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Abstract. In this paper, we investigate the structure of the space of multipliers arising from
the range of a composition operator C,, which is induced by the conditional expectation
between two LP(X) spaces. After introducing the necessary preliminaries on measure spaces,
LP-spaces, and the conditional expectation operator, we define weighted conditional multipli-
ers and establish conditions under which they generate bounded operators between different
L?(X) and L(X) spaces. Using fundamental properties of conditional expectation, we char-
acterize the structural behavior of these multipliers and explore their relation to injectivity
and surjectivity moduli of bounded linear operators. The results provide a precise framework
for describing conditional multipliers and open new perspectives for the study of composition
operators in functional analysis.
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1. Introduction and preliminaries

In what follows, (X, 3, 1) will be a complete o—finite measure space. ¢ : X — X
will be a measurable transformation of X, namely, a mapping from X into itself with
the properties that the measure p o ¢! is absolutely continuous with respect to u, and
po o~ lis finite. We set h = d"zii_l. By ¢~ 1(X) we mean the relative completion of the

o—algebra generated by {p~}(F) : F € X}. By L°(X), we denote the linear space of
all X —measurable functions on X. For any complete o—finite subalgebra A C ¥ with
1 < p < o0, the LP—space LP(X, A, u| 1) is abbreviated by LP(.A) and its norm is denoted
by |[.|lp- LP(A) is a Banach subspace of LP(X). The support of a measurable function f
is defined by o(f) = {z € X : f(z) # 0}. Equalities and inequalities between measurable
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functions are interpreted in the almost everywhere sense, and equality between sets is
interpreted up to a set of measure zero.

Recall that for each complete o—finite subalgebra A C X, there exists an operator
E = EA, called the conditional expectation operator, defined on the set of all non-
negative measurable functions f, or on each f € LP(X); 1 < p < oo. This operator is
uniquely determined by the following conditions:

(i) E(f) is A-measurable and integrable;
(ii) If F is any A-measurable set for which [}, fdu exists, we have the functional

relation [y fdu = [ E(f)dp.

The mapping F is a linear operator and, in particular, it is a contraction. When p = 2, it
is the orthogonal projection of L?(X) onto L?(.A) [4]. This operator will play a prominent
role in this note, and we list here some of its useful properties:

If f is an A-measurable function, then E(fg) = fE(g).

E(f)P < E(fIP).

12, < 1]

If f >0 then E(f) > 0;if f > 0 then E(f) > 0.

E(|f?) = |E(f)|? if and only if f € LO(A).

For f and g in LY(X), we define fxg = fE(go )+ E(f)go e — E(f)E(go ¢).

Let 1 < p and g < oo. A measurable function w € L%(X) for which w* f € LY(3) for
each f € LP(X), is called weighted conditional multiplier. In other words, w € LY() is
weighted conditional multiplier if and only if the corresponding x-multiplication operator
K : LP(X) — Li(X) defined by Kif = wx f is bounded. Note that if w is a A-
measurable function or A = X, then w is a weighted conditional multiplier if and only if
the multiplication linear operator Ky, : LP(X) — L4(X) is bounded [I0].

In next section, weighted conditional multipliers acting between two different LP(X)
spaces are characterized by using some properties of conditional expectation operator.
The algebra of all bounded linear operators from Banach space X into a Banach space Y
is denoted by B(X,Y"). Let T € B(X,Y). The injectivity and surjectivity modulus of T" are
defined by j(T') = inf {||T(z)|| : z € X, ||z|| = 1} and &(T) = sup{r > 0: TUx D r-Uy},
respectively, where Ux and Uy denote the closed unit ball in X and Y. It is said to
be that T is bounded below if j(7') > 0. By R*®(T) and N°°(T'), we mean the linear
subspaces of X, (72| RanT™ and |J,-; KerT™, respectively for T' € B(X) [8].

2. Some properties of Lambert multipliers

In this section, we bring some facts and definitions, which will be used later.

Definition 2.1 Let T, : L*(X) — L*(X). Define
W={ue LO(X) : T, is bounded on L2(Z)} :

We already know one important property of function in W, namely that E(|u|?) is
bounded. However, since |E(u)|? < E|u|?, u € W implies that E(u) is bounded. There-
fore, if a function is both A—measurable and in W, then it must be bounded. Our next
Lemma states that the converse also holds.

Lemma 2.2 W LY(A) = L*®(A).
Proof. Let s € L®(A). Since s is A—measurable, then T, f = sf for f € L*(X). Also,
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we know L%(A) C L?*(¥) and we get
1T 113 = / T, f Py = / s f P < 5|2 / P = [sI2 A1
X X X

so that Tsf € L*(X) for all f. Hence, s € W () L°(A). The converse we proved in the
remarks leading up to the lemma. [ ]

Theorem 2.3 T, is normal if and only if u € L>®(A).

Proof. Assume T, is normal. Then, for any f € L%(X), T,T; f = T+T,.f. Now, we have
T;Tuf = E(wE(uf) (1)

and
T,T.f = B(/)E(jul*) + E(wE(af) — E(@)E(u)E(f). (2)

Therefore, we conclude from (8) and (8) that E(u)E(|ul?) = E(f)|E(u)|*>. The last
equation holds for every L? function, so it must hold for any strictly positive A— mea-
surable L? function s with E(s)E(|ul?) = E(s)|E(u)|?>. Now, by letting E(s) = s, we
have sE(|ul?) = s|E(u)|?. Since s > 0, |[E(u)|?* = E(|Ju|?). However, we saw that this
is equivalent to u being A— measurable. By Lemma P2, u € L*°(A). Conversely, sup-
pose that u € L*®(A). Then, for f € L*(X), Tuf = uf and T'f = uf. Therefore,
LIf = Tu(af) = u(af) = |uf’f and T;T.f = Ti(uf) = a(uf) = jul’f. Hence,
T.T; =T;T,. Thus, T;, is normal. |

Theorem 2.4 T, is self-adjoint if and only if u € L>°(A) is real-valued.

Proof. Assume T, is self-adjoint. Then, T}, is normal, and by Theorem P23, u € L*°(A).
Therefore, we only show that u is real-valued. Let f € L?(X). Then T/ f = T, f can be
written by

E(uf)+ E(u) (f = E(f)) = wE(f) + fE(u) — E(u)E(f).

Since u is A— measurable, tf = uf which implies (u—u) f = 0. This last equality holds for
any L? function. In particular, it holds for strictly positive s € L?(A). Therefore, u = 4.
Conversely, suppose u € L>(A) and is real-valued. For f € L*(X), T/ f = uf = T,f.
Hence, T, is self-adjoint. [ ]

Theorem 2.5 Suppose T, : LP(X) — LP(X) is bounded linear operator. Then T, is
bounded below linear operator if and only if |E(u)| > ¢ a.e. on o(E(u)) for some § > 0.

Proof. Suppose |E(u)| > § on o(E(u)) for some § > 0 and f is an arbitrary element
of LP(X). Since T,, is bounded linear operator, it follows from Theorem 2.1 of [6] that

Ejul?) € L®(A). Now, we have [uB(f)], < |E(ul)|%]S], and | E@E(f)], <



114 S. Khalil Sarbaz / J. Linear. Topological. Algebra. 14(02) (2025) 111-118.
1
IE(lul?) |5 [ f[lp- Hence,

1T fllp = wBECF) + FE(u) — E)E(f)lp
Z [|FE@)lp = [uE)llp = 1E@EF),

5 (a— z||E<|u|p>||£o) 11,
Thus,

1T f llp
£ 1l

IT2]) = int { e D), f 4 o} > (5— 2|E<|u|p>||§o) |

Here, if § is chosen such that § > 2||E(|u[P)||%, then j(T}) > 0; i.e., T}, is bounded below.
The proof of “only if” part is followed as in [[0]. Assume that T, is bounded below. Then
there exists a constant k£ > 0 such that

| Tufll e (o (B0 = Bl fllLe@(Ew),s.m (f € LP(o(E(u)), %, ).

Let 0 = g and put U = {z € X : |E(u)z| < ¢}. Suppose u(U) > 0. Since (X, 3, u) is
o—finite measure space, we can find a set Q € ¥ such that Q@ C U and 0 < u(Q) < oo.
Then the characteristic function xq lies in LP(o(E(u)), X, 1) and satisfies

1Tl (e ) XQ s o () 2. = /U ) [uE(xq) + xQE(u) — E(u)E(xq)["du
< /(E( ))(|E(U)|XQ + [E(u)xq + [E(u)xq) du

- / (3B (w))"xodu < (36)” / xadu
o(E(u)) o(E(uw))

= (35)}7”)(62”ip(g(E(u)),z,u)'
This is contrary to the choice of k. Therefore, u(U) = 0; i.e., |[E(u)| = d a.e. on o(E(u)).
]

Remark 1 By the following theorem, a bounded operator T, : LP(X) — LP(X) is one-
to-one and has closed range if and only if |E(u)| = § on o(E(u)) for some § > 0.

Theorem 2.6 [0] An operator T € B(X,Y) is bounded below if and only if it is one-to-
one and has closed range. T is onto if and only if x(T') > 0.

Theorem 2.7 [U] Let T € B(X,Y). Then j(T) = x(T*) and x(T) = j(T%).

Definition 2.8 Let v € L°(X) be conditionable. For 1 < p < oo, the mapping R, :
LP(¥) — LP(A) defined by R,f = E(uf) is called a weighted conditional expectation
operator with respect to A (or WCE operator) if uf is conditionable for every f € LP(X)
and E(uf) € LP(A).

Theorem 2.9 [4, Theorem 2.1.2] Let 1 < p < oo and § + ¢ = L. If Ry : LP(3) — LP(A)
is a bounded WCE operator, then E(|u|?) € L®(A) and |Ry|| = || E(|u|?)||%.
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Theorem 2.10 Let 1 < p < oo and Z%—l—% = 1. Suppose Ty, : LP(¥) — LP(X) and R,

are bounded linear operators. If |E(u)| > § on o(E(u)) for some § > 0, then T is
one-to-one and has closed range for every n € N.

— \n—1
Proof. By [§, Proposition 3.1], T f = (E(u)) { E(uf) + Ew)(f — nE(f))} Let
f € LP(X) be an arbitrary element. Since |E(u)| > § on o(E(u)) for some § > 0, then
I(E(@)" fllp = 6" || f|l- By Theorem 29,

IE@)™ @A, < 2P 12?5011,

and
IE@Y B Iy < 1B 1]
Hence,
T2 Al > E@)Fllp — nll (B@)™ @l - nll (B@) Bl
> (o - B (NG + 1} ) 151,
Thus,

i@ > (3 = nlB QI 1Bt +1}).

n—1

If we assume that § > <nHE(yu|p)||og {\E(u|‘1)||§o + 1}) ", then j(T:™f) > 0. Conse-

quently, by Theorem P8, 7" is one-to-one and has closed range. |
Corollary 2.11 T is onto if and only if |E(u)| > ¢ a.e. on o(E(u)) for some § > 0.
Proof. By Theorems P8 and P74, it is trivial. ]

Theorem 2.12 [d] For T € B(X) with closed range, the following conditions are equiv-
alent:

(i) Ker(T) C R(T);
(i) N°°(T) € Ran(T);
(iii) N*°(T) C R>(T

)i
(iv) Ker(T) c R®(T).

Lemma 2.13 Let 1 < p < oo and Ty, : LP(¥) — LP(X) be a bounded linear operator.
Then Ker(T,) = LP(X \ 0(E(u))).

Proof. For given f € LP(Y), let f € Ker(T,). Then T,,f = 0; i.e., uE(f) + fE(u) —
E(u)E(f) = 0. Taking the conditional E of both sides equation gives E(u)E(f) = 0.
Thus,

/ fduz/ E(f)dp = 0.
o(E(u)) o(E(u))
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Consequently, f € LP(X \ o(E(u)). Conversely, let f € LP(X \ o(E(u)). Then fE(u) =0
which implies

/ fduz/ E(f)dp = 0.
o(E(u)) o (E(u))

Hence, we have E(u)E(f) =0 and

|/o(u> U S /U(u) B S /U(E(u)) [EC)ldp =0,

which yields uE(f) = 0. Then T,,f = 0; i.e., f € Ker(Ty). [ ]

Definition 2.14 Let T' € B(X). T is said to be Kato if Ran(T") is closed and T satisfies
any of the conditions of Theorem PZT2.

Theorem 2.15 Let 1 < p < co and % + % = 1. For bounded linear operators R, and
T, : LP(X) — LP(X), T, is Kato if |[E(u)| > ¢ a.e. on o(E(u)) for some § > 0.

Proof. By Corollary 11, R>*(T)}) = LP(X,%, ) and by Lemma P13, Ker(T,) =
LP(X \ 0(E(u))). Hence, by Theorem 2T4(i), T, is Kato. [ |

Theorem 2.16 [5] Let 1 < ¢ < p < oco. f T,, : LP(X) — L49(X) is a bounded linear
operator and |E(u)| > ¢ a.e. on o(E(u)) for some § > 0, then T, is one-to-one and has
closed range.

Theorem 2.17 6] Let 1 < p < g < oc0. If T, : LP(¥) — L49(X) is a bounded linear
operator and |E(u)| > ¢ a.e. on o(E(u)) for some § > 0, then T, is one-to-one and has
closed range.

3. Characterization of Lambert composition multipliers
Let 1 < p,q < oo and u € L°(X). We define Lambert weighted composition operator
KE : L(S) — LA(S) by KEf = uB(f o)+ (f 0 p)E(w) — E@)E(f o ).

Theorem 3.1 Let 1 < p < oo, o }(A) C A, u € LX) and h € LY(A). Suppose
EAE¥ ' is an orthogonal projection. Then K¢ is normal if and only if

() A{ B4 " 2(|u?) + B9 S (uBA®) — BA@EA() | oo™t = uho pBAY (@),
(i) AN 'Y No(u) =X No(u).

Proof. The method of proof is same in case weighted composition operators stated in
[8]. First note that for every f € LP(X, %, u), K& f = T,Cpf. Then (Ki)*f = CiTyf.
As we can see C, f = h(E? ¥ f) oo~ [0, &, hence

(K2)f = hE* 2 BAuf) + BAw)f = BAWEA(S) oo™

Since EAEY ' is an orthogonal projection, it follows from [2, Corollary3| that
EAE? 'S = BAY 'Y Consequently, a computation similar to the one carried above
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shows that
(K2 KEf = hES={ EA()EA(f 0 ) + EAWEA@S 0 ¢) + uBA(u) EA(f o )

+ BA)EA(w)f 0 ¢ — SEAW) EA ) EA(f o p) 0 o7 (3)

and

KE(KZ) f = (u— BA@W) ) ho pBAY 2 BA@f) + EX(u)f — BAWEA(f)}

u

+hopEAw B = BA@S) + BAW) S - BAWEA()}. (4)

Now, assume that K¢ is normal; i.e., K (K{)*f = (K{)*K{ f for every f € L?(X). This
is equivalent to the equations (8) and (B) are equal. Therefore, for every f € L?(ANp~1%),
the equality of (B) and (@) is equivalent to

{EATR(2) + B2 R BA®m) - BA@EAW) o p S
= <u — EA(U))h o SOEAW,O*IE(H)JL« +ho CPEA(U)EAWp*lE(H)f

1

= uh o pEATY X (@) f. (5)

Now, we prove (ii). Since K,/ is normal, then R(K7) is a reducing subspace for K,/. By
(@) and h o > 0, we have

R(KY) = RKE(KD)")
= {fe 2z o(f) Co(u— B @)Y B @S + B () f

~ BAWEA(N)} + BAWE? S {(BA@S) + BA)f - BAWEA()})} (6)

Conversely, suppose (i) and (ii) hold. Since h o ¢ > 0, then

1

o(h{EAm“"_lz(\u2|)+E“"_1E(uEA( )V EA@) EA(u ))}ongl) :a(uEAW‘ Z(m) = o(u).

(7)
Let F be an arbitrary AN ¢~ 'Y~ measurable set with finite measure. Then

h o @uEAY " S (uxp) = ho ouEA™ (@) yp
= W{ B4 S () + B S B @) — BA@)EA (W) } o o™
(®)

By (ii), (B) holds for any finite measure and ¥—measurable subset F' of o(u). In addition,
by (@), (8) holds for all ¥—measurable sets F' of finite measure, whereby (K )*Kg xr =
K“’(K Y*xr for all such F. Thus, K} is normal. [ |
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Conclusion

In conclusion, the investigation of the spectral radius and the polar decomposition of
conditional expectation operators and T, operator can be regarded as one of the im-
portant and appealing problems for future research. A detailed study of these properties
plays a significant role in understanding the spectral structure and operator-theoretic be-
havior of this class of operators. Moreover, the obtained results may pave the way for the
development of new applications in functional analysis and operator theory, particularly
in function spaces.
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