝑘) − 𝜑2

∗ 𝛼(−𝑘) + 𝜑4
∗ 𝛽(𝑘) 𝜑3

∗𝛼(−𝑘) − 𝜑3
∗𝛽(𝑘) 𝜑4

∗ 𝛼(−𝑘)] = − 𝜗βα (k)  (15) 

which implies that at a ktrim the  matrix  ϑαβ (𝒌𝒕𝒓𝒊𝒎) becomes anti-symmetric. As in Floquet theory 

above, we assume 𝐻[𝑡 + 𝑇] = 𝐻[𝑡]  by taking the time-dependence for granted.  We now consider 

the green (spin-down) and red bands(spin-up) in Figure 4 and represent their Bloch wave functions 

by  |𝜓(2)(𝑘, 𝑡)⟩ and |(𝜓(3)(𝑘, 𝑡)⟩, respectively. For this two-band system, the total charge 

polarizations P may be written as P = P2 + P3 , where 

                                      𝑃2 = ∫
𝑑𝑘

2𝜋

𝜋

−𝜋
  𝑐22(𝑘),    𝑃3 = ∫

𝑑𝑘

2𝜋

𝜋

−𝜋
 𝑐33(𝑘).                                            (16)                                              

The integrands 𝑐𝑗𝑗(𝑘)  (𝑗 = 2,3) are the Berry connections𝐀𝐣(𝑘) = {−𝑖⟨𝜓(𝑗)(k)|∇𝑘| 𝜓
(𝑗)(k)⟩}. The 

charge polarization difference between the spin-up and the spin-down quasiparticle bands may be 

defined as P𝑑𝑖𝑓𝑓 = P2 – P3 = 2P2 − P.  Furthermore, it may be easily verified that the time-reversed 

version of the Bloch wave functions by |𝜓(3)(𝑘, 𝑡)⟩ is equal to |𝜓(2)(−k, t)⟩ save for a phase factor. 

Thus, we can write the time reversed state of |𝜓(3)(𝑘, 𝑡)⟩ = 𝑒−𝑖𝛾(𝑘)|𝜓(2)(−k, t)⟩ and, similarly, the 

time reversed state of |𝜓(2)(𝑘, 𝑡)⟩ = − 𝑒−𝑖𝛾(−𝑘)|𝜓(3)(−k, t)⟩ at t = 0 and t = T/2  where  𝛾(𝑘) =

𝑖 log 𝜗23(k). The Bloch functions |𝜓(𝑗)(𝑘, 𝑡)⟩ correspond to  maps from the 2D phase space (k, t) to 

the Hilbert space. Furthermore, it is quite straightforward to show that the Berry connections satisfy 

𝑐22(−𝑘) = 𝑐33(𝑘)  −
𝜕

𝜕𝑘
𝛾(𝑘). In terms of the total polarization density 

                                            Ṝ(k) = 𝑐22(𝑘)+ 𝑐33(𝑘) =  𝑡𝑟(𝑐(𝑘))                                                 (17) 



 

 

one can write 𝑃2 = ∫
𝑑𝑘

2𝜋

𝜋

0
 Ṝ(𝑘) −

𝑖

2𝜋
[𝛾(𝜋) − 𝛾(0)]. After a lengthy but straightforward algebra, we  

find 

        P𝑑𝑖𝑓𝑓 = 𝑖 ∫
𝑑𝑘

2𝜋

𝜕

𝜕𝑘
log(det[ ϑ(k)]) −

𝑖

𝜋
log

𝜗23(𝜋)

𝜗23(0)

𝜋

0
   =

𝑖

𝜋

1

2
log

det[ϑ(𝜋)]

det[ϑ(0)]
−
𝑖

𝜋
log

𝜗23(𝜋)

𝜗23(0)
.          (18)  

This leads us to the expression P𝑑𝑖𝑓𝑓  =
1

𝑖𝜋
log (

√𝜗23(0)2

𝜗23(0)
 

𝜗23(𝜋)

√𝜗23(𝜋)2
) . The  argument of the logarith- 

mic term in the right-hand side  is +1 or −1.  This means   P𝑑𝑖𝑓𝑓  is either  0 or 1 (mod 2).   The two 

values of P𝑑𝑖𝑓𝑓 are two different polarization states which the system can assume at t = 0 and t = T/2. 

As in ref.[11], the Hilbert space, referred to above, could be separated into two parts depending on 

the difference in P𝑑𝑖𝑓𝑓 between t = 0 and t = T/2. This leads to introduction of  a quantity ν ≡

 (P𝑡𝑟 (T/2)– P𝑡𝑟 (0)) specified only in mod 2 . The triviality of the Hilbert space is represented by ν 

= 0, while the nontriviality (twisted) corresponds to ν  = 1. The system band structures, equivalently, 

are characterized by Z2= +1 (ν = 0) and Z2= −1 (ν = 1). Upon using the expression, P𝑑𝑖𝑓𝑓  =
1

𝑖𝜋
log (

√𝜗23(0)2

𝜗23(0)
 

𝜗23(𝜋)

√𝜗23(𝜋)2
) , we obtain  

                                         (−1)ν = ∏
ϑ23(𝑎ktrim

(𝑗)
)

√ϑ23(𝑎ktrim
(𝑗)

)
2𝑗  .                                               (19)                                                

We have found 𝑎ktrim in Figure 2 (b), A fairly straightforward calculation using the fact that at a ktrim 

the  matrix  ϑαβ (𝑘𝒕𝒓𝒊𝒎) becomes anti-symmetric convinces us  ϑ23(𝑎ktrim) = − ϑ32(𝑎ktrim). The 

square root of the square of the former is  ϑ32(ktrim) . As ν turns out to be 1 or Z2= −1 (strong TI or 

QSH phase ) when the intensity of incident radiation ~ 0.8 with M ≠ 0 , this is the conclusive 

evidence of the Hilbert space being twisted in this case. The physical consequence of this nontriviality 

is the appearance of topologically-protected surface states [11]. The humps in the graphical 

representations in Figures 2(c) and 2(d) show that the system under consideration makes a crossover 

to QSH state from QAH state when the intensity of incident radiation ~0.8 with M ≠ 0. Ergo, we 

have found that the CPOF induced QSH state is accessible even when the time reversal symmetry 

(TRS) is broken due to the finite value of the exchange field. The question “whether this crossover is 

a phase transition"  could only be settled through thermodynamic consideration-a future task. 

 

4. Concluding remarks  

We have considered the Berry connection in the previous section. The Berry curvature Ω(𝑗)(𝑘) is curl 

of the Berry connection in momentum space. In 2D, one writes Ωxy
(𝑗)(𝑘) = 

𝑖 ⟨𝜕𝑘𝑥𝜓
(𝑗)(k)|𝜕𝑘𝑦𝜓

(𝑗)(k)⟩ − 𝑖 ⟨𝜕𝑘𝑦𝜓
(𝑗)(k)|𝜕𝑘𝑥𝜓

(𝑗)(k)⟩. It is a second-rank, anti-symmetric tensor 

and becomes zero in the cases where the system is both TRS and inversion symmetry (IS) compliant. 

On a quick side note, in order to study the possible quantum anomalous Hall (QAH) effect we need 

to show non-zero Berry curvature (BC). On account of M ≠ 0, say in Figure 2(a), BC is non-zero. 

However, the conclusive evidence of QAH phase comes about from the calculation the Chern number 

C (TKNN invariant), which needs to be an integer. It is expressed as an integral of the Berry 

curvature over the two-dimensional Brillouin zone(BZ): C = 2 ∫∫BZΣn Ω𝑥𝑦
(𝑛)(𝑘)

𝑑
2
𝑘

(2𝜋)2
. In a future 

publication we take up the issue of the C calculation for the present system.  



 

 

 

We have derived here an effective Hamiltonian for the surface states of a topological insulator thin 

film incorporating the effect of the normal incidence of POF on the film using the Floquet theory in 

the high-frequency limit. We found that the surface of the system has states, which come in an odd 

number of Kramers’ doublets when intensity of radiation attains a critical value, as in Figure 4(b).  

These anti-clockwise/clockwise circling states are carrying spin down/up, or vice versa, depending 

on the orientation of the magnetic field  that enters the spin-orbit interaction (included in section 2). 

The edge states appear as a consequence of the cyclotron orbits induced by the field, which are 

naturally truncated at the physical boundary of the sample. The energy levels of the counter-

propagating edge states cross at particular points in the Brillouin zone due to TRS. Therefore, the 

spectrum cannot be now continuously deformed into that of a trivial band insulator. A related 

phenomenon has been observed, in materials with inversion and mirror symmetries broken, viz. 

circular photogalvanic effect (CPGE) [25], wherein circularly polarized light incident onto a  two-

dimensional electron gas system  interface, generates a spin polarized photocurrent is quite 

interesting. This is an effective approach to exercise a full optical control, such as the generation and 

the manipulation, of the spin polarized photocurrent, paving the way towards spintronics applications.  
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