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The dynamics of plasmoid instability in the presence
of asymmetric parallel shear flow
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Abstract
The nonlinear evolution of the magnetic reconnection and onset of the plasmoid instability are investigated
by using 2.5-dimensional MHD simulations when the sheared plasma flow is anti-symmetric on either side of
the boundary layer. In particular, we considered a wide range of velocity amplitude of shear flow (V0) (from
sub-Alfvénic to level of super-Alfvénic) and the shear flow scale length (av) compared to equilibrium magnetic
field scale length (aB). We found that sub-Alfvénic shear flows (here V0 ≤ 0.6VA) can change the O-point position
of magnetic islands. The plasmoid instability is suppressed with increasing shear flow velocity, and the Kelvin-
Helmholtz instability appears instead of the plasmoid instability when the shear flow is of the order of the Alfvénic
or larger. Thus, at the limit of Alfvénic velocity, the magnetic field lines twist near the magnetic reconnection
site due to the presence of asymmetric shear flows. The shear flow scale length (or shear flow thickness) can
have either stabilization or destabilization effects on the current sheet development. For sub-Alfvénic shear
flow (here V0 ≤ 0.8VA), av < aB has a suppressing effect on the plasmoid instability, while av > aB has a boosting
effect on the plasmoid instability. Therefore, we found a critical value for the shear flow thickness that magnetic
reconnection has the maximum value. The boosting effect of the shear flow on the current sheet becomes
strongest at avc = 1.2aB .
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1. Introduction

Resistive magnetohydrodynamic (MHD) instabilities such as
plasmoid instability (PI) [1] and Kelvin-Helmholtz instabil-
ity (KHI) [2] are two important macroscopic instabilities in
laboratory and space plasmas. These instabilities occur in
highly conductive and magnetized plasmas during the mag-
netic reconnection process in a narrow current layer. Magnetic
reconnection is a fundamental process in space and laboratory
plasma physics [3,4] in which magnetic field lines are merged,
cut, and reconnected. During magnetic reconnection events,
the stored magnetic energy in plasma is rapidly released and
converted into kinetic energy and plasma heating. It has been
widely used to explain explosive events and fast energy trans-
formation phenomena, such as solar flares [5], coronal mass
ejections [6], and the interaction of solar wind with Earth’s
magnetosphere [7].
Any change in plasma parameters can have significant effects
on the magnetic reconnection process and the non-linear evolu-
tion of the PI. Plasmoid formation occurs when the Lundquist
number based on the system size SL = LxVA/η , where Lx is
the reconnection layer length, VA is the Alfvén speed and η

is the resistivity, exceeds a critical value Sc. The most com-
monly critical Lundquist number value is Sc ≈ 104 [8–10].
A large number of studies, commonly computational, have

considered the role of main plasma parameters on the mag-
netic reconnection and the PI, such as the plasma-β [11–13],
plasma viscosity [14, 15], non-uniform resistivity [16], asym-
metric magnetic field and plasma mass density in two sides
of the reconnection current sheet [17, 18], and presence of
magnetic field perpendicular to the reconnection plane (i.e,
guide field) [19]. Additionally, plasma flow is common in
space and laboratory plasmas. The presence of any plasma
flow can play an essential role in the structure of the current
sheet and the PI dynamics during the magnetic reconnection.
Different kinds of flows such as diamagnetic flow, out-of-

plane shear flow, streaming flow, and parallel shear flow have
been proven in plasmas. The influence of each of these flows
on the tearing mode instability (TMI) and reconnection layer
structure has been studied. The influences of shear flow
out of the magnetic reconnection plane in 2D simulations
have been investigated [20, 21]. They found that the shear
flow perpendicular to the reconnection plane can change the
quadrupole structure of the out-of-plane magnetic field and
therefore modify the magnetic reconnection rate. Also, in the
Earth’s magnetotail, the presence of the bulk plasma flows
parallel to the current sheet are commonly observed in the
plasma sheet [22, 23]. The existence of a streaming plasma
flow in the current sheet may have a considerable effect on
the tearing mode instability [24–26]. They concluded that the
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Figure 1. Temporal evolution of the magnetic reconnection rate for different values of the shear flow velocity amplitude.

growth rate of the tearing mode instability is larger than that
without a streaming flow. The presence of sheared plasma
flows is observed in many Astrophysics situations. Shear
flows exist naturally in many physical phenomena, such as
solar flares [27–29], erupting arcade [30], and in the current
sheet at the dayside magnetopause is created due to the inter-
action of the solar wind magnetic field with that of the Earth’s
magnetosphere which is in the opposite directions [31, 32].
Numerically, the dynamic effect of the symmetric parallel

shear flows on the evolution of the resistive tearing mode
[33, 34] and PI [35, 36] have been studied in the past few
decades. The influences of super-Alfvénic flow and sub-
Alfvénic flow on the PI and tearing modes are very differ-
ent. The KH instability can be induced in the presence of the
super-Alfvénic flow velocity with a time scale of the order
of ten Alfvénic times, while the time scale of the resistive
tearing modes or plasmoid instability with the sub-Alfvénic
shear flow is of the order of hundred Alfvénic times [37].
In the lack of shear flow, when the current sheet becomes

Table 1. Shear flow velocity amplitude at up and down of the
current sheet.

V0(Velocity amplitude) V0,U pstream V0,Downstream

0 0 0
0.2 0.2 -0.13
0.4 0.4 -0.26
0.6 0.6 -0.4
0.8 0.8 -0.53
1.0 1.0 -0.66

1.25 1.25 -0.83
1.5 1.5 -1.0

unstable to the PI, the large plasmoids (or magnetic islands)
are formed in the current sheet through the magnetic recon-
nection process. However, in the presence of parallel shear
flows, the magnetic reconnection rate and rate of the plasmoid
formation decreased with an increase in shear flow amplitude
up to the critical value, after which the PI transients to the
KH instability. This critical value of share flow amplitude is
Alfvén velocity for a resistive MHD model. In general, the
shear flow stabilizes the PI. However, recently Hosseinpour
et al [35] found that the symmetry shear flow can trigger PI
when the shear flow thickness is greater than the current sheet
thickness.
However, little attention has been paid to the role of shear
flow on the nonlinear evolution of PI at compressible plasmas.
In this paper, we aim to study the dynamics of PI and the non-
linear development of the current layer in the presence of an
initially asymmetric shear flow parallel to the magnetic field.
Thus, we will consider both the effects of shear flow velocity
amplitude and shear flow scale length. The paper is arranged
as follows: numerical setup and equations are defined in sec-
tion 2. The simulation results are presented in section 3. In
section 4, we will give a summary and conclusion.

2. Model and Method
For investigation of the effect of asymmetric shear flow on the
plasmoid instability dynamics, we use a finite-volume 2.5D
resistive MHD code, Open MHD code, which was developed
by Zenitani [38]. Numerical fluxes are estimated by an HLLD
approximate Riemann solver [39]. The second-order TVD
Runge-Kutta time marching method is used, and also, the hy-
perbolic divergence cleaning method (∇ ·B = 0) is employed
for the solenoidal condition [40]. The basic one-fluid com-
pressible resistive MHD equations that are solved by using
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Figure 2. Variation of magnetic field lines at the same time, t = 100τA , for different values of the shear flow velocity
amplitude.

OpenMHD code in a cartesian geometry system are as follows:
The continuity equation

∂ρ

∂ t
+∇ · (ρV) = 0 (1)

where ρ is plasma mass density, and V is plasma flow velocity;
the Euler equation

∂ (ρV)

∂ t
+∇ · [ρVV+(p+

B2

2
)I−BB] = 0 (2)

where p is the gas pressure, B is the magnetic field, and I is
unit tensor; the energy equation

∂e
∂ t

+∇ · ((e+ p+
B2

2
)V− (V ·B)B+ηj×B) = 0 (3)

where e = p/(γ −1)+ρV 2/2+B2/2 is total energy density,
η is electrical resistivity, and j is the current density; the

induction equation

∂B
∂ t

+∇ · (VB−BV)+∇× (η j) = 0 (4)

and ohm’s law

E+V×B = η j (5)

where E is electrical field. We set the specific heat ratio
γ = 5/3. All variables are functions of space (x,y) and time
(t), and also, the variation of variables in the z-direction is
ignored ∂/∂ z. For the convenience of numerical computa-
tions, all variables are dimensionless. For example, B/B0 →
B, ρ/ρ0 → ρ , (p/B2

0)/2µ0 → p, V/VA → V, E/B0VA → E,
j/L0B0 → j, t/τA → t and η/L0VA → η . Where τA(= aB/VA)
is Alfvénic time and L0 is the length scale of the system so
that all spatial variables become normalized to it.
The simulations are performed in a rectangular box of size
Lx=[-100,100] and Ly=[-10,10]. Here, x is the longitudinal
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Figure 3. Out-of-plane current density for different values of shear flow amplitude at t = 100τA corresponding to figure2.

direction, and y is the normal direction to the reconnection
plane, with 3200× 320 cells. The numerical grid sizes are
∆x = ∆y = 0.0625, which is assumed uniform in space and
constant in time. We consider the open boundary condition at
the left (x =−Lx) and right (x = Lx) boundaries so that the re-
connected field lines can cross through these boundaries freely.
On the other hand, the conducting wall boundary condition
is set at the bottom (y = −Ly) and top (y = Ly) boundaries,
where the plasma cannot flow through these boundaries.
The magnetic field B and plasma flow velocity V can be repre-
sented as B=∇ψ× ẑ+Bzẑ and V =∇φ × ẑ+vzẑ respectively,
where ψ is the magnetic flux function, Bz is the magnetic field
component perpendicular to the reconnection plane (guide
field), φ is the stream function, and vz is the flow speed in
the ẑ direction. Assuming Bz = 0 and vz = 0, the initial mag-
netic field and asymmetric sheared plasma flow are given as
follows:

Bx(y) = B0 tanh(
y

aB
) (6)

Vx(y) =V0[
tanh( y

av
−b)+b

(1+b)
] (7)

where B0 = 1.0 and V0 are the asymptotic values of the mag-
netic field and the shear flow velocity amplitude, respec-
tively. aB = 0.7, b = 0.2 and av are the half thickness of
the current sheet, the velocity asymmetry parameter and shear
scale length, respectively. By solving the condition of initial
force-balanced equilibrium, the thermal pressure is given by
p = B2

0/2(1+ β/2−B2
x), and assuming the initial thermal

equilibrium condition, the plasma mass density is obtained by
ρ = p/1+β , where β is the plasma beta parameter, and its
value is fixed to be 0.2 in this study.
In this simulation, according to Ref [41], initially, we use a
non-uniform resistive disturbance during 0 < t < 5 as η =
η0 exp(−x2 − y2) where η0 = 0.025. This primary resistive
disturbance leads to the formation of an X-point at the ori-
gin, that is, x = y = 0. After t = 5, the uniform resistiv-
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Figure 4. Maximum reconnection rate for different values of
shear flow velocity with av = aB.

ity η = 0.0015 is supposed. Therefore, for this resistiv-
ity, the corresponding Lundquist number is estimated to be
s = LxVA/η=231481, where VA is taken to be 3.47.

3. Simulation Results
In this section, we aim to investigate the influence of asym-
metric sheared plasma flow velocity amplitude and shear scale
length on the growth rate of the plasmoid instability.

3.1 Varying shear flow velocity amplitude
At first, we examine the effect of shear flow with different
values of velocity amplitude by keeping the shear scale length
fixed at av = aB = 0.7. In our study, a wide range of different
values of shear flow velocities V0 = (0,0.2,0.4,0.6,0.8,1.0,
1.25,1.5)VA, from sub-Alfvénic to super-Alfvénic velocities
is supposed. V0 = 0 represents a case without shear flow, and
V0 = 1.0 represents a case with Alfvénic speed, which is the
critical velocity in sheared plasma flow studies. Therefore,
V0 > 1.0 denotes the super-Alfvénic velocity, and V0 < 1.0 de-
notes the sub-Alfvénic velocity. According to equation 7, the
shear flow velocity amplitude in up-stream and down-stream
of the boundary layer is shown in Table 1.
The magnetic reconnection rate for different values of shear
flow velocity is shown in Figure 1. In plots of Figure 1, both
linear and nonlinear regimes are clearly shown, so that for
V0 ≤ 0.6VA, linear and nonlinear phases of reconnection rate
plots are independent of the shear flow amplitude. Also, by
increasing the shear flow velocity amplitude V0 > 0.6VA, the
nonlinear phase oscillations are suppressed, and the linear
phase of the system is longer. Therefore, the formation of
multiple reconnection sites in the current layer reduces, and
the growth rate of plasmoid instability is suppresses. The
magnetic reconnection does not occur in the current sheet
when there is super-Alfvénic shear flow in the plasma, and
the current sheet will have a stable state [35]. Contrary to this
expectation, in the (g) plot of Figure 1, due to the asymmetric
shear flow on both sides of the current sheet, the reconnection
process can occur. Therefore, reconnection does not occur
when the shear flow velocities on either side of the current
sheet are of the order of Alfvénic speeds or larger (Fig.1(h)),
and the current layer remains stable.
Now, to understand the evolution of the current sheet in the

Figure 5. Temporal variation of magnetic reconnection rate
for different values of half-thickness of shear flow with
constant velocity amplitude V0 = 0.8.

presence of sheared plasma flow, the variation of the force
lines, which are the same as the magnetic field lines, at the
same time, t = 100τA, for different values of the velocity am-
plitude is shown in Figure 2. Figure 2(a) corresponds to a
state in which there is no shear flow V0 = 0, so the plasmoid
instability sufficiently develops within the current sheet. As
can be seen from Figure 2(b), a small amplitude of velocity
does not have significant effect on the evolution of the current
sheet and secondary plasmoids formation in the current sheet.
As the shear flow velocity amplitude increases, the plasmoid
growth rate slows down. This is evident from the size of the
primary plasmoid in the center of the current layer in different
panels in Figure 2. Also, the presence of shear flow leads
to the advection of the primary plasmoid out towards bound-
aries. From (f) and (g) panels of Figure 2, we can see that
the plasmoid instability is suppressed, and Kelvin-Helmholtz
instability appears when the velocity magnitude is of the order
of Alfvénic velocity or larger, while the velocity magnitude
is of the order of the sub-Alfvénic velocity on one side of
the current sheet. When the shear flow velocity magnitude
on both sides of the current sheet is on the order of Alfvénic
or greater, the current sheet will be stable against instability.
This point can be seen in Figure 2(h) where V0 = 1.5.
Furthermore, corresponding to the different panels of Figure

2, the out-of-plane current density is shown in Figure 3. Ac-
cording to panels in Figure 3, the maximum electrical current
density is seen at the reconnection sites. As the shear flow
velocity amplitude increases, the fragmentation of the current
sheet and the growth rate of the plasmids decrease, and the
current sheet retains its original structure for a longer time.
Moreover, by increasing the shear flow velocity of the order of
super-Alfvénic, the current density perturbations around the
reconnection point are maximized. For example, for V0 = 15
(fig.3(h)), these MHD perturbations are more conspicuous in
the upstream regions, where the flow velocity is of the order
of super-Alfvénic velocity than in the downstream regions,
where the flow velocity is of the order of Alfvénic velocity.
These perturbations are due to the KH instability when the
shear velocity is greater than the Alfvénic limit. Hence, the
maximum reconnection rate for different values of shear ve-
locity in Figure 4 shows that the reconnection rate decreases
with increasing V0. When V0 = 1.5, that means the shear ve-
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Figure 6. Force lines for different values of shear flow thickness at t = 100τA, and av = a)0.2 , b)0.35 , c)0.5 , d)0.7 , e)0.85 ,
f)1.

locities are of the order of Alfvénic or larger on both sides
of the current sheet, the current sheet keeps its primary struc-
ture. This topic is in agreement with previous studies on the
nonlinear tearing mode instability [42,43] in presence of sym-
metric shear flow. So that, the tearing mode instability is fully
stabilized by Alfvénic velocity.

3.2 Varying shear flow thickness
In this section, we discuss the effect of different half-thickness
of the shear flow on the evolution of the plasmoid instabil-
ity. Here, we assume the shear flow velocity amplitude is
fixed,V0 = 0.8VA , and the half-thickness of shear flow varies
as av = 0.2,0.35,0.5,0.7,0.85,1.0,1.25.

Remember that the half-thickness of magnetic shear is
aB = 0.7. The half-thickness of the shear flow is considered
as a significant parameter in the process of magnetic reconnec-
tion and plasmoid instability. The temporal variation of the
reconnection rate in Figure 5 shows that for small values of
av = 0.2, reconnection does not occur, and the linear phase of
the system is larger, meaning that the system takes a long time

to achieve instability. The magnetic field lines for different
values of shear flow thickness are shown in Figure 6 at the
same time (t = 100τ). As seen from Figure 6(a), the plasmoid
instability does not occur in a small value of av = 0.2, and
the current sheet is stabilized against plasmoid instability. In
the greater values of av = 0.35,0.5, the reconnection and plas-
moid instability are developed and the current sheet becomes
unstable. Therefore, shear flow can have either boosting or
suppressing effects on the plasmoid instability growth rate,
which is predominantly determined by the shear flow thick-
ness.
Figure 7 shows the maximum reconnection rate for differ-
ent values of av, assuming the velocity amplitude is constant
V0 = 0.8VA. The red dashed line represents the peak recon-
nection under conditions where the shear flow is perfectly
anti-parallel to the background magnetic field (i.e av = aB).
When av < aB the peak reconnection rate decreases, while for
av > aB the peak reconnection rate increases. In this simula-
tion, we found a critical value for shear flow thickness in the
presence of sub-Alfvénic asymmetric shear flow with ampli-
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Figure 7. Peak reconnection rate for different values of av .

tude V0 = 0.8VA in upstream and V0 = 0.6VA in downstream.
Therefore, maximum reconnection rate has been obtained at
avc = 0.85 (i.e avc = 1.2aB ).
However, when the half-thickness of shear flow is greater
than the critical thickness, the maximum reconnection rate
or linear growth rate decreases, which means that the shear
flow velocity can have either stabilized or destabilized effects
on the plasmoid instability development dependent on the
half-thickness of shear flow.

4. Summary
Using 2.5-dimensional MHD simulations, we investigated the
effect of anti-symmetric parallel sheared plasma flow on the
dynamics of plasmoid instability in a Harris current sheet. In
these simulations, at very early times, we used a non-uniform
localized resistivity to trigger fast reconnection at the origin.
After that, a uniform resistivity was set. To investigate in more
detail the effect of asymmetric sheared plasma flow on the
non-linear evolution of the current layer, our study considered
a wide range of parameters both for the shear flow velocity
amplitude (sub-Alfvénic to super-Alfvénic) and the shear flow
thickness.
The results showed that asymmetric sheared plasma flows
with a thickness comparable to the magnetic shear length can
lead to significant effects on magnetic reconnection and plas-
moid instability. The presence of sub-Alfvénic shear flow
causes the change of primary O-point (where high pressure
and density plasma is enclosed,) position from the center of
the current sheet. As the amplitude of the asymmetric shear
flow velocity increases, the reconnection rate and the growth
rate of plasmoid instability decreases, and also the linear phase
of the system becomes longer. We also found that, in strong
shear flows (Alfvénic limit), the Kelvin-Helmholtz instabil-
ity prevails in the system instead of the plasmoid instability.
Due to the fast growth of KH instability, magnetic field lines
twist near the origin, and the reconnection structure deformed.
Furthermore, super-Alfvénic shear flows can fully suppress
the plasmid instability, and so, the initial configuration of the

current sheet remains stable.
The sub-Alfvénic shear flow can have both boosting or sup-
pressing effects on the plasmoid instability development, which
is completely controlled by shear flow scale length (or shear
flow thickness). In our study, the influence of different val-
ues of the shear flow thickness was investigated, with a sub-
Alfvénic velocity. We found that, for small values of the
thickness (here av = 0.2), the reconnection does not occur,
and the current sheet remains stable. Thus, the reconnection
rate or growth rate of plasmoid instability for av < aB is less
than av = aB (an equilibrium state). Also, we found a critical
value for the shear flow thickness at av = 1.2aB where the
reconnection rate is maximum.
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