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Abstract. This paper presents best proximity points in probabilistic metric spaces, deriving
new fixed point results. We also include some examples that showcase our findings and their
relevance to nonlinear Fredholm integral equations.
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1. Introduction

Fixed point (FP) theory has emerged as one of the most significant branches of math-
ematics in the past decade. It has opened up numerous opportunities for those interested
in the field by introducing various types of metric spaces, including e-metric spaces,
z-metric spaces, and rectangular metric spaces. A notable addition to this area is the
probability metric space, which was first introduced by Menger [22] as a metric space of
possibilities. Following the work of Menger, Segal [29] significantly advanced the field by
establishing several FP theorems. For comprehensive information regarding probabilis-
tic metric space (PMS), readers are directed to [3-8, [I-I3, T5-07] and the references
therein. Subsequently, the theoretical framework of FPs in PMSs, applicable to both
single-valued and multivalued mappings, has been extensively investigated by numerous
mathematicians ([I5, ['7, T9, 23, 25]). In their analysis, Schweizer and Sklar [28] examined
the properties of Menger PMSs. In 2010, Jachymski [19] improved upon the probabilistic
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interpretation of the classical Banach contraction principle, which was initially presented
by Ciri¢ [6] for nonlinear contractions. An overview of this research is also available in [I7,
Hadzic and Pap]. Essential definitions such as distribution functions, t-norms, H-type
t-norms, and Menger PMSs can be found in [2, B, B, 16, 7] alongside related references.
In 2011, Raj [24] presented the concept of the best proximity point (BPP). Also, he for-
mulated and proved several theorems that are relevant to the study of weakly contractive
non-self mappings. These contributions have significantly advanced our understanding
of the behavior of such mappings within the broader context of FP theory.

Definition 1.1 [I7] A Menger PMS is defined as a triple (Z,F,¥), where = is a
nonempty set, ¥ is a continuous t-norm, and F is a mapping from Z x Z to DT (The
set of all Menger distance distribution functions is denoted by D). This structure must
satisfy the following properties:

(PM1) F¢o(f) =1forall £>0iff ( =
(PM2) F¢o(f) = Fcc(f) for all {,¢ € Z and £ > 0;
(PM3) Fe(0+p) = Y(Feo(l),Fox(p)) forall (,¢,z€ Zand £,p > 0.

Let (E,7n) denote a metric space and £ and F represent nonempty subsets of =. Con-
sider a non-self mapping T : £ — F and define n(€, F) = inf{n({,s) : ¢ € €,5 € F}.
An element ( € £ is termed a BPP for the mapping T if it satisfies the condition
(¢, T¢) = n(€,F). Define

Eo={Ce€&:n(5s)=n(&, F) for some ¢ € F},
Fo={s e F:n(s)=n(&F) for some ¢ € E}.

If ( is a BPP for T, then ¢ € & and T¢ € Fo.

The objective of the BPP theory is to establish sufficient conditions for the existence of
such points. Consequently, numerous researchers have investigated various contractions
to ensure the existence and uniqueness of BPPs in different metric and partially ordered
metric spaces (see [, 210, 14, 08, 20, 21, PG, 27]). Let £ and F denote nonempty subsets
of the metric space (2, n), with & # (). We say the pair (£, F) possesses the P-property
[24] if n(Cr,61) = n(E, F) and n(C,2) = n(€, F) imply that 7(C1, ¢2) = n(s1,2)-

This paper introduces the concept of BPPs in PMSs. In Section 2, we present the
latest results on BPPs for self-maps in PMS. Section 3 establishes a coupled BPP result
in this context. Finally, Section 4 applies these findings to demonstrate the existence of
solutions for a system of integral equations and nonlinear Fredholm integrals.

2. New BPPs for self maps in PMSs

Let T = [0,1], U = [0,+00), h = C(Y,R) and T = (0,1). This section delineates the
latest advancements in BPPs for self-maps within PMSs. We now introduce the concept
of a BPP for self-maps in PMSs.

Definition 2.1 Assume (Z, f,¥) is a PMS with nonempty subsets A and B of Z. Let
T : A — B represents a non-self mapping, and F 4 5(¢) = sup{f 4(¢) : a € A,b € B}. An
element ¢ € = is termed a BPP for T if F ¢ 7¢(€) = F ap(¢). Let
Ag={acA:F p,({)=Farpll) for some b e B},
Bo={beB:F.p(l) =Fap(l) for some a € A}.
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It is noteworthy that if ¢ is a BPP for GG, then ¢ € Ag and G( € By.

Definition 2.2 Let (=, F,V) be a PMS, and A and B be two nonempty subsets of =.
We assert that the pair (A,B) possesses the PPM-property if F¢, o, (€) = F ar(¢) and
FC27§2 (ﬂ) - FA,]B(£> imply that FCl,Cz (E) - F§17§2 (6)

Theorem 2.3 Assume (Z, F, V) is a PMS with nonempty subsets A and B of =. More-
over, let T : A — B be a mapping such that T'(Ag) C By, T be continuous and there
exist (o, (1 € Ag provided that F ¢, ¢, (€) = F a8(¢). Suppose that (A, B) have the PPM-
property, ® is all functions ¢ : U — U which satisfy ¢(r) < r and nlz_)ngocp"(r) = 0 for all

r > 0 and

Frer(e(0) 2 min{F ¢ (0), Fere(6), Fore(6)} (1)

for all (,¢ € A. Then T has a BPP in A.

Proof. Given the assumption that there exist (o, (1 € Ag such that f ¢, 7¢,(£) = F aB(().
From ¢; € Ag and T'(Ag) C By, there exists (o € A such that F ¢, 7¢,(¢) = F 4p({). In
particular, (3 € Ay. By continuing this process, we construct a sequence {(,} in Ay for
alln = 0,1,... so that F¢, . ¢, (€) = Fag(f). Since (A,B) has the PPM-property, we
obtain F¢, ¢, ,(¢) = Fap(f) and F¢, ., 7, (¢) = Fap(f). Consequently, F¢, ¢, ({) =
Fre, ,1¢, (€) for all n € N. Thus, the contractive condition leads us to the conclusion.

F<n7<n+1 (80(6)) 2 min{FCnuCn—l (6)7 FCn—van (E)’ F<n+17Cn (6)}

Then f¢, ¢,..(p(0)) = Fe¢, ¢, (€) for all £ > 0. Thus, we obtain

FCnvCTH»l ((102(6)) 2 Fcnflvgn ((p(@)) 2 FCTL*Q,Cnfl(e)

for all ¢ > 0. Consequently, F¢, c...(¢"(0)) = Fe(0) for all £ > 0. Since
elim F¢.c,(€) = 1, there exists o such that F¢ ¢ (o) > 1 —& for o > 0and £ € T.
— 00

Furthermore, since lim ¢™(¢) = 0, there exists a Ny € N such that ¢"({y) < o for
n—o0

n > Ny. Therefore, we derive

Fencnin(@) 2 Fecon (0" (l0)) = Fego(lo) >1—¢

for n > Ny, which implies lim F¢, ¢, () = 1. Next, for any o > 0 and { € T, we prove
n—o0

there exists N (&, 0) with m > n > N(p,&) so that [ ¢, ¢, (0) > 1 —&. To this end, we
proceed by induction that

Fennc,(0) = 9" (Fe o (0= (), (2)
for all k£ > 1. Starting with k = 1, we have
FCIL7<7L+1 (FCn+17Cn Q 90( )))
=V (F ¢ (o—¢(0)):1)
>0 (Feclo=9(0) F e (0= #(0))

= U (F ¢ (0= #(0)))-
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Therefore, (B) is valid for & = 1. Now, let’s assume (2) holds for 1 < k < p. For k = p+1,
we obtain

Frimnn(® 2 U (Fec (0= 9(0) F Gy (9(0))). (3)

According to (M), a standard proof by contradiction demonstrates that f ¢, ., ¢, ..(0) =
F¢ncoin(0). Thus, Fe e (0) 2 F ¢ (0). Then we obtain

FCTIV+17CW+P+1 (QO(Q)) 2 min{FwaCnﬁ-l (Q)’ F<n7<—n+p(g)’ FC7L+p,Cn,+p+1 (g)} (4)
= min{FCn,<n+1 (0)7 Fcn:<n+1’<g)}

> min {Fcn,cm(g = (), ¥ (Feogonlo— 90(9)))}
= (F g (o= 9(0)).

From (8) and (@), we derive

Fernnca (@) 2 ‘I’<F<n,<"+1 (0= (), O (F ¢, i (0= 90(9)))> =0 (o s@(@)))-

As a result, we retain (2). Since the t-norm W is H-type, for a given £ € T, there exists

A € T such that for all integers n > 1, ¥"(¢) > 1—¢ when £ > 1—\. Conversely, according

to lim F oo (0—¢(0)) =1, there exists a Ni(€, o) so that F ¢, .., (0 —¢(0)) >1— A
n oo

for all n > Ny (€, 0). Consequently, we have

Fernen(0) 2T (Fec.(0—9(0)) 2 TF1-N) >1-¢

for all £ > 1. This implies that {¢,} is a Cauchy sequence in Ag C A. Since A is a
closed subset of a complete PMS =, there exists a (* € A such that {, — (*. Next,
we will demonstrate that ¢* is a BPP of T. By applying the continuity of 7" on A,
we find that T'(, converges to T'(*. Additionally, by the joint continuity of f, we can
conclude that F¢, ., 1¢,(€) = F¢em¢-(£). Furthermore, the sequence {F ¢, ., 7¢, ()} is
constant and converges to [ 4 p(¢). Since the limit of a sequence is unique, we have
Feore-(€) = F ag(f). Thus, ¢* is indeed a BPP of T. [ |

Exzample 2.4 Let E = {(1,0),(0,1),(—1,0),(0,—1)} and consider n as the Euclidean
metric. Thus, (2,7) is a complete metric space. Let A = {(1,0),(0,1)} and B =
{(~1,0),(0,—1)} be two subsets of =. It can be noted that (A, B) = /2 with A = Aq
and B = By. Consider a function 7' : A — B defined by T'((,s) = (—(,—s). It can
be observed that T' is continuous and T'(Ag) C By. Next, let us define the mapping
F:EXE—= Dby Feoll) =x(—n(¢,59)) for ¢,s € E and ¢ > 0, where

o if <o
X<£)_{1 if >0

As a result, (2, F,¥) with ¥(a,b) = min{a,b} is a complete PMS. Furthermore, if we
take p(¢) = ¢, it can be demonstrated that the other hypotheses of Theorem =3 are also
satisfied. Therefore, T" has a BPP.
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Corollary 2.5 Consider (Z, F,¥) a PMS, a mapping continuous 7" : £ — E with T'(E) C
= and assume ® is all functions ¢ : U — O satisfying ¢(r) < r and lim ¢"(r) = 0 for
n—oo

all 7 > 0 and F 7¢1c(@(€)) = min{F ¢ (), F ¢ r¢(€), F ¢ rs(£)} for all (,¢ € =. Then T has
an FP in E.

3. New coupled BPP theorems in PMS

In this section, we present a new coupled best proximity point theorem in PMS.

Definition 3.1 Let (2, F,¥) be a PMS, A and B be two nonempty subsets of =, T": A x
A — B be a mapping and F 5 g(¢) = sup{F o»({) : a € A,b € B}. An element ((,) € ExE
is named a coupled BPP for T'if F ¢ p(¢o)(€£) = Fap(f) and F po)(€) = F ap(f).

Let

Ag={aecA:Fq () =F ap(¢) for some b € B},
Bo={beB: [ ,p(f)=Fap(¥) for some a € A}.

Also, denote for simplicity = x - -- X = by =", where = is a non-empty set and n € N.
Lemma 3.2 Let (Z,f,¥) be a PMS. Then
1. (E™, Ap, V) is a PMS with

AF((l,»-» 2Cn)s(s1 0 vsm) (5) = min[FQSl (6)7 FC27§2 (f)’ o 7F4n,§n (E)]a

2. The mapping f : =" — = has a n-tuple BPP iff F': 2" — =" defined by

F(C17C2a"' 7<Tl) = (f<C17<27"' 7Cn)7f(c27"' 7(717(1)7"' 7f(€n7<17"' 7(71—1))
has a BPP in Z".
3. (E,F,¥) is F-complete iff (E", Ap, V) is F -complete.
Proof. 1. Clearly, Ap satisfies in (PM1) and (PM2). We show that A satisfies in
(PM3). For every (i), (si) (zi) C E for 1 <@ < n, suppose that
min{FCl,(l (£ + @), ] FCn,,%,(E + @)} = FC“Q(E + @)

Then we obtain

AF et o EH ) =min{F e o (4 9), s F e, (0 + )}
=Faa(l+9) 2 V(¢ =00, F20(0)
2 W(min(F ¢,z (6); s F ¢z (0),mIn(F 2, 6 (0)s o0 F 26 (9)))
= V(A e O DE o (0))-
Therefore, Aj satisfies in (PM3). The proofs of statements 2 and 3 are straightforward
and left to the reader. |

It is important to note that Lemma B™ establishes a two-way relationship. Therefore,
we can derive n-tuple FP results from FP theorems, and vice versa. Now, set n = 2 in
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Lemma B™2. This leads to the following theorem.

Theorem 3.3 Consider a PMS (Z, f, V) with two nonempty subsets A and B of Z. Also,
assume T : A x A — B is a mapping such that T'(Ay x Ag) C By, T is continuous, and
there exist (o, (1,61,52 € Ag so that F ¢, 1(¢y.0)(£) = Fap(l) and F ¢ 1q.c0) () = F aB(£).
Moreover, suppose that (A,B) have the PPM-property, ® is all functions ¢ : 0 — O
satisfying o(r) < r and Jgnozogon(r) = 0 for all » > 0. Assume

Fr(¢o).r ) (9(6)) = min(F ¢u(l), Foo(f)) ()

for all (¢,¢), (u.v) € Z2. Then T has a coupled BPP in = x Z.

Proof. Define Ay : 22 x E* — DT by Ap . (£) = min[F ¢, ¢, (£), F ¢, ,(¢)] and
F:2?2 5 22 by F(¢5s) = (T(,5),T(s,¢)). By Lemma B2, (22, Ay, ¥) is a complete
PMS. Moreover, ((,s) € =2 is a coupled BPP of T iff it is a BPP of F. In contrast, from
(8), we obtain

ADF oy ptum (PU) = DF e o) rt6.00,xm mmn (PE))
= min[F 7o) 7(uw) (PE0)s F1(6,0),7(0,u) (P(£))]
= F 1(¢,0),T(uw) (¢(£))
Z min[F ¢u(£), Few(0)]
= DF o (0).
Now, by Theorem 223, F' has a BPP and by Lemma B, T has a coupled BPP. [ |

Corollary 3.4 Let (Z,/,%) be a PMS and T : = x £ — = be a mapping such that
T(Z?) C = and T is continuous. Also, suppose ® is all functions ¢ : U — U satisfying
o(r) < r and T{z_@ogon(r) =0 forallrT > 0, and FT(CS)’T(%U)(go(K)) > min(F ¢y (€), F ¢0(f))

for all (¢,<), (u.v) € Z2. Then T has a coupled FP in = x Z.

4. Application

In mathematics and sciences like physics, chemistry, and biology, some problems are
modeled with integral equations. Finding exact solutions can be challenging, so iterative
methods are often used instead [B0-32].

Consider A with ||(||cc = maxyey [((¢)| for ¢ € h. Alternatively, the Banach space A
can be endowed with Bielecki norm ||¢||p = maxycy{|¢(£)|e™} for all ( € h and 7 > 0,
and the induced metric 7(¢,s) = ||¢ —<||p for all {,¢ € h. Define g : = x 2 — U by
(¢, <) = maxper{|¢(€) — s(£)|e 1=} Set /- ix i — D¥ by F¢o(£) = x(£ —n3(¢5))
for (,c € hand ¢ > 0, where

~fo if £<o0
X<£)_{1 if £>0

Then (A, F,¥) with ¥(a,b) = min{a,b} is a complete PMS. We study the following
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nonlinear Fredholm integral equation:

/ K, p,u(p))dgp, (6)

where ¥ : ¥ — U and K : Y2 x U — U are continuous. Take T : h — & by

/Kﬁp, ))dp, (€ h.

Theorem 4.1 Let (h,F,V) be a complete PMS with ¥(a,b) = min{a,b} and T :
h — h be a operator with T'((¢) = ) + fo (4, 0, u(p))dp. Consider an operator
K € C(Y? x R,R) such that

(i) K is continuous;
(i) there exists 7 > 0 such that |K(¢,2,((2)) — K(£,2,6(2))] < [¢(2) — s(2)| for all
(,s€handre T.

Then, (B) has a solution in A.
Proof. According to the definition of T, we have

¢ 0
WB(TC,T<)=§£{I/O K(f,z,C(l))dz—/o K(€,1,6(2))d| e IClsty
4

sup{ K (£,2,¢(0)) = K (£2,6(2)) e 1450 du}
leY

sup{ IC(Z) —<()]e 10 duy

LeY
‘1
<(ic=dllp)supt [ ar}
< B(¢6)-

Let ¢(¢) = £. Then we obtain

Frere(l) =& —ns(T¢,T<))
(

m{FCg(f) FCTC(Z)HEG,T«;(E)}-

Therefore, all conditions of Corollary P8 are satisfied and T has an FP; that is, there
exists a solution of (B) in =. [ |

Now, we will apply our findings by examining the system of integral equations:

{m = [, 6. ) K (.C(p).<(0))dp. -
S(0) = [, 96, ) K (9,5 (), (())dp



126  E. Lotfali Ghasab and R. Chaharpashlow / J. Linear. Topological. Algebra. 14(02) (2025) 119-127.

forall £ € T, where b > a, G € C(YT x Y,0) and K € C(T xR x R,R).
Let A be the Banach space of all real continuous functions defined on Y with the norm
1¢]]o0 = max 1¢(0)] for ¢ € hand induced b—metric (¢, <) = || —¢||? for all ¢, s € h. Note
€

that 7 is complete b-metric with p = 2. Set F : Ax b — DV by F¢(€) = x(¢ —n(¢,9))
for ¢, € hand ¢ > 0. Then (h, F, V) with ¥(a,b) = min{a, b} is a complete PMS.

Theorem 4.2 Let (A, F,¥) be a complete PMS. Consider an operator T : A x h — h

defined by f(C,)0 = [ G(¢, 0)K(9,(9).s(p))dp, where G € C(T x T,0) and K €
C(T x R x R,R) are two operators satisfying the following conditions:

1) 1Kl = @egfr}%ﬁeﬁ\f{(@,((@)x(p))! < 00;

(ii) for all ¢,s € h and all p € T, we obtain

1K (9, ¢ (), <(p)) = K (9, ulp), v(p))l| < max{[|¢(p) — u(p)l*, lI<(p) — v(p)l*};

b
d 1.
(i) max [ G(¢ p)dp <
Then, [@ has a solution in A x A.

Proof. For all ¢,s € A, we consider 1(¢,s) = maxyey (|¢(£) — s(¢)[?). As we mentioned
above (h, F, V) is a complete PMS. Therefore, for all (,s € A, we have

b
NI T 0) < max [ G D)K. (0)s(0) ~ K(p. (o). o(o)ldo
b
<max [ 66 0)max{1¢(9) = u(@)IP. s(0) = v(e) P}

b
= max{n(¢,u),n(s,) max [ Gt g)do
< max{n(¢, u), n(s,v)}

Let ¢(¢) = ¢. Thus, for any ¢ > 0, we obtain

FT(Q,g),T(u,v) (6) = X(E - W(T(C, g), T(u’ U))
> x(¢ — max{[[¢(p) — u(p)l*, [s(p) —v(p)[*})
= min{F ¢u(l), Fs0(0)}

for all {,s € h. By Corollary B4, when we use the function ¢(r) = r for all » > 0 along
with the parameters (,¢ € h and £ > 0, T has a coupled FP. This FP serves as the
solution to the system of integral equations ([@). [ |
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