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Abstract. The normal incidence of circularly polarized optical field (POF) of tunable intensity on the
topological insulator Bi,Ses film is shown to give rise to the quantum spin Hall (QSH) effect, j
of the magnetic impurities (M), starting with a low-energy two-dimensional, time-depend
the framework of the Floquet theory. The quantized topological number- the Kane—Mele index
phase- strongly support this topological state.
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Introduction

The strong spin orbit coupling (SOC) is responsible f
topological insulators, such as the compound Bi>Ses. For exa
of the surface spin-momentum locked (SML) electrons whe

Istinctive properties of
the diyect backscattering immunity
ming up against edge or surface

like.In this paper we consider a thin film of
normal parallel to the z crystal growth direct
vacancies, though it can be transformed t
doping. The compound is based on quintuple layer” building blocks to yield a
crystallographic cell with rhomboh Ane struture parameters area=b =0.41nm, c =
2.853 nm, a =b =90°, and y =120% Along the z-direction, Se and Bi hexagonal planes stacked on top
of each other in the bulk. The (Ge-Bi-Se-B™8e) pentagonal layer is the basic building block of thin
film structures. The layers interact weakly through van der Waals force.

The model Hamiltoni e Bystem in momentum space could be written down in the basis
f p. Bi orbital (of odd parity) and p; Se orbital (of even parity).
The hybridization @etween the §Poitals is assumed to be strong. The presence of magnetic impurities
(M) togethe in Bi2Ses system leads to a QAH state.A common trait of all the QAH
system band structur t those bands, which are close to the Fermi level, correspond to chiral/
helical ferm¥@ns (Dirak-like). The quantum spin Hall (QSH) effect, on the other hand, is a spin genre
of quantum Hall effect. A twisted Hilbert space is one of the characteristics of a QSH system which
leads to a pair of counter-propagating helical edge states with opposite spins under topological
protection. This leads to inducement of a transverse spin current near the system boundary due to an
electric current. Such abstruse states with SML gives rise to two-dimensional strong topological
insulator. In what follows we show that emergent quantum spin Hall (QSH) phase [11] is possible by
the normal incidence of circularly polarized optical field (CPOF) on our system though we have
broken time reversal symmetry (TRS) due to the presence of MI. For this purpose, we impart the time-
dependence to our low-energy two-dimensional model Hamiltonian. The time dependence arises due
to circularly polarized optical light (POF) describable by the associated electromagnetic gauge field.
The coupling between the lattice electrons and the gauge field is established by the Peierls
substitution.We make use of the Floguet theory, where a time-dependent problem is mapped into a
stationary one[12,13] in terms of quasi-energies. We use this theory in the high-frequency limit.
Interestingly, the optical field tuneability leads to the emergence of QSH phase in the presence of Ml,
when intensity of the incident radiation is high, from the quantum anomalous Hall phase. The
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conclusive evidence of this emergence is obtained calculating the topological index Z».It is worth
mentioning that periodic POF provides a potent way to carry out theoretical proposition and
experimental realization, detection, and manipulation of diverse novel optical and electronic
properties and applications of materials, such as the polarization-dependent optoelectronic device
applications in 2D materials and their heterostructures [14], the topological phase transitions in semi-
metals [15,16], the Floquet engineering of magnetism in topological insulator thin films [17,18], and
so on. The Floquet theory leads to a highly powerful means to engineer, and detect exotic Floquet
topological phases with a high tunability. We model the interaction between the itinerant electrons in
the system and impurity moment with the coupling term (J) >_;S;. sj, where S; is the j th-site impurity

spin, s; = G) de(, T, djg ,de,, is the fermion creation operator at site-j, spin-state ¢ (=1,]), and

1, is the z-component of the Pauli matrices. For |§| >1, we can make the approxing
the impurity spins as classical vectors. Upon doing so, we write M = | ] ||S] w,
magnitude of the impurity spin into the coupling constant /.

We have organized the paper in the following manner: In section 2, wé amopel fora Tl in
the basis of the hybridized states of p, Bi orbital (of odd parity) gud p. SeQbital (of even parity).
The energy eigenvalues of the insulator surface and the eigenvect espopding to these values
are calculated. In section 3, we study the interaction of the Jgpfilm with normally incident POF in
the framework of the Floquet formalism which transforms our time-dependent Hamiltonian into a
time-independent Hamiltonian represented by an infinite matrix. TRe paper ends with a brief
concluding remark in section 4.

2. Surface State Hamiltonian /\

The Bi>Ses thin films have been attracted a lot due to their unique electrical and optical properties.
This enables the development of topological insulator-based devices and applications including
thermoelectric, and optoelectronics devices. Int ction, we consider a thin film of Bi>Ses together
with magnetic impurities with agimhal llel to the z crystal growth direction. We denote the
thickness of the thin film (alon€ m tion) . Accordingly, the corresponding Hamiltonian H (k)

given below contains cgpfStant teWQs and the z derivatives. In the basis  ( |p1§‘§e“> |p2‘Z’CT1d> |
Pt} 1p220g

parity), the momerftum spac
as

ates of p; Se orbital (of even parity) and p; Bi orbital (of odd
nsionless model Hamiltonian[1-10] of the system could be written

H(k) =( 0o+ Mo,))®t, + 9(k)o,®t1, + Al{(axkxax + aykyay) + nazkzaz}®rx, (@8]

even

pjzoﬂ the symbol o= 11 stands for the real spin, k = (ks ky), 7 < 1, M isthe

icld from the magnetic dopants, oxy,z , and zxyz, respectively, are the Pauli matrices for the
spin and the orbital degrees of freedom. If one wishes to work with a lattice model, the following
replacements are necessary: a;k; — sin(a;k;) and (a?k?) - 2(1 — cos(a;k;)) where j = (x, , 2),
and a; is the lattice constant along j direction. It may be mentioned that the lattice constants of bulk
Bi2Ses are in the basal plane a = 4.14 A and along the c-axis ¢ = 28.64 A. Here a, = a, = a and
a, = c. The energies e(k) = e,— D;c? 32 + D,a’k?, and 9(k)= 9+ B1 ¢ 202 — Boa?k?, and k? =
(k% + k3). Thus, it is easy to see that the coefficients B, and D, serve as the first neighbor hopping
in a lattice model. Here 9, denotes the term, whose magnitude corresponds to that of the band gap.
D, corresponds to conduction and valence band curvatures. A, is the strength of hybridization
between the orbitals. Furthermore, 9,/B, > 0 (99,/B2< 0) corresponds to the topologically nontrivial
(trivial) phase. A transition between these topologically distinct sectors occurs at 9, = 0O,



accompanied by a band-gap closing at k = 0. We have made the Hamiltonian dimensionless by
dividing every term in H(kK) by the first neighbor hopping B, = 3.31eV[1,2]
which is the highest energy value. In this scheme we have ¢, = —0.003,4; = 0.31,7 = 0.16, B;=
0.18, B, = 1,M = 0.08,D; = 0.024, and D,= 0.34 following the values of these quantities given
in ref. [1,2].

In order to obtain surface state Hamiltonian (HS“/4¢€(k, 1)) we make the replacement
ck, —» —icd, and look for states localized within the surface of the form exp(—ilz) .Under the
open boundary condition(OBC), we seek such a value of A for which this exponential will be

vanishingly small for z = ig. From above we find HS"face(k, 1)= (e,(k, 1) 0y + Mo,)®1, +
9(k, Mo, ®t, + A{(akyo, + akyay) — ncAo, }®t,, Where €,(k,A) = €+ D

and 9(k,A)=19, —B1 ¢® A2 — Boa?k?. It is worth mentioning that if one intends to
consideration, one may replace ¢;(k,A) in the Hamiltonian above b JA) +
I'y,)where I', corresponds to a random disorder potential (RDP) whi i uniform
distribution in the interval [-I'/2, I'/2] with a positive parameter I', 4§ a Ui distribution is

continuous (discrete), it has an infinite (finite) number of equally likely measurable values. The
eigenvalues (€;) of this matrix is given by the quartic €+ v (k, 1&gt yzw €4+ v1(k, A) €+
Yo(k,A) = 0 where

volk,A) = (nA;cA)*+2(nA1cA)* ((Ayak)* + 9% (k) — - M
+((4, k))? F2(4,ak)?(e? (k) — M?),
v1(k, A) = 4((nA10)*A2+(A1ak)*) e +¢ (I ) —€3(k) + e(k) M?),

ya(k,A) = =2((A,c)?2%+(4, - —3€2(k) + M?), ys(k, A) = —4e(k).
In view of the Ferrari’s solutio qua quation, we find the roots as
€ (s,o,k,bA)= o LI (bo(k, A) — (—"0(:'1)) +
k,2) |[— : 2
7 co(k, ) no(k./'l)> ’ 2)

where j = 1R,3,4, o = *s the spin index and s = +1 is the band-index. Since, the spin index o

0C-CUgS twic ), the term /@ does not act like magnetic energy. The functions appea-
ring in iven by
2by(k,A) 1 1
¥k, 1) = =2+ (ACk, ) — Ao (k, A))s = (Ak, 2) + 8o (k, D)3,

by (k) _ bo(kA)do(kA)
27 3

Aok, 4) = ( cg (k, ),

2 4d2b2 dobs  2b3  2cébyd d3
A(k) — (_bg + 0o + 61- __%o% __ 04 2707070 4 _0)1/2’
729 27 81 27 3 27

3y2(k,A)—8y,(k,A) —v3 (k,A)+4y5(k,D)y, (k,A)—8y, (k1)
bo(k,l) — { Y3 — Y2 }’ Co(k,l) — { Y3 Y3 32)/2 Y1 }



—3y4 — 2
dO (k, /1) — 3V3 (k';{)+256]/0(k';{) 64)/?;(5,(6:;{)Y1(kt;{)+16]/3 (k:A)YZ(k'A). (3)

The eigenvectors corresponding to the energy eigenvalues €; (s, 0, k, 1) are

(z/){ (k. 2)
| J (e, A
[Pk, 4, 2)) = ;712 (e, Dexp(=idz) zz Ek )3
¢ J(k, 1)

GG, ) = [WIC)I2+ W12+ [l (k)12 + [ (k)2 ' %r
Pl D) =1, ¥l D)= 2P K 1) 1aD (K, 1), 4
8,00k D) = ((Arak_)[(Arak)? + (141c)?) = ((&; (5,0,k ¥ (M +909)°))

AP (k, ) = —(AL1cD)XE; (5,0, k) k) +9(K)}

L i=1,2,3,4,

~((&) (5000 — €(k))? = (M +9(K)° tg; @, k) — e(k) — M +9(K)}

AP (k) = — (A, cn) (4ak)it+ )3) —
)2 = 92(K)} (AL cd)

(2M (nA;cA)(Arak.)) . ()

These eigenvectors spegf . The wave number A is an unknown in Eq. (2). As already
stated under OBC, r this in the form (ib), b >0, for ensuring an exponentially
decaying term witlf plus sig < 0( minus sign for z > 0) in the surface states. To determine an
approximate v ue A graphic#lly we first write the energy eigenvalue equation given by the quartic
above as an r x /A2, for a given energy eigenvalue Ef, at the I" point. We obtain a quartic

given as B, + Bx% + C(M)x + D(M) = 0. Here

* 4+ Ax3
= [2(nA,)?B? + (nA1)*D? + BID,E; — 4DFE; — 29,B],
= [ (mAD* — 4(A1)*9B1 + 2 (NA1)?€0D; + 4 (A1)?D1Ef + 3(2DF — BYEf
—12€oD{Ef + 4€,BZEf — 8 9yB1 D, Ef + 69§ BZ],
C(M) = [4(A)*€oEp+ (65 + MP)(A)?+2(nA1)*95 — 29BF — 2(nA1)*Ef +2€0 D, Ef

—290B1Ef — 4D1Ef + 4D1E;M?* — 12€§ D1 Ef — 8 9B, €oEy + 49§ D1 Ey],



D(M) = [ Ef + 95 — 295B,+ 4€EM? — 4€3Ef + 4€008Ep + 6€Ef — 12ME}
—1295Ef — 4€0E7]; (6)

the coefficients C ( D ) is increasing (decreasing)function of the exchange field M. Next, we plot
f,=B;x* + Ax3 + Bx? and f, = C(M)x + D(M) as functions of the dimensionless number x =
(cA)? for a given M. In Figure 1 these plots are shown for M = 0.10 , 0,30, 0.50, and 0.80. As the
value of M increases, the point of intersection of the two curves (which corresponds a solution sought
for of the equation B;x* + Ax3 + Bx? + C(M)x + D(M) = 0) shifts to the right. In Figure 1(e) we
have shown a plot of exp(—b(g)) as a function of (z/c) where b ~ 1 forM = 0.5 (see Eigure 1(c)). It
is clear from the from Figure 1(e) that a thickness of the film (W/c) must be of O(lode surface

state practically equal zeroatz = + g Since ¢ = 28.64 A, the thickness may be taken as W ~ 30 nm.

In the next section we discuss the effect of the normal incidence of circularl§fglag®ed ppPal field
(CPOF)on the film. We shall assume the frequency of the incident light as 2.3x 10'*Hz and there-
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Figure 1. (a)-(d) The plots of f, =B, x* + Ax3 + Bx? (inred ink)and f, = C(M)x + D(M)
of the (1)?2 for a given M.(a) M = 0.10 (b) M = 0,30 (c) M= 0.50 and (d) M= 0.80.The potf
curves corresponds to a solution sought for of the equation B;x* + Ax3 + Bx? + C(M
values of the parameters are ¢, = —0.003,4; = 0.31,n = 0.16,B,= 0.18, B, = M4

0.34.(e) A plot of exp(—b(g)) as a function of (z/c) where b =~ 1 forM = 0.5 (see Figure

fore the ratio W/4;,, =~ 0.023 < 1,where 1;;, = 1300 nm is the wavelength of the incident
radiation. In the next section we use the Floquet theory i igh-Tequeficy limit of the incident
radiation to investigate the system.

3. Floquet Theory

The circularly polarized optical radiation@){en‘g A incident is supposedly incident on the
thin film of Bi>Sesz of thickness W whgfe™1,,, /W > 1. We assume the normal incidence Suppose the

angular frequency of the optical Fi dent ofggHe film is © = 2% where T is the time period. We

iation is much larger than the film thickness W. Upon
rturbation into account the hermitian Hamiltonian Hsurface
t) = Hsurface (¢ 4+ T)). This stipulation is similar to that in the
potential changes the Bloch function into spatially periodic
function with the jodicily. The Floquet theory is now applied to our time-periodic
Hamiltonian opergtor. As in Bloch theory (where we replace real momentum by quasi-

momentum), , In terms of the quasi-energies &, has the form W(t) =
¥, exp ( - #” where v is an integer. The element Hﬂffface of the Hamiltonian is given
by YuH oy ., where H o % = phas,, + % fOT Hsurface (1) pi-vIotge  where (u, v)
are in ThisIs the Floquet surface state Hamiltonian of the BizSesthin film. With u # v, one

can wri e rix as

-1,—-1 -1,0 -1,1

surface _ | ... surface surface surface |
H - HO,—l HO,O HO,l | (7)

surface surface surface
H 1,-1 H 1,0 H 1,1 /

/ Hsurface Hsurface Hsurface

A time-varying gauge field A(t) = Ao(sin(wt), sin(wt + @)) represents CPOF. In particular, when
the phase ¢ = m or O, the optical field is linearly polarized. When ¢ = —7/2 ( ¢ = +n/2), the optical



field is right-handed (left-handed) circularly polarized. Once we have included a gauge field, it is
necessary that we make the Peierls substitution Hs#7face(t) = ysurface (k - %A(t)). In view of the
Floquet formalism in ref. [19-24] our system now can be described by a time-independent effective

Hamiltonian Hes}‘lfface in the high-frequency limit, where

Hef %= (e, Doy + Ma,)®70) + (KN 0u®, +{A;(akyo, + ak,0y) — nﬁicﬂffég@%

e(k,2) =e(k, 1) + a?43D, ,9(k,A) = 9(k,A) — a?43B, F (“;A‘z’ &r
aw

—_— _ 242
A1 = A1 <1 + 2B2 (a AO)), E(k, A) = €0+ chzlz +

Here,

hw

9(k,A)= 9, —B1 c? A2 — Baa?k?. (9)

The value of a?A3( this quantity is the intensity gfslag radiati8i,) is taken to be 0.65 — 0.90
which is good for the radiation field of frequeng 101*HZ under consideration. Moreover, +
sign ( — sign) prefixed corresponds to the le -handed) circularly polarized radiation.

The eigenvalues (E;) of this matrix is givegby t

E! +ys3p(k, b)Ej3 + Vor (@

7
where
Yor(k,b) = (nA;0)* g 2 1g§«A~1ak)2 +9(k b)? — e(k, b)> — M?) b?
( +((A1ak)? + 9(k b)*)? — 2(A;ak)? (e(k, b)? — M?),

Yir(k, ) & 4(— (M 1c)2b?+(A ak)?)e(k, b) + 4(9(k b)2e(k, b) — e(k, b)3 + e(k, b) M?),

)Ej +vor(k,b) =0 (10)

Yar( n4;¢)?b? — (A1ak)?) — 2(9(k b)? — 3e(k, b)? + M?), y3r(k, b) = —4e(k, b).

(11)
We now invoke the Ferrari’s solution of a quartic equation(10). We find the roots E; similar to Eq.
(2) albeit with the replacements A — (+ib),b >0, € (s,0,k,A) & — M) — €(k,b),9(k) —
9(k, b), and A, — A, as it is evident from Eq. (9). The corresponding eigenvectors are given by
Eq.(5) with the same replacements. In Figure 2 (a) we have plotted these energy eigenvalues E;j as a
function of (ak) for a given a4, = 0.60. In Figure 2(b), however, the value of a4, = 0.80. The value
of the other parameters are ¢, = —0.003,4; = 0.31,7 = 0.16,B,=0.18, B, = 1,M = 0.30,D,; =
0.024, D,=0.34, and p = 0. Here p is the chemical potential of the fermion number. We find that the
band structure does not change much when the exchange energy M is increased from 0.3 upto 0.6.
Also, with mild random dosorder potential ( Wo < 1) we have not noticed any significant change in
the band structure. The 3D plots of E3; =€ (s=—-1,0 = +1,k,4), as a function of the



dimensionless wave number (ak) and the intensity of the incident radiation (aA4,)? ( left handed as
well as right handed CPOF), are shown in Figures 2(c) and 2(d). As the latter is increased the system
makes a crossover to QSH state( blue ) starting from quantum anomalous Hall (QAH) state (red).The
mild disorder potential (T, < 1) is found to have no significant effect on the film band structure.

It must be mentioned that the time reversal symmetry (TRS) identity HS“/ “Ce(—kx,—ky) =

®H5”rface(kx, ky) ® ! is satisfied by the 2D surface state Hamiltonian of TI (or QSH insulator),
oi O

where the anti-unitary operator © =Y yKand }; = ( 0] G.) and oj are Pauli matrices. When, for
j

a TRS complaint system, a momentum +k satisfies the relation k + G = —k, where G jiga reciprocal

lattice vector, +k becomes equivalent to —k due to the periodicity of the BZ. The dggenéefacy of the

momentum pair ( k), called Kramer pair, accrues from TRS. These momenta gse re Bigas-the

TR-invariant momentum (TR1M).We consider now Figures 2(a) and 2(b). A look-over yields that, in
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Figure 2. (a),and (b) The plots of E; as functions of the dimensionless wave number (ak) for a given ( a4,).
The numerical values of the other parameters are ¢, = —0.003,4; = 0.31,n = 0.16,B;= 0.18, B, =
1,Er = 0.05,D; = 0.024,p = 0,M = 0.30,T'y = 0.3,and D,= 0.34. The Fermi energy Er = 0 is represented
by a horizontal line. (c),and(d ) The 3D plots of E3; =€ (s =—1,0 = +1,k, 1) as a function of the
dimensionless wave number (ak) and the intensity of the incident radiation (a4,)? ( left handed as well as
right handed CPOF). As the latter is increased the system makes a crossover to QSH state( blue ) starting from
guantum anomalous Hall (QAH) state (red).

the band in Figure 2(b), particularly, the band E;; =€ (s = —1,0 = +1,k, 1) possesses the above
mentioned momentum Keim = (£2,0), (0, £2) (In Figure 2(a), however, this is not true). The reason is
that kuim (referred to as TRIM) satisfies the condition kijm + G = —K4pim. The vector
G here is equal to (+4,0)or (0, ¥4). Let us now note that the Fermi energy Er ~ u = 0 inside the
gap intersects the surface state band E5; =€ (s = —1,0 = +1,k,1) inthe same BZ only once as
the TRIM pair. While for odd pair of surface state crossings (SSC) we have a topologically non-trivial
(strong TI), an even number of pairs of SSC corresponds to a topologically trivial (weak TI or
conventional insulator) [11]. Thus, there is strong evidence that the system under consideration is a
strong topological insulator or a quantum spin Hall (QSH) insulator. We shall show below
conclusively, calculating the topological index Z», that the QSH state is possible even when the time
reversal symmetry (TRS) is broken due to the finite value of the exchange field M. The material band
structures are usually characterized by topological (Kane—Mele) index Z,=+1 (v=0) and Zo=-1 (v
=1). The former corresponds to weak TI, while the Iatter to strong TI. In Figure 2(c) and (d), we have
the 3D plots of € (s = —1,0 = +1, ak, /1) as a fun Q the difensionless wave number (ak) and
the intensity of the incident radiation (a4,)?. As incréased the system makes a crossover
to QSH state (blue ) starting from quantum_aRonie dll (QAH) region (red). Coming back to
Figure 4(a), where the exchange field is M= 0.3 and &g/~ 0.60, there is no TRIM pair. Thus, for
this value of a4, the system is expected to be in quantum anomalous Hall (QAH)phase. A twisted
Hilbert space is the important feat f a QSWsystem or a strong topological insulator. In what
follows we show that the Hilbert space @four sygtem is twisted as it is characterized by the Kane—
Mele index Z,=—1 (v =1).

The quantized topologicg¥ numbe
for the quantum spin
strongly support to
the topological in
QSH. For thi

E; obtainale from

he Kane—Mele index Z, (or, the topological invariant v )[11]
e Chern number C for the quantum anomalous Hall phase,
e, therefore, feel necessary now to provide a method to calculate
certains whether the state attained under intense CPOF is indeed a
require the eigenvectors corresponding to the energy eigenvalues
. The eigenvectors are Bloch states given by

o5 (k,b)

a
(@) — o —1/2 @7 (k,b) _
[ @ (k, b)) = ng~Y2(k, b) oSk b) | ° 1,2,3.4, (12)
@4 (k, b)

na(k,b) = |97 (k, b)I* + |93 (k, b)I* + 95 (k, b)|* + |@g (k, b)|?

e%(k) =1, @%(k,b)= AP (Kb) IAD(Kb), n =234

A@ (kb) = (+2iMnA;ch) (Arak_), k_ = ky — ik,, (13)



8, (k. b) = (Fak))[(Aak)? - (Azcb)?) - ((B — €U b))> — (M + 90 B))")]

Aé“)(k, b)=(n A:cb)z{Ej (s,0,k,b) — e(k,b) + M + 9(k b) }

—((E (5,0, ) — €k, b))? — (M + Ik D) + (4, ak)?) x{E; — e(k,b) — M £5(k,b) }

AP (k,2) = (FinA,cb)(( Arak)? + (nA ch)?) —

(FinAicb) {(E;j (s,0,k,b) — €(k,b) — } (14)
The Hamiltonian H(K) in Eq.(1) satisfies ©@*H (k) © = H(} whefe, for a spin 1/2 particle,
the time reversal operator @ assumes the form @ = I®a, K. WaeSymbd¥T stands for 2 x 2 identity

matrix, o; are Pauli matrices on two dimensional &

= (p @ (—k,b)|6|p® (k, b)), where a
that 94 (K) is a unitary matrix. Quite

function basis, the matrix representation of
and P are band indices. Upon using (11) o

which implies that at a kirim the rx 9qp (Kerim) becomes anti-symmetric. As in Floquet theory
above, we assume H|[t [
the green (spin-do

by [ (k, 1))
polarizations a

spin-up) in Figure 4 and represent their Bloch wave functions
d |@® , respectively. For this two-band system, the total charge
e writtgn as P = P2+ P3 , where

w dk

o C33(k). (16)

—Tm 27

dk
P, = ffn; Cca2(k), Pz =

(k) (j = 2,3) are the Berry connectionsA; (k) = {—i{y ) ()|V,| P (k))}. The

aiff = P2 —Ps = 2P2 — P. Furthermore, it may be easily verified that the time-reversed
version of the Bloch wave functions by [0 (k, t)) is equal to [y (—k, t)) save for a phase factor.
Thus, we can write the time reversed state of [ (k, t)) = e 7|y @ (—k,t)) and, similarly, the
time reversed state of @ (k,t)) = — e ¥R |YE (—kt)) att = 0 and t = T/2 where y(k) =
i log 9,3(K). The Bloch functions [y (k, t)) correspond to maps from the 2D phase space (k, t) to
the Hilbert space. Furthermore, it is quite straightforward to show that the Berry connections satisfy

Co2(—k) = c33(k) — ;—ky(k). In terms of the total polarization density

R(K) = 2 (k)+ c33(k) = tr(c(k)) (17)



one can write P, = f — R(k) -— [y(rt) y(0)]. After a lengthy but straightforward algebra, we
find

i 9,3 (1)

det[8(m)] i 953 (1)
Pairr =1 fo - aklog(det[ﬂ(k)]) g19 NG etld(m] © 23(1

det[9(0)] m 923(0) (18)

i1
=i-510g

/ 2
This leads us to the expression Py;rr = llog( 323((2)) -\/?L;))z
23 23

mic term in the right-hand side is +1 or —1. This means Py is either 0 or 1 (mod 2). The two
values of P; ¢ are two different polarization states which the system can assume att =0 and t = T/2.
As in ref.[11], the Hilbert space, referred to above, could be separated into two pa
the difference in Py ¢ between t = 0 and t = T/2. This leads to introduction
(Py- (T/2)- Py, (0)) specified only in mod 2 . The triviality of the Hilbert spa€e isyepréggnted by v
=0, while the nontriviality (twisted) corresponds to v = 1. The system band structures
are characterized by Z,= +1 (v = 0) and Z,= -1 (v = 1). Upon usi , Pairr =

) . The argument of the logarith-

1 V923(0)? ) 9,3(1) .
mlo (1923(0) m),we obtain
1923( kgzm
1 =1I; 0 (19)
1923(aktrim)

We have found ak.., in Figure 2 (b), A fairly s
the matrix 94 (kerim) becomes anti-sym C e§ Us 9,5(aKirim) = — 932(akipim). The
square root of the square of the former is (Kdim) A turns out to be 1 or Z,=—1 (strong TI or
QSH phase ) when the intensity of incident radiation ~ 0.8 with M = 0, this is the conclusive
evidence of the Hilbert space beiW th . The physical consequence of this nontriviality
is the appearance of topologic prot@gted sdrface states [11]. The humps in the graphical
representations in Figures 2(c) and 2(d) show that the system under consideration makes a crossover
to QSH state from QAH state when the intensity of incident radiation ~0.8 with M # 0. Ergo, we
have found that the CPOF induced QSH state is accessible even when the time reversal symmetry
(TRS) is broken due to the finite value of the exchange field. The question “whether this crossover is
a phase transition"Cou orthed through thermodynamic consideration-a future task.

d calculation using the fact that at a Ktrim

4. Conclud remarks

We havgonsﬂered the Berry connection in the previous section. The Berry curvature Q9 (k) is curl

of the Berry connection in momentum space. In 2D, one writes foy)(k)=
i<akx1/)(f)(k)|aky1p(j)(k)> —i <akyz/)(f)(k)|akxz/)(f)(k)>. It is a second-rank, anti-symmetric tensor

and becomes zero in the cases where the system is both TRS and inversion symmetry (IS) compliant.
On a quick side note, in order to study the possible quantum anomalous Hall (QAH) effect we need
to show non-zero Berry curvature (BC). On account of M # 0, say in Figure 2(a), BC is non-zero.
However, the conclusive evidence of QAH phase comes about from the calculation the Chern number
C (TKNN invariant), which needs to be an integer. It is expressed as an integral of the Berry

curvature over the two-dimensional Brillouin zone(BZ): C = 2 JIBzzn Q(")(k) In a future

publication we take up the issue of the C calculation for the present system.

2 )2



We have derived here an effective Hamiltonian for the surface states of a topological insulator thin
film incorporating the effect of the normal incidence of POF on the film using the Floquet theory in
the high-frequency limit. We found that the surface of the system has states, which come in an odd
number of Kramers’ doublets when intensity of radiation attains a critical value, as in Figure 4(b).
These anti-clockwise/clockwise circling states are carrying spin down/up, or vice versa, depending
on the orientation of the magnetic field that enters the spin-orbit interaction (included in section 2).
The edge states appear as a consequence of the cyclotron orbits induced by the field, which are
naturally truncated at the physical boundary of the sample. The energy levels of the counter-
propagating edge states cross at particular points in the Brillouin zone due to TRS. Therefore, the
spectrum cannot be now continuously deformed into that of a trivial band insul#@RyA related
phenomenon has been observed, in materials with inversion and mirror symmetries broken, viz.

circular photogalvanic effect (CPGE) [25], wherein circularly polarized light two-
dimensional electron gas system interface, generates a spin polarized quite
interesting. This is an effective approach to exercise a full optical control ation and
the manipulation, of the spin polarized photocurrent, paving the way towards siintr pplications
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