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relevance to nonlinear Fredholm integral equations.
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1. Introduction

Fixed point (FP) theory has emerged as one of the most significant branches of math-
ematics in the past decade. It has opened up numerous opportunities for those interested
in the field by introducing various types of metric spaces, including e-metric spaces,
z-metric spaces, and rectangular metric spaces. A notable addition to this area is the
probability metric space, which was first introduced by Menger [22] as a metric space of
possibilities. Following the work of Menger, Segal [29] significantly advanced the field by
establishing several FP theorems. For comprehensive information regarding probabilis-
tic metric space (PMS), readers are directed to [3–5, 11–13, 15–17] and the references
therein. Subsequently, the theoretical framework of FPs in PMSs, applicable to both
single-valued and multivalued mappings, has been extensively investigated by numerous
mathematicians ([15, 17, 19, 23, 25]). In their analysis, Schweizer and Sklar [28] examined
the properties of Menger PMSs. In 2010, Jachymski [19] improved upon the probabilistic
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interpretation of the classical Banach contraction principle, which was initially presented
by Ćirić [5] for nonlinear contractions. An overview of this research is also available in [17,
Hadzic and Pap]. Essential definitions such as distribution functions, t-norms, H-type
t-norms, and Menger PMSs can be found in [2, 5, 6, 16, 17] alongside related references.
In 2011, Raj [24] presented the concept of the best proximity point (BPP). Also, he for-
mulated and proved several theorems that are relevant to the study of weakly contractive
non-self mappings. These contributions have significantly advanced our understanding
of the behavior of such mappings within the broader context of FP theory.

Definition 1.1 [17] A Menger PMS is defined as a triple (Ξ,𝟋,Ψ), where Ξ is a
nonempty set, Ψ is a continuous t-norm, and 𝟋 is a mapping from Ξ × Ξ to D+ (The
set of all Menger distance distribution functions is denoted by D+). This structure must
satisfy the following properties:

(PM1) 𝟋ζ,ς(ℓ) = 1 for all ℓ > 0 iff ζ = ς;
(PM2) 𝟋ζ,ς(ℓ) = 𝟋ς,ζ(ℓ) for all ζ, ς ∈ Ξ and ℓ > 0;
(PM3) 𝟋ζ,z(ℓ+ ℘) ⩾ Ψ(𝟋ζ,ς(ℓ),𝟋ς,z(℘)) for all ζ, ς, z ∈ Ξ and ℓ, ℘ ⩾ 0.

Let (Ξ, η) denote a metric space and E and F represent nonempty subsets of Ξ. Con-
sider a non-self mapping T : E → F and define η(E ,F) = inf{η(ζ, ς) : ζ ∈ E , ς ∈ F}.
An element ζ ∈ E is termed a BPP for the mapping T if it satisfies the condition
η(ζ, T ζ) = η(E ,F). Define

E0 = {ζ ∈ E : η(ζ, ς) = η(E ,F) for some ς ∈ F},

F0 = {ς ∈ F : η(ζ, ς) = η(E ,F) for some ζ ∈ E}.

If ζ is a BPP for T , then ζ ∈ E0 and Tζ ∈ F0.
The objective of the BPP theory is to establish sufficient conditions for the existence of

such points. Consequently, numerous researchers have investigated various contractions
to ensure the existence and uniqueness of BPPs in different metric and partially ordered
metric spaces (see [1, 7–10, 14, 18, 20, 21, 26, 27]). Let E and F denote nonempty subsets
of the metric space (Ξ, η), with E0 ̸= ∅. We say the pair (E ,F) possesses the P -property
[24] if η(ζ1, ς1) = η(E ,F) and η(ζ2, ς2) = η(E ,F) imply that η(ζ1, ζ2) = η(ς1, ς2).

This paper introduces the concept of BPPs in PMSs. In Section 2, we present the
latest results on BPPs for self-maps in PMS. Section 3 establishes a coupled BPP result
in this context. Finally, Section 4 applies these findings to demonstrate the existence of
solutions for a system of integral equations and nonlinear Fredholm integrals.

2. New BPPs for self maps in PMSs

Let Υ = [0, 1], ℧ = [0,+∞), ℏ = C(Υ,R) and ⊤ = (0, 1). This section delineates the
latest advancements in BPPs for self-maps within PMSs. We now introduce the concept
of a BPP for self-maps in PMSs.

Definition 2.1 Assume (Ξ,𝟋,Ψ) is a PMS with nonempty subsets A and B of Ξ. Let
T : A → B represents a non-self mapping, and 𝟋A,B(ℓ) = sup{𝟋a,b(ℓ) : a ∈ A, b ∈ B}. An
element ζ ∈ Ξ is termed a BPP for T if 𝟋ζ,T ζ(ℓ) = 𝟋A,B(ℓ). Let

A0 = {a ∈ A : 𝟋a,b(ℓ) = 𝟋A,B(ℓ) for some b ∈ B},

B0 = {b ∈ B : 𝟋a,b(ℓ) = 𝟋A,B(ℓ) for some a ∈ A}.
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It is noteworthy that if ζ is a BPP for G, then ζ ∈ A0 and Gζ ∈ B0.

Definition 2.2 Let (Ξ,𝟋,Ψ) be a PMS, and A and B be two nonempty subsets of Ξ.
We assert that the pair (A,B) possesses the PPM -property if 𝟋ζ1,ς1(ℓ) = 𝟋A,B(ℓ) and
𝟋ζ2,ς2(ℓ) = 𝟋A,B(ℓ) imply that 𝟋ζ1,ζ2(ℓ) = 𝟋ς1,ς2(ℓ).

Theorem 2.3 Assume (Ξ,𝟋,Ψ) is a PMS with nonempty subsets A and B of Ξ. More-
over, let T : A → B be a mapping such that T (A0) ⊂ B0, T be continuous and there
exist ζ0, ζ1 ∈ A0 provided that 𝟋ζ1,T ζ0(ℓ) = 𝟋A,B(ℓ). Suppose that (A,B) have the PPM -
property, Φ is all functions φ : ℧ −→ ℧ which satisfy φ(r) < r and lim

n→∞
φn(r) = 0 for all

r > 0 and

𝟋Tζ,T ς(φ(ℓ)) ⩾ min{𝟋ζ,ς(ℓ),𝟋ζ,T ζ(ℓ),𝟋ς,T ς(ℓ)} (1)

for all ζ, ς ∈ A. Then T has a BPP in A.

Proof. Given the assumption that there exist ζ0, ζ1 ∈ A0 such that 𝟋ζ1,T ζ0(ℓ) = 𝟋A,B(ℓ).
From ζ1 ∈ A0 and T (A0) ⊂ B0, there exists ζ2 ∈ A such that 𝟋ζ2,T ζ1(ℓ) = 𝟋A,B(ℓ). In
particular, ζ2 ∈ A0. By continuing this process, we construct a sequence {ζn} in A0 for
all n = 0, 1, ... so that 𝟋ζn+1,T ζn(ℓ) = 𝟋A,B(ℓ). Since (A,B) has the PPM -property, we
obtain 𝟋ζn,T ζn−1

(ℓ) = 𝟋A,B(ℓ) and 𝟋ζn+1,T ζn(ℓ) = 𝟋A,B(ℓ). Consequently, 𝟋ζn,ζn+1
(ℓ) =

𝟋Tζn−1,T ζn(ℓ) for all n ∈ N. Thus, the contractive condition leads us to the conclusion.

𝟋ζn,ζn+1
(φ(ℓ)) ⩾ min{𝟋ζn,ζn−1

(ℓ),𝟋ζn−1,ζn(ℓ),𝟋ζn+1,ζn(ℓ)}.

Then 𝟋ζn,ζn+1
(φ(ℓ)) ⩾ 𝟋ζn−1,ζn(ℓ) for all ℓ > 0. Thus, we obtain

𝟋ζn,ζn+1

(
φ2(ℓ)

)
⩾ 𝟋ζn−1,ζn(φ(ℓ)) ⩾ 𝟋ζn−2,ζn−1

(ℓ)

for all ℓ > 0. Consequently, 𝟋ζn,ζn+1

(
φn(ℓ)

)
⩾ 𝟋ζ1,ζ0(ℓ) for all ℓ > 0. Since

lim
ℓ−→∞

𝟋ζ1,ζ0(ℓ) = 1, there exists ℓ0 such that 𝟋ζ1,ζ0(ℓ0) > 1 − ξ for ϱ > 0 and ξ ∈ ⊤.

Furthermore, since lim
n→∞

φn(ℓ) = 0, there exists a N0 ∈ N such that φn(ℓ0) < ϱ for

n > N0. Therefore, we derive

𝟋ζn,ζn+1
(ϱ) ⩾ 𝟋ζn,ζn+1

(φn(ℓ0)) ⩾ 𝟋ζ1,ζ0(ℓ0) > 1− ξ

for n > N0, which implies lim
n→∞

𝟋ζn+1,ζn(ℓ) = 1. Next, for any ϱ > 0 and ξ ∈ ⊤, we prove

there exists N(ξ, ϱ) with m > n > N(ϱ, ξ) so that 𝟋ζn,ζm(ϱ) > 1 − ξ. To this end, we
proceed by induction that

𝟋ζn+k,ζn(ϱ) ⩾ Ψk
(
𝟋ζn+1,ζn(ϱ− φ(ϱ))

)
, (2)

for all k ⩾ 1. Starting with k = 1, we have

𝟋ζn,ζn+1
(ϱ) ⩾

(
𝟋ζn+1,ζn(ϱ− φ(ϱ))

)
= Ψ

(
𝟋ζn+1,ζn(ϱ− φ(ϱ)), 1

)
⩾ Ψ

(
𝟋ζn+1,ζn(ϱ− φ(ϱ)),𝟋ζn+1,ζn

(
ϱ− φ(ϱ)

))
= Ψ1(𝟋ζn+1,ζn(ϱ− φ(ϱ)

)
).
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Therefore, (2) is valid for k = 1. Now, let’s assume (2) holds for 1 ⩽ k ⩽ p. For k = p+1,
we obtain

𝟋ζn+p+1,ζn(ϱ) ⩾ Ψ
(
𝟋ζn+1,ζn(ϱ− φ(ϱ)),𝟋ζn+1,ζn+p+1

(φ(ϱ))
)
. (3)

According to (1), a standard proof by contradiction demonstrates that 𝟋ζn+1,ζn+2
(ϱ) ⩾

𝟋ζn,ζn+1
(ϱ). Thus, 𝟋ζn+p+1,ζn+p

(ϱ) ⩾ 𝟋ζn,ζn+1
(ϱ). Then we obtain

𝟋ζn+1,ζn+p+1

(
φ(ϱ)

)
⩾ min{𝟋ζn,ζn+1

(ϱ),𝟋ζn,ζn+p
(ϱ),𝟋ζn+p,ζn+p+1

(ϱ)} (4)

= min{𝟋ζn,ζn+1
(ϱ),𝟋ζn,ζn+p

(ϱ)}

⩾ min
{
𝟋ζn,ζn+1

(ϱ− φ(ϱ)),Ψp
(
𝟋ζn,ζn+1

(ϱ− φ(ϱ))
)}

= Ψp
(
𝟋ζn,ζn+1

(
ϱ− φ(ϱ)

))
.

From (3) and (4), we derive

𝟋ζn+p+1,ζn(ϱ) ⩾ Ψ
(
𝟋ζn,ζn+1

(
ϱ− φ(ϱ)

)
,Ψp

(
𝟋ζn,ζn+1

(ϱ− φ(ϱ))
))

= Ψp+1
(
𝟋ζn,ζn+1

(ϱ− φ(ϱ))
)
.

As a result, we retain (2). Since the t-norm Ψ is H-type, for a given ξ ∈ ⊤, there exists
λ ∈ ⊤ such that for all integers n ⩾ 1, Ψn(ℓ) > 1−ξ when ℓ > 1−λ. Conversely, according
to lim

n→∞
𝟋ζn,ζn+1

(ϱ− φ(ϱ)) = 1, there exists a N1(ξ, ϱ) so that 𝟋ζn,ζn+1
(ϱ− φ(ϱ)) > 1− λ

for all n > N1(ξ, ϱ). Consequently, we have

𝟋ζn+k,ζn(ϱ) ⩾ Ψk
(
𝟋ζn+1,ζn(ϱ− φ(ϱ))

)
⩾ Ψk(1− λ) ⩾ 1− ξ

for all k ⩾ 1. This implies that {ζn} is a Cauchy sequence in A0 ⊂ A. Since A is a
closed subset of a complete PMS Ξ, there exists a ζ∗ ∈ A such that ζn → ζ∗. Next,
we will demonstrate that ζ∗ is a BPP of T . By applying the continuity of T on A,
we find that Tζn converges to Tζ∗. Additionally, by the joint continuity of 𝟋, we can
conclude that 𝟋ζn+1,T ζn(ℓ) → 𝟋ζ∗,T ζ∗(ℓ). Furthermore, the sequence {𝟋ζn+1,T ζn(ℓ)} is
constant and converges to 𝟋A,B(ℓ). Since the limit of a sequence is unique, we have
𝟋ζ∗,T ζ∗(ℓ) = 𝟋A,B(ℓ). Thus, ζ

∗ is indeed a BPP of T . ■

Example 2.4 Let Ξ = {(1, 0), (0, 1), (−1, 0), (0,−1)} and consider η as the Euclidean
metric. Thus, (Ξ, η) is a complete metric space. Let A = {(1, 0), (0, 1)} and B =
{(−1, 0), (0,−1)} be two subsets of Ξ. It can be noted that η(A,B) =

√
2 with A = A0

and B = B0. Consider a function T : A → B defined by T (ζ, ς) = (−ζ,−ς). It can
be observed that T is continuous and T (A0) ⊂ B0. Next, let us define the mapping
𝟋 : Ξ× Ξ → D+ by 𝟋ζ,ς(ℓ) = χ(ℓ− η(ζ, ς)) for ζ, ς ∈ Ξ and ℓ > 0, where

χ(ℓ) =

{
0 if ℓ ⩽ 0

1 if ℓ > 0
.

As a result, (Ξ,𝟋,Ψ) with Ψ(a, b) = min{a, b} is a complete PMS. Furthermore, if we
take φ(ℓ) = ℓ, it can be demonstrated that the other hypotheses of Theorem 2.3 are also
satisfied. Therefore, T has a BPP.
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Corollary 2.5 Consider (Ξ,𝟋,Ψ) a PMS, a mapping continuous T : Ξ → Ξ with T (Ξ) ⊂
Ξ and assume Φ is all functions φ : ℧ −→ ℧ satisfying φ(r) < r and lim

n→∞
φn(r) = 0 for

all r > 0 and 𝟋Tζ,T ς(φ(ℓ)) ⩾ min{𝟋ζ,ς(ℓ),𝟋ζ,T ζ(ℓ),𝟋ς,T ς(ℓ)} for all ζ, ς ∈ Ξ. Then T has
an FP in Ξ.

3. New coupled BPP theorems in PMS

In this section, we present a new coupled best proximity point theorem in PMS.

Definition 3.1 Let (Ξ,𝟋,Ψ) be a PMS, A and B be two nonempty subsets of Ξ, T : A×
A → B be a mapping and 𝟋A,B(ℓ) = sup{𝟋a,b(ℓ) : a ∈ A, b ∈ B}. An element (ζ, ς) ∈ Ξ×Ξ
is named a coupled BPP for T if 𝟋ζ,T (ζ,ς)(ℓ) = 𝟋A,B(ℓ) and 𝟋ς,T (ς,ζ)(ℓ) = 𝟋A,B(ℓ).

Let

A0 = {a ∈ A : 𝟋a,b(ℓ) = 𝟋A,B(ℓ) for some b ∈ B},

B0 = {b ∈ B : 𝟋a,b(ℓ) = 𝟋A,B(ℓ) for some a ∈ A}.

Also, denote for simplicity Ξ× · · · × Ξ by Ξn, where Ξ is a non-empty set and n ∈ N.

Lemma 3.2 Let (Ξ,𝟋,Ψ) be a PMS. Then

1. (Ξn,△𝟋,Ψ) is a PMS with

△𝟋(ζ1,··· ,ζn),(ς1,··· ,ςn)
(ℓ) = min[𝟋ζ1,ς1(ℓ),𝟋ζ2,ς2(ℓ), · · · ,𝟋ζn,ςn(ℓ)],

2. The mapping f : Ξn → Ξ has a n-tuple BPP iff F : Ξn → Ξn defined by

F (ζ1, ζ2, · · · , ζn) = (f(ζ1, ζ2, · · · , ζn), f(ζ2, · · · , ζn, ζ1), · · · , f(ζn, ζ1, · · · , ζn−1))

has a BPP in Ξn.
3. (Ξ,𝟋,Ψ) is 𝟋-complete iff (Ξn,△𝟋,Ψ) is 𝟋-complete.

Proof. 1. Clearly, △𝟋 satisfies in (PM1) and (PM2). We show that △𝟋 satisfies in
(PM3). For every (ζi), (ςi) (zi) ⊂ Ξ for 1 ⩽ i ⩽ n, suppose that

min{𝟋ζ1,ς1(ℓ+ ℘), ...,𝟋ζn,ςn(ℓ+ ℘)} = 𝟋ζi,ςi(ℓ+ ℘).

Then we obtain

△𝟋(ζ1,··· ,ζn),(ς1,··· ,ςn)
(ℓ+ ℘) = min{𝟋ζ1,ς1(ℓ+ ℘), ...,𝟋ζn,ςn(ℓ+ ℘)}

= 𝟋ζi,ςi(ℓ+ ℘) ⩾ Ψ(𝟋ζi,zi(ℓ),𝟋zi,ςi(℘))

⩾ Ψ(min(𝟋ζ1,z1(ℓ), ...,𝟋ζn,zn(ℓ)),min(𝟋z1,ς1(℘), ...,𝟋zn,ςn(℘)))

= Ψ(△𝟋(ζ1,··· ,ζn),(z1,··· ,zn)
(ℓ),△𝟋(z1,··· ,zn),(ς1,··· ,ςn)

(℘)).

Therefore, △𝟋 satisfies in (PM3). The proofs of statements 2 and 3 are straightforward
and left to the reader. ■

It is important to note that Lemma 3.2 establishes a two-way relationship. Therefore,
we can derive n-tuple FP results from FP theorems, and vice versa. Now, set n = 2 in
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Lemma 3.2. This leads to the following theorem.

Theorem 3.3 Consider a PMS (Ξ,𝟋,Ψ) with two nonempty subsets A and B of Ξ. Also,
assume T : A × A → B is a mapping such that T (A0 × A0) ⊂ B0, T is continuous, and
there exist ζ0, ζ1, ς1, ς2 ∈ A0 so that 𝟋ζ1,T (ζ0,ς0)(ℓ) = 𝟋A,B(ℓ) and 𝟋ς1,T (ς0,ζ0)(ℓ) = 𝟋A,B(ℓ).
Moreover, suppose that (A,B) have the PPM -property, Φ is all functions φ : ℧ −→ ℧
satisfying φ(r) < r and lim

n→∞
φn(r) = 0 for all r > 0. Assume

𝟋T (ζ,ς),T (u,v)(φ(ℓ)) ⩾ min(𝟋ζ,u(ℓ),𝟋ς,v(ℓ)) (5)

for all (ζ, ς), (u.v) ∈ Ξ2. Then T has a coupled BPP in Ξ× Ξ.

Proof. Define △𝟋 : Ξ2 × Ξ2 → D+ by △𝟋(ζ1,ζ2),(ς1,ς2)
(ℓ) = min[𝟋ζ1,ς1(ℓ),𝟋ζ2,ς2(ℓ)] and

F : Ξ2 → Ξ2 by F (ζ, ς) = (T (ζ, ς), T (ς, ζ)). By Lemma 3.2, (Ξ2,△𝟋,Ψ) is a complete
PMS. Moreover, (ζ, ς) ∈ Ξ2 is a coupled BPP of T iff it is a BPP of F . In contrast, from
(5), we obtain

△𝟋F (ζ,ς),F (u,v)
(φ(ℓ)) = △𝟋(T (ζ,ς),T (ς,ζ)),(T (u,v),T (v,u))

(φ(ℓ))

= min[𝟋T (ζ,ς),T (u,v)(φ(ℓ)),𝟋T (ς,ζ),T (v,u)(φ(ℓ))]

= 𝟋T (ζ,ς),T (u,v)(φ(ℓ))

⩾ min[𝟋ζ,u(ℓ),𝟋ς,v(ℓ)]

= △𝟋(ζ,ς),(u,v)
(ℓ).

Now, by Theorem 2.3, F has a BPP and by Lemma 3.2, T has a coupled BPP. ■

Corollary 3.4 Let (Ξ,𝟋,Ψ) be a PMS and T : Ξ × Ξ → Ξ be a mapping such that
T (Ξ2) ⊂ Ξ and T is continuous. Also, suppose Φ is all functions φ : ℧ −→ ℧ satisfying
φ(r) < r and lim

n→∞
φn(r) = 0 for all r > 0, and 𝟋T (ζ,ς),T (u,v)(φ(ℓ)) ⩾ min(𝟋ζ,u(ℓ),𝟋ς,v(ℓ))

for all (ζ, ς), (u.v) ∈ Ξ2. Then T has a coupled FP in Ξ× Ξ.

4. Application

In mathematics and sciences like physics, chemistry, and biology, some problems are
modeled with integral equations. Finding exact solutions can be challenging, so iterative
methods are often used instead [30–32].

Consider ℏ with ||ζ||∞ = maxℓ∈Υ |ζ(ℓ)| for ζ ∈ ℏ. Alternatively, the Banach space ℏ
can be endowed with Bielecki norm ||ζ||B = maxℓ∈Υ{|ζ(ℓ)|e−τℓ} for all ζ ∈ ℏ and τ > 0,
and the induced metric ηB(ζ, ς) = ||ζ − ς||B for all ζ, ς ∈ ℏ. Define ηB : Ξ × Ξ → ℧ by
ηB(ζ, ς) = maxℓ∈Υ{|ζ(ℓ)− ς(ℓ)|e−∥ζ∥Bℓ}. Set 𝟋 : ℏ× ℏ → D+ by 𝟋ζ,ς(ℓ) = χ(ℓ− ηB(ζ, ς))
for ζ, ς ∈ ℏ and ℓ > 0, where

χ(ℓ) =

{
0 if ℓ ⩽ 0

1 if ℓ > 0
.

Then (ℏ,𝟋,Ψ) with Ψ(a, b) = min{a, b} is a complete PMS. We study the following
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nonlinear Fredholm integral equation:

u(ℓ) = ϑ(ℓ) +

∫ 1

0
K(ℓ, ℘, u(℘))d℘, (6)

where ϑ : Υ → ℧ and K : Υ2 × ℧ → ℧ are continuous. Take T : ℏ → ℏ by

Tζ(ℓ) = ϑ(ℓ) +

∫ 1

0
K(ℓ, ℘, u(℘))d℘, ζ ∈ ℏ.

Theorem 4.1 Let (ℏ,𝟋,Ψ) be a complete PMS with Ψ(a, b) = min{a, b} and T :

ℏ → ℏ be a operator with Tζ(ℓ) = ϑ(ℓ) +
∫ 1
0 K(ℓ, ℘, u(℘))d℘. Consider an operator

K ∈ C(Υ2 × R,R) such that

(i) K is continuous;
(ii) there exists τ > 0 such that |K(ℓ, ı, ζ(ı)) − K(ℓ, ı, ς(ı))| ⩽ 1

2 |ζ(ı) − ς(ı)| for all
ζ, ς ∈ ℏ and ı ∈ Υ.

Then, (6) has a solution in ℏ.

Proof. According to the definition of T , we have

ηB(Tζ, T ς) = sup
ℓ∈Υ

{|
∫ ℓ

0
K(ℓ, ı, ζ(ı))dı−

∫ ℓ

0
K(ℓ, ı, ς(ı))dı| e−∥ζ∥Bℓ}

⩽ sup
ℓ∈Υ

{
∫ ℓ

0
|K(ℓ, ı, ζ(ı))−K(ℓ, ı, ς(ı))|e−∥ζ∥Bℓ dı}

⩽ sup
ℓ∈Υ

{
∫ ℓ

0

1

2
|ζ(ı)− ς(ı)|e−∥ζ∥Bℓ dı}

⩽ (||ζ − ς||B) sup
ℓ∈Υ

{
∫ ℓ

0

1

2
dı}

⩽ ηB(ζ, ς).

Let φ(ℓ) = ℓ. Then we obtain

𝟋Tζ,T ς(ℓ) = ξ(ℓ− ηB(Tζ, T ς))

⩾ ξ(ℓ− ηB(ζ, ς))

= 𝟋ζ,ς(ℓ)

⩾ min{𝟋ζ,ς(ℓ),𝟋ζ,T ζ(ℓ),𝟋ς,T ς(ℓ)}.

Therefore, all conditions of Corollary 2.5 are satisfied and T has an FP; that is, there
exists a solution of (6) in Ξ. ■

Now, we will apply our findings by examining the system of integral equations:{
ζ(ℓ) =

∫ b
a G(ℓ, ℘)K(℘, ζ(℘), ς(℘))d℘,

ς(ℓ) =
∫ b
a G(ℓ, ℘)K(℘, ς(℘), ζ(℘))d℘

(7)
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for all ℓ ∈ Υ, where b > a, G ∈ C(Υ×Υ,℧) and K ∈ C(Υ× R× R,R).
Let ℏ be the Banach space of all real continuous functions defined on Υ with the norm

||ζ||∞ = max
ℓ∈Υ

|ζ(ℓ)| for ζ ∈ ℏ and induced b−metric η(ζ, ς) = ||ζ−ς||2 for all ζ, ς ∈ ℏ. Note

that η is complete b-metric with ℘ = 2. Set 𝟋 : ℏ× ℏ → D+ by 𝟋ζ,ς(ℓ) = χ(ℓ− η(ζ, ς))
for ζ, ς ∈ ℏ and ℓ > 0. Then (ℏ,𝟋,Ψ) with Ψ(a, b) = min{a, b} is a complete PMS.

Theorem 4.2 Let (ℏ,𝟋,Ψ) be a complete PMS. Consider an operator T : ℏ × ℏ → ℏ
defined by f(ζ, ς)ℓ =

∫ b
a G(ℓ, ℘)K(℘, ζ(℘), ς(℘))d℘, where G ∈ C(Υ × Υ,℧) and K ∈

C(Υ× R× R,R) are two operators satisfying the following conditions:

(i) ||K||∞ = max
℘∈Υ, ζ,ς∈ℏ

|K(℘, ζ(℘), ς(℘))| < ∞;

(ii) for all ζ, ς ∈ ℏ and all ℘ ∈ Υ, we obtain

||K(℘, ζ(℘), ς(℘))−K(℘, u(℘), v(℘))|| ⩽ max{∥ζ(℘)− u(℘)∥2, ∥ς(℘)− v(℘)∥2};

(iii) max
ℓ∈Υ

∫ b
a G(ℓ, ℘)d℘ < 1.

Then, 7 has a solution in ℏ× ℏ.

Proof. For all ζ, ς ∈ ℏ, we consider η(ζ, ς) = maxℓ∈Υ(|ζ(ℓ) − ς(ℓ)|2). As we mentioned
above (ℏ,𝟋,Ψ) is a complete PMS. Therefore, for all ζ, ς ∈ ℏ, we have

η(T (ζ, ς), T (u, v)) ⩽ max
ℓ∈Υ

∫ b

a
G(ℓ, ℘)|K(℘, ζ(℘)ς(℘))−K(℘, u(℘), v(℘))|d℘

⩽ max
ℓ∈Υ

∫ b

a
G(ℓ, ℘)max{∥ζ(℘)− u(℘)∥2, ∥ς(℘)− v(℘)∥2}d℘

= max{η(ζ, u), η(ς, v)}max
ℓ∈Υ

∫ b

a
G(ℓ, ℘)d℘

⩽ max{η(ζ, u), η(ς, v)}

Let φ(ℓ) = ℓ. Thus, for any ℓ > 0, we obtain

𝟋T (ζ,ς),T (u,v)(ℓ) = χ(ℓ− η(T (ζ, ς), T (u, v))

⩾ χ(ℓ−max{∥ζ(℘)− u(℘)∥2, ∥ς(℘)− v(℘)∥2})

= min{𝟋ζ,u(ℓ),𝟋ς,v(ℓ)}

for all ζ, ς ∈ ℏ. By Corollary 3.4, when we use the function φ(r) = r for all r > 0 along
with the parameters ζ, ς ∈ ℏ and ℓ > 0, T has a coupled FP. This FP serves as the
solution to the system of integral equations (7). ■
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