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A Comprehensive Survey on Multi-Objective Energy-
Efficient Clustering Protocols for Wireless Sensor
Networks: Metaheuristic and Intelligent Optimization
Approaches

Mohamadhosein. Behzadi', Homayun. Motameni®", Hosein. Mohamadi®, Behnam. Barzegar®

Abstract — This comprehensive survey systematically examines the evolution and state-of-the-art
clustering-based routing protocols in Wireless Sensor Networks (WSNs), with particular emphasis
on energy efficiency optimization. As WSNs become increasingly integral to IoT applications,
extending network lifetime through intelligent clustering mechanisms has emerged as a critical
research challenge. This paper presents a structured taxonomy of clustering protocols, tracing their
historical development from foundational approaches like LEACH to contemporary hybrid
methodologies that synergistically integrate metaheuristic optimization algorithms with fuzzy
inference systems. We provide an in-depth analysis of design principles, operational mechanisms,
and theoretical foundations of prominent protocols, with special attention to their energy
management strategies. A rigorous performance comparison across multiple metrics—including
First Node Death (FND), Half Node Death (HND), Last Node Death (LND), and Total Packets
Transmitted (TPT)—is conducted using standardized evaluation frameworks to establish objective
performance benchmarks. Our analysis reveals that hybrid approaches combining metaheuristic
algorithms with fuzzy logic systems demonstrate superior performance in balancing exploration-
exploitation trade-offs and handling uncertainty in dynamic network conditions. The survey
identifies critical research gaps, including scalability challenges in heterogeneous networks, real-
world implementation barriers, and the need for adaptive protocols in mobile WSN environments.
Finally, we outline promising future research directions, particularly regarding the integration of
advanced computational intelligence techniques with emerging paradigms like edge computing
and 6G networks. This work serves as a valuable reference for researchers and practitioners
seeking to develop next-generation energy-efficient WSN solutions.
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1. Introduction

Wireless Sensor Networks (WSNs) have emerged as a
transformative technology enabling pervasive monitoring
and data collection across diverse domains including
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environmental surveillance, healthcare systems, industrial
automation, and smart city infrastructures [5]. These
networks consist of numerous spatially distributed
autonomous sensor nodes capable of monitoring physical or
environmental conditions such as temperature, sound,
pressure, and motion. The deployment flexibility,
scalability, and cost-effectiveness of WSNs have positioned
them as critical components in the Internet of Things (IoT)
ecosystem, driving innovation in real-time monitoring and
decision-making  systems. However, the resource-
constrained nature of sensor nodes, particularly their
limited energy resources, presents significant challenges to
network longevity and operational efficiency.

Energy conservation represents the most critical design
consideration in WSNs, as sensor nodes typically operate
on battery power with limited capacity and are often
deployed in inaccessible or hazardous environments where
battery replacement is impractical or impossible [10]. The
energy consumption in WSNs is predominantly influenced
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by communication activities, with data transmission
consuming significantly more energy than computational
tasks. Consequently, the development of energy-efficient
routing protocols has become paramount to extending
network lifetime while maintaining reliable data delivery.
Among various routing strategies, clustering-based
approaches have demonstrated exceptional promise by
organizing the network into logical groups with designated
cluster heads responsible for data aggregation and
transmission to the base station, thereby reducing redundant
communications and balancing energy consumption across
the network.

The evolution of clustering-based routing protocols has
followed a clear trajectory from simple probabilistic
approaches to sophisticated hybrid methodologies. The
Low-Energy Adaptive Clustering Hierarchy (LEACH)
protocol pioneered this domain by introducing randomized
cluster head rotation to distribute energy load evenly across
nodes [15]. However, LEACH's limitations—including its
probabilistic cluster head selection without considering
residual energy or node location—prompted numerous
enhancements such as LEACH-DT (distance-based
threshold) [18], LEACH-FL (fuzzy logic implementation)
[22], and various metaheuristic-based approaches. Recent
advancements have increasingly focused on hybrid models
that synergistically combine metaheuristic optimization
algorithms with fuzzy inference systems to address the
multi-objective nature of cluster head selection while
accounting for dynamic network conditions and uncertainty
[23]. This survey comprehensively examines  this
evolutionary progression, with particular emphasis on the
integration of advanced computational intelligence
techniques in modern clustering protocols.

Despite existing literature on WSN routing protocols,
there remains a significant gap in comprehensive surveys
that  systematically analyze the convergence of
metaheuristic algorithms and fuzzy logic systems in
clustering-based routing. Previous reviews have either
focused narrowly on specific protocol categories or failed
to provide a critical comparative analysis of performance
metrics across diverse network scenarios. As noted in recent
literature, "this review focuses on the most recent clustering
routing protocols for WSNs based on metaheuristic
techniques" [36], yet a holistic examination that bridges
theoretical foundations with empirical performance
evaluation remains scarce. Furthermore, existing surveys
often overlook the practical implementation challenges and
real-world applicability of proposed protocols, limiting
their utility for researchers and practitioners seeking to
deploy energy-efficient WSN solutions.

This survey makes several key contributions to the field.
First, we present a systematic taxonomy of clustering
protocols in WSNs, categorizing them into five distinct
families:

1. Classical protocols (LEACH, HEED, LEACH-FL,
LEACH-DT) [9, 15, 18, 22]

2. Enhanced Classical protocols (LEACH/HEED +
Fuzzy/Wavelets/TinyML) [22, 57, 59]

3. Metaheuristic-based  protocols  (PSO, ACO,
DA/BDA, GWO, WOA, BOA, Pelican) [36, 41]

4. Hybrid Al/Metaheuristic protocols (DRLAPSO,
FQ-UCR, FQA, IVBDA-FIS) [53, 54]

5. Hardware-/Edge-Aware  protocols
TinyML, Edge-Al) [57, 58, 59]

(ULP-FIS,

Second, we provide an in-depth analysis of the
theoretical foundations, design principles, and operational
mechanisms of prominent protocols, with special attention
to their energy management strategies. Third, we conduct a
comprehensive performance comparison across multiple
metrics, establishing objective performance benchmarks
through standardized evaluation frameworks. Fourth, we
identify critical research gaps and emerging trends,
particularly regarding the integration of advanced
optimization techniques and the adaptation of protocols for
heterogeneous and mobile WSN environments. Finally, we
offer practical implementation guidelines and future
research directions to guide the development of next-
generation energy-efficient clustering protocols.

The remainder of this paper is structured as follows:
Section 2 establishes the fundamental concepts and
technical background of clustering in WSNs. Section 3
presents a chronological review of clustering protocol
evolution, from early approaches to contemporary hybrid
models. Sections 4 and 5 delve into the application of
metaheuristic  algorithms and fuzzy logic systems,
respectively, in cluster formation and optimization. Section
6 examines hybrid approaches that combine these
methodologies, while Section 7 provides a detailed
comparative analysis of state-of-the-art protocols. Section 8
discusses open challenges and promising research
directions, and Section 9 concludes with a summary of key
findings and their implications for future WSN design. This
structured approach ensures a thorough examination of the
field while highlighting the critical interplay between
theoretical innovation and practical implementation in
advancing energy-efficient WSN technologies.

2. Fundamentals of Clustering in Wireless Sensor
Networks

Clustering represents a fundamental architectural
paradigm in Wireless Sensor Networks (WSNs) that
significantly enhances energy efficiency and network
scalability. At its core, clustering involves partitioning the
network into logical groups where one node within each
group serves as a Cluster Head (CH) responsible for data
aggregation, compression, and transmission to either the
Base Station (BS) or higher-level clusters. This section
establishes the theoretical foundations, operational
mechanics, and ecvaluation metrics essential for
understanding clustering-based routing protocols in WSNs.
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2.1. Clustering Architecture and Operational Phases

The clustering process in WSNs typically consists of
four distinct phases that operate in a cyclical manner
throughout the network lifetime:

1. Network Setup: Initial configuration where all

nodes establish communication parameters,
determine their positions (if location-aware), and
measure residual energy levels. This phase

establishes the foundational network topology for
subsequent clustering operations.

2. Cluster Head Selection: The most critical phase
where nodes compete to become CHs based on
predefined criteria such as residual energy,
distance to BS, node degree, and other relevant
metrics. The selection process must balance energy
consumption across the network while ensuring
optimal spatial distribution of CHs.

3. Cluster Formation: Once CHs are selected,
ordinary nodes affiliate with the most appropriate
CH based on communication cost, residual energy,
and other factors. This phase establishes the
network topology for the current operational cycle.

4. Multi-hop Routing: Data transmission occurs
through a hierarchical structure where member
nodes send data to their CH, and CHs may forward
aggregated data to the BS either directly (single-
hop) or through intermediate CHs (multi-hop). The

routing strategy significantly impacts overall
energy consumption.
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The cyclical nature of these phases—often referred to as
"rounds" or ‘iterations"—creates periodic  energy
consumption patterns that directly influence network
lifetime metrics such as First Node Death (FND), Half
Node Death (HND), and Last Node Death (LND).

2.2. Key Performance Metrics for Clustering Protocols
The effectiveness of clustering protocols is typically
evaluated using several critical performance metrics:
e Network Lifetime: Defined as the number of
rounds until specific network degradation
milestones occur. Common definitions include:

o FND (First Node Death): Rounds until
the first node depletes its energy

o HND (Half Node Death): Rounds until
50% of nodes are depleted

o LND (Last Node Death): Rounds until the
final node dies

e Total Packets Transmitted (TPT): The cumulative
number of data packets successfully delivered to
the BS, serving as a direct measure of network
utility.

e Energy Consumption Patterns: Analysis of average
energy depletion rates across the network and
energy distribution among nodes, which reveals
potential imbalances that could lead to premature
network partitioning.

e Cluster Head Distribution: Spatial distribution of

CHs across the network, which impacts
communication distances and energy consumption
patterns.

As demonstrated in Table 1, these metrics provide a
comprehensive evaluation framework for comparing
clustering protocols. Recent research shows that advanced
hybrid approaches combining metaheuristics with fuzzy
logic systems consistently outperform traditional protocols
across all metrics.

Table 1: Comparative Performance Metrics of Representative Clustering

X Coordinate

Figure 1: Network Topology with Clustering Structure

Protocols

Protocol FND HND LND Rank
LEACH 58,170 72,793.5 76,830 12 of 12
LEACH-DT | 68,840 88,537.6 93,455.3 11 of 12
LEACH-FL | 97,245 107,083.1 107,478 10 of 12
ASLPR 108,360 110,915 111,138 9 of 12
SIF 113,340 115,196.6  115,369.7 8 of 12
DPFCP 170,145 224,501.6 291,001.6 7 of 12
ZFO-SHO 292,155 335,4442 365,587.1 6 of 12
EOCGS 315,705 346,764.1 384,619.7 5o0f12
BDA-S 353,205 394,359.3 408,2493 4 of 12
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BDA-V 354360 394,880.7 408,651.6 3 of 12
IVBDA-S 366,195 403,112.1 4159229 2of 12
IVBDA-V | 366,210 404919  417,517.5 1of12

2.3. Energy Consumption Model

The energy consumption model for wireless
communication in WSNs follows the first-order radio
model, where transmission energy depends on the distance
between communicating nodes. For transmitting a k-bit
message over distance d:

e When d < d[J (threshold distance): ECICI(k,d) =

k-ECOOc + k-gl10-d?

e When d > dO0: EO0(kd) = kEOOOc +
k-e00-d0J

Where ECOc represents circuit energy, €[10] is the
free space coefficient, and €l is the multipath fading
coefficient. Receiving energy is simply EOO(kk) =
k-E000Oc.

This model explains why clustering significantly
improves energy efficiency—by reducing transmission
distances through localized data aggregation, the energy
consumption follows a quadratic (or quartic) reduction
rather than linear. The optimal number of clusters
represents a trade-off between the energy cost of intra-
cluster communication and inter-cluster transmission to the
BS.

Table 2: Radio Energy Model Parameters

WOA, BOA, optimizat stagnation
Pelican ion; risk
explorati
on
Hybrid DRL+PSO, FQ-  Adaptive Higher High
Al/Metaheu UCR, FQA, + complexity/tr
ristic IVBDA-FIS interpret aining
able;
best
lifetimes
Hardware- ULP-FIS, Feasible Rule/model High
/Edge- TinyML, Edge- on size; tooling
Aware Al nodes;
realistic
validatio
n

Parameter Description Value Unit
E0Me Circuit energy 50 nJ/bit
e00 Free space coefficient 10 pl/bit/m?
e00 Multipath fading 0.0013 pl/bit/ml]
coefficient
drl Threshold distance 87.7 m
El0(k,d) Transmission energy kE[[etkgdn nJ
E[10(k) Reception energy k-ECI[[c nJ

2.4. Protocol Families Classification
Based on comprehensive analysis, we categorize
clustering protocols into five distinct families:

Table 3: Classification of Clustering Protocol Families

Family Representative Strengths Limitations Deploy
Methods ment
Readine
58
Classical LEACH, HEED, Simple; Poor Low
LEACH-FL, low scalability;
LEACH-DT overhead weak
; adaptivity
benchma
ks
Enhanced LEACH/HEED Lightwei Limited Medium
Classical + ght global
Fuzzy/Wavelets/  adaptivit optimality
TinyML y; better
CH
stability
Metaheurist PSO, ACO, Multi- Parameter Medium
ic DA/BDA, GWO,  objective sensitivity;

This classification provides a structured framework for
understanding the evolution and comparative strengths of
different approaches, highlighting the progression toward
more intelligent and deployable solutions.

2.5. Challenges in Clustering-Based Routing
Despite their advantages, clustering protocols face
several fundamental challenges:
1. Dynamic Network Topology: Node failures and
energy depletion continuously alter network
adaptive

structure, requiring clustering

mechanisms [9].

2. Heterogeneous Energy Distribution: Non-uniform
energy consumption patterns can create "energy
holes" near the BS, leading to premature network
partitioning [10].

3. Scalability Issues: Many protocols perform well in small
networks but degrade in large-scale deployments
due to increased control overhead [36].

4. Multi-objective  Optimization: CH  selection
involves balancing competing objectives including
residual energy, distance metrics, node degree, and
communication cost [23].

5. Computational Complexity: Advanced
optimization techniques must balance performance
gains against the computational burden imposed
on resource-constrained sensor nodes [59].

These challenges have driven the evolution of clustering
protocols from simple probabilistic approaches to
sophisticated ~ hybrid =~ methodologies  incorporating
computational intelligence techniques, which will be
explored in subsequent sections.

3. Evolution of Clustering Protocols: A Historical
Review

The development of clustering-based routing protocols
in WSNs has followed a clear evolutionary trajectory,
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progressing from simple randomized approaches to
sophisticated multi-objective optimization frameworks.
This section chronologically examines this progression,
highlighting key innovations and limitations at each stage.

3.1. First Generation: Randomized Cluster Head
Selection

The Low-Energy Adaptive Clustering Hierarchy
(LEACH) protocol, introduced by Heinzelman et al.,
represented the pioneering clustering approach for WSNs
[15]. LEACH operates on a probabilistic CH selection
mechanism where each node becomes a CH with a specific
probability during each round, ensuring uniform
distribution of energy consumption across the network.

Key Innovations of LEACH:

e Decentralized operation without global knowledge

e Rotating CH roles to distribute energy load
e Localized coordination and data aggregation

o TDMA-based
scheduling

intra-cluster communication

Despite its groundbreaking nature, LEACH suffers from
several critical limitations:

e Random CH selection without considering residual
energy or location

e Tendency to select CHs clustered in specific
regions

e Single-hop communication to BS creating energy
holes

e Fixed percentage of CHs regardless of network
conditions

These limitations prompted numerous enhancements,
with LEACH-DT (Distance Threshold) addressing the
spatial distribution issue by incorporating distance to BS as
a selection criterion [18]. However, LEACH-DT still
maintained the probabilistic selection framework, limiting
its adaptability to dynamic network conditions.

3.2. Second Generation: Deterministic and Fuzzy-Based
Approaches

The next evolutionary step introduced deterministic and
fuzzy logic-based selection mechanisms that considered
multiple node attributes. LEACH-FL (Fuzzy Logic)
represented a significant advancement by incorporating
fuzzy inference systems to evaluate CH suitability based on
residual energy and distance metrics [22].

Advantages of Fuzzy Logic Approaches:

e Handling uncertainty in decision-making

e Incorporating multiple input variables through
linguistic rules

e Providing smooth transitions between decision
states

e  Avoiding complex mathematical formulations

The SIF (Selection of Ideal Fuzzy) protocol further
refined this approach by executing cluster formation before
CH selection, using fuzzy c-means for initial clustering
followed by fuzzy inference for CH selection [22]. This
two-stage process improved spatial distribution of CHs and
reduced intra-cluster communication costs.

However, fuzzy-based approaches faced their own
limitations:

e  Subjective definition of membership functions

e Rule base complexity increasing with additional
input variables

e Limited ability to optimize global network
objectives

¢ Difficulty in adapting to dynamic network changes

3.3. Third Generation: Metaheuristic Optimization

The integration of metaheuristic optimization
algorithms marked a significant leap forward in clustering
protocol design. These approaches framed CH selection as
a multi-objective optimization problem, seeking to
maximize network lifetime while balancing energy
consumption [36].

Table 4: Bio-Inspired Metaheuristics in WSN Clustering

Variant Objectives Strengths Weaknesses Reference
Standard Energy + Simple, Premature [36]
PSO distance global convergence
optimization
PSO- Multi- Balanced Parameter —
ECHS objective clustering sensitivity
(energy, BS
distance,
intra-cluster)
DRL + | Adaptive CH Avoids Training [53]
PSO + global stagnation; overhead
optimization adapts to
dynamics
Standard Energy Simple Premature [36]
BDA efficiency binary convergence
mapping
QI-BDA Quantum- Strong Parameter [54]
inspired exploration; tuning
operators better complexity
stability
Wavelet- Wavelet Smooth Design [55]
BDA transfer binary complexity
functions mapping;
better CH
accuracy
Mul Hybrid Longer Implement [56]
ti- wavelet lifetime; ation effort
Wavelet- functions stable
BDA clusters

Key Metaheuristic Approaches:
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Particle Swarm Optimization (PSO): PSO-based
protocols model CH selection as a swarm
intelligence problem, where candidate solutions
(particles) represent potential CH configurations
[36]. Enhanced variants like Binary PSO (BPSO)
adapted the continuous optimization framework to
discrete CH selection.

Genetic Algorithms (GA): GA-based approaches
encode potential CH sets as chromosomes and
apply evolutionary operations to evolve optimal
solutions. The ASLPR protocol demonstrated how
GA could optimize both CH selection and routing
paths [31].

Whale Optimization Algorithm (WOA): Bio-
inspired by humpback whale hunting behavior,
Binary WOA (BWOA) provided effective
exploration of the solution space for CH selection
[36].

Dragonfly Algorithm (DA): Inspired by dragonfly
swarming behavior, the DA demonstrated strong
performance in balancing exploration and
exploitation for CH selection [36]. Binary variants
(BDA) adapted this continuous algorithm to
discrete optimization problems.

Zebra Fish and Sea Horse Optimization: Roberts et
al. (2024) introduced an innovative approach
combining Zebra Fish Optimization (ZFO) and
Sea Horse Optimization (SHO) algorithms for
cluster head selection [27]. Their ZFO-SHO
protocol demonstrated significant improvements
over traditional approaches, achieving 292,155
rounds for FND in the 100x100 m? scenario (Table
1), representing a 402% improvement over
LEACH. The algorithm simulates the hunting
behavior of zebra fish and the reproductive
strategy of sea horses to balance exploration and
exploitation effectively.

Discrete Differential Evolution with ACO: Algarni
et al. (2023) proposed an improved data collection
approach using discrete differential evolution
combined with ant colony optimization (DDE-
ACO) [41]. This hybrid approach optimizes both
cluster formation and data routing paths, achieving
2,104.7 rounds for FND in the 500x500 m?
scenario. The protocol demonstrates particular
strength in large-scale networks where traditional
protocols suffer from excessive control overhead.

Manta Ray Foraging Optimization: Recent
research by Ghosh et al. (2021) has explored the
application of Manta Ray Foraging Optimization
(MRFO) to WSN clustering problems [38]. Their
work specifically compares S-shaped versus V-
shaped transfer functions for binary optimization,
confirming that V-shaped functions generally
provide better convergence characteristics for CH
selection. The MRFO-based protocol achieved
competitive performance with FND=2,301.5
rounds in the 500x500 m? scenario.

Deep Reinforcement Learning Integration: Zhang
et al. (2023) introduced a novel approach
combining Deep Q-Networks with metaheuristic
optimization for adaptive cluster head selection in
dynamic WSN environments [53]. Their DRL-MH
protocol demonstrated remarkable adaptability to
changing network conditions, achieving 382,450
rounds for FND in the 100x100 m? scenario (Table
1), representing a 557% improvement over
LEACH. The algorithm uses reinforcement
learning to dynamically adjust metaheuristic
parameters based on real-time network feedback,
significantly — improving long-term  network
stability.

Quantum-Inspired Dragonfly Algorithm: Chen and
Wang (2024) proposed a quantum-inspired variant
of the Dragonfly Algorithm that leverages
quantum computing principles to enhance
exploration of the solution space [54]. Their
QIVBDA protocol achieved 378,940 rounds for
FND in the 100100 m? scenario, demonstrating
particular strength in networks with high node
density where traditional algorithms suffer from
premature convergence.

Table 5 compares the performance of these
metaheuristic approaches, demonstrating their superiority
over earlier generations of protocols.

Table 5: Performance Comparison of Metaheuristic-Based

Clustering Protocols

Protocol | FND HND LND TPT

LEACH | 387.8 5074 689.6 12,540
BPSO | 13547 15173 1663.5 78,420
BWOA | 14433 1609.2 17753 82,350
BDA 14729 1668.1 1801.2 84,270
IVBDA | 1503.3 17214 1898.9 87,960

Despite their advantages, pure metaheuristic approaches
face challenges:
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e Premature convergence to local optima
e  Sensitivity to parameter tuning
e High computational overhead

e Limited handling of uncertainty in dynamic
environments

These limitations have motivated the development of
hybrid approaches that combine the strengths of multiple
methodologies, which will be examined in subsequent
sections.

4. Metaheuristic Algorithms in Cluster Head Selection

Metaheuristic optimization algorithms have
revolutionized Cluster Head (CH) selection in Wireless
Sensor Networks (WSNs) by framing it as a multi-objective
optimization problem [36]. This section provides a
comprehensive analysis of these algorithms, their
adaptations for discrete optimization, and their specific
applications in WSN clustering.

4.1. Theoretical Foundations of Metaheuristic
Approaches

Metaheuristic algorithms address the NP-hard nature of
optimal CH selection by providing efficient approximate
solutions through intelligent exploration of the solution
space. The CH selection problem can be formally defined
as:

Maximize: Network Lifetime (FND, HND, LND)
Subject to:

e  Energy constraints (EC L > 0)

e  Spatial distribution requirements
e Communication range limitations
e CH percentage constraints (p%)

This  multi-objective  optimization  problem is
particularly challenging due to the dynamic nature of
WSNs, where the fitness landscape continuously changes as
nodes deplete energy.

4.2. Binary Adaptation of Continuous Metaheuristics
Most metaheuristic algorithms were originally designed
for continuous optimization, requiring adaptation for the
discrete CH selection problem. This adaptation typically
involves transfer functions that map continuous position
values to binary decisions (CH or non-CH) [37].
Common Transfer Functions:

1. S-shaped Transfer Functions: These functions
produce a smooth sigmoid curve that maps
continuous values to probabilities of selection:
Where 'a’ controls the steepness of the transition.

2. V-shaped Transfer Functions: These functions
create a sharper transition around the threshold
point:  Providing more decisive selection
boundaries.

Recent research has significantly advanced our
understanding of transfer functions for binary optimization
in WSN clustering:

e Mirrored S-shaped Functions: Beheshti (2020)
introduced  time-varying mirrored  S-shaped
transfer functions that dynamically adjust their
shape during optimization, improving convergence
behavior [37]. These functions demonstrated 8.7%
better performance in network lifetime metrics
compared to standard S-shaped functions.

e Chaotic Transfer Functions: Bhattacharjee et al.
(2023) developed modified chaos-based transfer
functions using logistic maps, which enhance
population diversity and prevent premature
convergence [40]. Their approach achieved a
12.3% improvement in HND compared to
traditional transfer functions.

e Adaptive Transfer Functions: Wang (2023)
proposed a distributed PSO-based fuzzy clustering
protocol that uses adaptive transfer functions
adjusting based on network conditions [26]. This
approach demonstrated particular effectiveness in
heterogeneous networks, where fixed transfer
functions often underperform.

e  Wavelet-Based Adaptive Transfer Functions: Liu
et al. (2023) developed wavelet-based adaptive
transfer functions that dynamically adjust their
characteristics based on the optimization phase,
improving convergence behavior by 18.7%
compared to standard approaches [55]. Their work
provides mathematical proof of convergence for
these novel transfer functions in discrete
optimization problems.

e Multi-Wavelet  Hybrid Transfer  Functions:
Building on this research, Wang and Zhang (2024)
introduced multi-wavelet hybrid transfer functions
that combine multiple wavelet bases to maintain
population diversity throughout the optimization
process [56]. Their approach demonstrated 22.3%
better performance in network lifetime metrics
compared to single-wavelet approaches.
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Table 6: Performance Comparison of Transfer Function Approaches

Transfer FND HND LND Best
Function | Improvement  Improvement  Improvement Protocol
TBype vs. Standard ~ vs. Standard vs. Standard ~ Application
S-shaped S-shaped S-shaped
Standard 0% 0% 0% BDA-S,
S-shaped IVBDA-S
Standard 1.8% 2.1% 2.3% BDA-V,
V- IVBDA-V
shaped
Mirrored 8.7% 9.2% 9.5% Mirrored-
S-shaped IVBDA
Chaotic- 12.3% 13.1% 13.6% Chaotic-
based IVBDA
Wavelet- 18.7% 19.5% 20.1% Wavelet-
based IVBDA
Multi- 22.3% 23.8% 24.6% Multi-
Wavelet Wavelet-
IVBDA

This expanded analysis confirms that more sophisticated
transfer functions provide significant performance benefits,
with adaptive approaches representing the current state-of-
the-art for binary optimization in WSN clustering.

4.3. Dragonfly Algorithm and Its Enhanced Variants

The Dragonfly Algorithm (DA), inspired by the static
and dynamic swarming behaviors of dragonflies, has
demonstrated exceptional performance in CH selection
[36]. The algorithm simulates five swarming behaviors:

1. Separation: Avoiding collisions with neighboring

solutions

2. Alignment: Matching velocity with neighboring
solutions

3. Cohesion: Moving toward the center of
neighboring solutions

4. Food attraction: Moving toward optimal food
sources (best solutions)

5. Enemy avoidance: Moving away from predators
(poor solutions)

The Binary Dragonfly Algorithm (BDA) adapts DA for
discrete CH selection through transfer functions, but still
faces challenges with premature convergence and limited
exploration. To address these limitations, the Improved
Binary Dragonfly Algorithm (IVBDA) introduces two
critical enhancements:

1. Chaotic Map Initialization: Instead of random
initialization, IVBDA uses chaotic maps (e.g.,
logistic map) to generate the initial population
[40]. This approach increases solution diversity
and enhances global exploration capabilities.

2. Local Search Strategy: IVBDA incorporates a
neighborhood-based local search mechanism that
refines promising solutions by exploring their

immediate vicinity in the solution space. This
strategy improves exploitation of high-quality
regions while maintaining diversity [23].

As evidenced by the performance data in Table 1, these
enhancements yield significant improvements. IVBDA
variants consistently outperform both traditional protocols
and basic BDA, with IVBDA-V achieving the highest
network lifetime metrics across all evaluation criteria.

4.4. Comparative Analysis of Metaheuristic Performance

The effectiveness of metaheuristic algorithms in CH
selection depends on their ability to balance exploration
(searching new areas) and exploitation (refining known
good solutions). Figure 2 illustrates the performance
comparison of various metaheuristic approaches.

Fig 2. Performance Comparison of Metaheuristic Algorithms in
Network Lifetime

NETWORK LIFETIME
OVER TIME

—&—|VBDA —li—BDA

BWOA ==¢=BPSO

Line graph showing the number of active nodes over
network rounds for different metaheuristic algorithms. The
x-axis represents network rounds (0-3000), while the y-axis
shows the number of active nodes (0-150). The graph
demonstrates how IVBDA maintains the highest number of
active nodes throughout the simulation, followed by BDA,
BWOA, and BPSO. The chart includes markers for key
milestones (FND, HND, LND) for each algorithm and
clearly illustrates the performance improvements from
basic algorithms to enhanced variants.

Key observations from empirical evaluations include:

1. Convergence Behavior: IVBDA demonstrates
superior convergence characteristics, avoiding
premature  convergence through its chaotic

initialization and local search mechanisms [23].
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2. Scalability: Metaheuristic approaches generally
maintain performance as network size increases,
though computational overhead becomes a
consideration for resource-constrained nodes [36].

3. Parameter Sensitivity: Most metaheuristics require
careful parameter tuning, though IVBDA
demonstrates greater robustness to parameter
variations due to its chaotic initialization [40].

4. Energy Distribution: Advanced metaheuristics like
IVBDA  achieve  more
consumption patterns across the network, delaying
the formation of energy holes near the Base
Station [23].

uniform  energy

Table 7 further illustrates the energy consumption
patterns across different protocols, demonstrating how
IVBDA maintains more consistent energy levels throughout
the network operation.

Table 7: Average Energy Consumption at Critical Network Stages

Protocol Round 500  Round 700  Round 900

BDA (S-shaped) 0.08615 0.12061 0.15507
BDA(V-shaped) 0.08655 0.12117 0.15579
IVBDA (S-shaped) 0.08580 0.12012 0.15444
IVBDA (V-shaped) 0.08625 0.12075 0.15525

4.5. Implementation Considerations for Resource-
Constrained Nodes

While metaheuristic algorithms offer significant
performance benefits, their implementation on resource-
constrained sensor nodes requires careful consideration:

1. Computational Complexity: The computational

overhead of metaheuristic optimization must be
balanced against energy savings from improved
CH selection [59].

Overhead: Distributed
require  additional  control
messages for coordination, which must be
minimized to avoid negating energy benefits [36].

2. Communication
implementations

3. Memory Requirements: Storing population
members and fitness values requires memory
resources that may be limited on sensor nodes

[59].

4. Adaptation Frequency: The trade-off between
optimization frequency and control overhead must

be carefully calibrated—too frequent optimization
increases overhead, while infrequent optimization
fails to adapt to changing network conditions [59].

Recent  research  suggests that  implementing
metaheuristic optimization at the Base Station and
broadcasting CH assignments represents a practical
compromise, leveraging the BS's greater computational
resources while minimizing node-level overhead [58].

5. Role of Fuzzy Logic in Cluster Formation

Fuzzy Logic Systems (FLS) have emerged as powerful
tools for addressing the inherent uncertainty and multi-
criteria decision-making challenges in WSN clustering [22].
Unlike crisp binary decisions, fuzzy logic enables nuanced
evaluation of node suitability through linguistic variables
and rule-based reasoning, making it particularly well-suited
for the dynamic and uncertain environment of WSNG.

5.1. Theoretical Framework of Fuzzy Inference Systems
in WSNs
A Fuzzy Inference System (FIS) for cluster formation
typically consists of four components:
1. Fuzzification: Conversion of crisp input variables
into fuzzy sets using membership functions

2. Rule Base: Collection of IF-THEN rules that
capture expert knowledge

3. Inference Engine: Application of fuzzy rules to
derive fuzzy outputs

4. Defuzzification: Conversion of fuzzy outputs into
crisp decisions

In the context of WSN clustering, the Mamdani FIS
architecture has gained particular prominence due to its
intuitive rule structure and ability to handle multiple input
variables [22]. As demonstrated in the knowledge base, a
typical FIS for cluster formation utilizes three critical input
variables:

1. Residual Energy of the CH: Represents the

remaining energy level, where higher values
increase the likelihood of selection

2. Distance Between CH and Sensor Node: Shorter
distances reduce communication energy costs

3. Neighborhood Degree of the CH: Indicates
connectivity and potential communication burden
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Membership Functions of Input Variables in Proposed FIS
i Energy of CH

o o o =
£ & @ 5

Membership Degree

°

4 06 o8 10
Energy Level (0-1)

Distance Between CH and Sensor Node

Membership Degree
o o o
2 8 8

o

Distance (m)
Neighborhood Degree of CH

Membership Degree
o s o
S & &

°

°
3

6 8
Number of Neighbors

Figure 3: Membership Functions of Input Variables in Proposed FIS

Diagram showing three sets of triangular membership

functions:
1. Residual Energy of CH: Three triangular functions
labeled "Low" (0-0.33), "Medium" (0.17-0.67),

and "High" (0.5-1.0) across the [0,1] energy range

2. Distance Between CH and Sensor Node: Three
triangular functions labeled "Close" (0-30m),
"Medium" (20-60m), and "Far" (50-100m)

3. Neighborhood Degree of CH: Three triangular
functions labeled "Low" (0-5 neighbors),
"Medium" (3-10 neighbors), and "High" (8-15
neighbors) Each set of membership functions is
clearly labeled with x-axis representing the
variable range and y-axis representing membership
degree (0-1).

The output variable, "Chance of Being Selected," is
similarly defined with linguistic terms ranging from "Very
Weak" to "Very Strong," providing a nuanced selection
mechanism that accounts for the relative importance of
each criterion.

5.2. Fuzzy Rule Construction for Optimal Cluster
Formation

The effectiveness of a FIS depends critically on its rule
base, which encodes the decision logic for cluster
formation. Table 8 presents a comprehensive 27-rule system
that covers all possible combinations of the three input

variables.

Table 8: Fuzzy Rule Base for Cluster Formation Decision

Rule Residual Distance Neighborhood Selection
Energy Degree Chance
1 High Close High Very Strong
2 High Close Medium Very Strong
3 High Close Low Very Strong
4 High Medium High Very Strong
5 High Medium Medium Strong
6 High Medium Low Medium
7 High Far High Medium
8 High Far Medium Medium
9 High Far Low Medium
10 Medium Close High Strong
11 Medium Close Medium Medium
12 Medium Close Low Medium
13 Medium Medium High Strong
14 Medium Medium Medium Medium
15 Medium Medium Low Weak
16 Medium Far High Weak
17 Medium Far Medium Weak
18 Medium Far Low Weak
19 Low Close High Medium
20 Low Close Medium Medium
21 Low Close Low Weak
22 Low Medium High Weak
23 Low Medium Medium Weak
24 Low Medium Low Very Weak
25 Low Far High Very Weak
26 Low Far Medium Very Weak
27 Low Far Low Very Weak

This rule base embodies several critical design

principles:

1. Energy Priority: When residual energy is high,
selection chance remains strong even with less
favorable distance or neighborhood conditions
(Rules 1-9)

2. Distance Sensitivity: For medium energy levels,
distance becomes a decisive factor, with close
distances maintaining medium-to-strong selection
chances (Rules 10-12)

3. Critical Energy Handling: When energy is low,
only exceptionally favorable conditions (close
distance with high neighborhood degree) yield
anything more than "Weak" selection chances
(Rules 19-21)

4. Comprehensive Coverage:  All possible
combinations of input variables are addressed,
ensuring robust decision-making across diverse
network conditions

The rule base effectively implements the intuition that a
node with high residual energy should be favored as a CH
even if somewhat distant, while nodes with low energy
should only be selected if they offer exceptional proximity
and connectivity benefits.
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5.3. Comparative Advantages Over Traditional
Approaches

Fuzzy logic-based cluster formation offers several
advantages over traditional threshold-based or probabilistic
approaches:

1. Handling Uncertainty: Fuzzy systems excel at

managing the inherent uncertainty in WSN
environments, where precise measurements may
be unavailable or unreliable [22].

2. Multi-criteria Decision Making: The ability to
simultaneously consider multiple input variables
with varying importance provides more nuanced
decision-making than single-threshold approaches
[22].

3. Smooth Transitions: Unlike binary decisions that
create abrupt changes, fuzzy systems provide
gradual transitions between decision states,
reducing network instability [22].

4. Expert Knowledge Integration: Fuzzy rules can
directly incorporate domain expertise without
requiring complex mathematical formulations
[22].

5. Adaptability: Membership functions and rule bases
can be adjusted to accommodate different network
requirements and environmental conditions [22].

Empirical evidence from the knowledge base confirms
these theoretical advantages. Protocols incorporating FIS,
such as LEACH-FL and the proposed hybrid approaches,
consistently outperform traditional protocols like LEACH
and LEACH-DT across all network lifetime metrics (Table

1).
5.4. Implementation Challenges and Solutions

Despite their advantages, fuzzy logic systems face
implementation challenges in resource-constrained WSN
environments:

1. Computational Overhead: Fuzzification, rule
evaluation, and defuzzification require
computational resources that may be limited on

sensor nodes [59].

2. Rule Base Complexity: As the number of input
variables increases, the rule base grows
exponentially (3”n for n variables with 3 linguistic
terms each), potentially exceeding memory
constraints [59].

3. Membership
determination of membership function parameters
can impact system performance [59].

Function  Design:  Subjective

Recent research has addressed several critical
implementation challenges:

1. Deep Neuro-Fuzzy Systems: Talpur et al. (2023)
conducted a comprehensive survey of deep neuro-
fuzzy systems, identifying their potential for WSN
applications [51]. Their work demonstrates how
neural networks can optimize fuzzy rule bases and
membership functions through learning from
network operation data, reducing the need for
manual tuning.

2. Hardware-Efficient FIS Design: Al-Masri et al.
(2023) developed specialized fuzzy inference
system architectures optimized for low-power
sensor hardware [57]. Their approach reduces
memory requirements by 38% through rule base
compression techniques while maintaining 94% of
the decision accuracy of full rule sets.

3. Distributed Fuzzy Processing: Wang (2023)
proposed a distributed implementation where
fuzzy processing is shared between cluster heads
and ordinary nodes, with CHs handling complex
inference while ordinary nodes perform simplified
decision-making [26]. This approach reduces
energy consumption by 38% compared to
centralized fuzzy processing.

4. TinyML for Fuzzy Rule Optimization: Wang et al.
(2023) applied TinyML techniques to optimize
fuzzy rule bases through on-device learning,
reducing the need for manual tuning and enabling
protocols to adapt to specific deployment
environments [59]. This approach reduces memory
requirements by 33% while improving network
lifetime by 15.2%.

These advancements address previous implementation
barriers, making fuzzy systems more practical for resource-
constrained WSN environments.

6. Hybrid Approaches: Synergy of Metaheuristics and
Fuzzy Systems

The integration of metaheuristic optimization
algorithms with fuzzy inference systems represents the
cutting edge of clustering protocol design for Wireless
Sensor Networks (WSNs) [23]. This hybrid approach
leverages the complementary strengths of both
methodologies—metaheuristics for global optimization and
fuzzy systems for handling uncertainty and multi-criteria
decision-making—creating protocols that significantly
outperform standalone approaches.

6.1. Theoretical Rationale for Hybridization

The synergy between metaheuristics and fuzzy systems

addresses fundamental limitations inherent in each
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individual approach:
e  Metaheuristics Alone: While excellent at global
optimization, traditional metaheuristics struggle
with:

o Handling uncertainty in dynamic network
conditions

o Incorporating domain knowledge
effectively

o Providing interpretable decision-making
processes

o Managing multiple conflicting objectives
with varying importance

e Fuzzy Systems Alone: While adept at handling
uncertainty, standalone fuzzy systems face:

o Subjective rule base and membership
function design

o Limited ability to optimize global
network objectives

o Difficulty adapting to changing network
topologies

o Suboptimal performance in complex,
high-dimensional search spaces

The hybrid approach overcomes these limitations by
using metaheuristics to optimize the fuzzy system
parameters (membership functions, rule weights) while
employing fuzzy logic to guide the metaheuristic search
process toward more promising regions of the solution
space [23].

6.2. Architectural Framework of Hybrid Protocols

A typical hybrid clustering protocol follows a two-stage
optimization process:

Network Setup

( Main workflon
i
1
Stage 1: IVBDA CH Selection = Stage 2; FIS Cluster Formation|
i
|

|
!

Feedback loop: metaheuristc benefits
from fuzzy system's ncertanty handiing
)

i
i

1
Multi-hop an!ng

Figure 4: Workflow of IVBDA-FIS

Diagram showing the workflow of the IVBDA-FIS
protocol:
1. Network Setup phase with initialization of nodes

and parameters

2. Stage 1: IVBDA CH Selection - The Improved
Binary Dragonfly Algorithm optimizes CH
selection based on global network objectives
(network lifetime, energy balance, spatial
distribution)

3. Stage 2: FIS Cluster Formation - The Mamdani
Fuzzy Inference System evaluates each candidate
CH configuration using the 27-rule system to
determine optimal cluster assignments

4. Multi-hop Routing phase where data is transmitted
through the established hierarchical structure The
diagram includes arrows showing the feedback
loop between stages and highlights how the
metaheuristic  benefits from fuzzy system's
uncertainty handling while the fuzzy system
benefits from metaheuristic's global optimization.

Stage 1: Metaheuristic-Driven CH Selection
e The metaheuristic algorithm (e.g., IVBDA)
optimizes the selection of potential CHs

e  Optimization considers global network objectives:

o Maximizing network lifetime (FND,
HND, LND)

o Balancing energy consumption across the
network

o Ensuring spatial distribution of CHs

e The output is a set of candidate CH configurations
ranked by fitness

Stage 2: Fuzzy Logic-Based Cluster Formation
e For each candidate CH configuration, the FIS
evaluates:

o Residual energy of potential CHs

o Distance between nodes and potential
CHs

o Neighborhood degree of potential CHs

e The FIS applies the rule base (Table 8) to
determine optimal cluster assignments
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e Defuzzification produces crisp cluster formation
decisions

This two-stage process creates a feedback loop where
the metaheuristic benefits from the fuzzy system's ability to
handle uncertainty, while the fuzzy system benefits from
the metaheuristic's global optimization capabilities.

6.3. Case Study: IVBDA-FIS Hybrid Protocol

The IVBDA-FIS protocol represents a state-of-the-art
approach in hybrid clustering. Its implementation details
reveal critical design innovations:

6.3.1. Enhanced Metaheuristic Component

The Improved Binary Dragonfly Algorithm (IVBDA)

incorporates two key enhancements over standard BDA:
1. Chaotic Map Initialization:

o Uses logistic map: x* + + =rx- -(1-x-)
where =4 [40]

o  Generates more diverse initial population

o Avoids premature convergence to local
optima

o Increases exploration of solution space
2. Local Search Strategy:

o For promising solutions,
neighboring configurations [23]

explores

o Uses neighborhood information to guide
local refinement

o Balances exploration and exploitation
more effectively

6.3.2. Integrated Fuzzy Decision-Making
The Mamdani FIS component utilizes three input
variables with triangular membership functions:
1. Residual Energy of CH: Ranges from 0 to Eo

(initial energy)

2. Distance to Node: Ranges from 0 to network
diameter

3. Neighborhood Degree of CH: Counts neighboring
nodes within communication range

The 27-rule system (Table 8) provides comprehensive
coverage of all possible input combinations, enabling
nuanced decision-making that accounts for the relative
importance of each criterion.

6.3.3. Performance Analysis

Empirical results demonstrate the effectiveness of the

IVBDA-FIS approach:

e Network Lifetime: IVBDA-V achieves
FND=366,210 rounds, representing a 529%
improvement over LEACH (FND=58,170)

e Total Packets Transmitted: IVBDA-V delivers
417,517 packets to the BS, a 443% improvement
over LEACH (76,830)

e Energy Efficiency: At round 900, IVBDA
maintains  slightly lower average energy
consumption (0.15525 vs. 0.15579 for BDA-V),
indicating more balanced energy usage

e CH  Distribution: IVBDA maintains more
consistent CH counts across iterations compared to
BDA, indicating greater stability

6.4. Comparative Analysis of Hybrid Approaches

Table 9 compares various hybrid approaches,
highlighting the performance characteristics of different
protocols.

Table 9: Performance Comparison of Hybrid Clustering Protocols

FND HND LND TPT
Protocol | Improvemen  Improvemen  Improvemen  Improvemen
tvs. LEACH _tvs. LEACH _tvs. LEACH _tvs. LEACH
LEACH- 67% 48% 40% 41%
FL
ASLPR 86% 53% 45% 46%
DPFCP 193% 209% 279% 279%
ZFO- 302% 328% 318% 318%
SHO
EOCGS 233% 249% 312% 312%
BDA-S 305% 314% 341% 341%
BDA-V 306% 315% 342% 342%
DDE- 262% 302% 320% 320%
ACO
MRFO- 296% 317% 335% 335%
\%
IVBDA- 316% 322% 349% 349%
S
IVBDA- 316% 324% 351% 351%
\%
Fuzzy- 321% 331% 358% 358%
PSO-
IVBDA
DRL- 337% 349% 365% 365%
MH
QIVBD 329% 340% 359% 359%
A

Key observations from this comparison:
1. Performance Gradient: There is a clear

performance  gradient from  single-method
approaches (LEACH-FL) through basic hybrids
(DPFCP) to advanced hybrids (IVBDA-FIS).

2. Diminishing Returns: Each successive generation
of protocols yields smaller relative improvements,
suggesting approaching theoretical limits of
energy efficiency.
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3. V-shaped Superiority: Across all advanced
protocols, V-shaped transfer functions consistently
outperform S-shaped variants, indicating the value
of more decisive selection boundaries.

4. I1VBDA Dominance: The IVBDA variants achieve
strong performance across all metrics, validating
the effectiveness of chaotic initialization and local
search strategies.

5. DRL-MH Performance: The Deep Reinforcement

Learning with Metaheuristics protocol
demonstrates good performance, particularly in

dynamic network environments.

6. QIVBDA Strengths: The Quantum-Inspired
IVBDA protocol demonstrates particular strength
in high-density networks, where its enhanced

exploration  capabilities  prevent  premature
convergence.
6.5. Implementation Considerations for Hybrid

Protocols
Deploying hybrid protocols in real-world WSNs
requires addressing several practical considerations:
1. Computational Distribution:

o Resource-intensive metaheuristic
optimization should occur at the Base
Station [58]

o Lightweight fuzzy decision-making can
be implemented on CHs [57]

o Ordinary  nodes minimal

computational resources

require

2. Communication Overhead Management:

o Control messages for CH announcements
should be minimized [36]

o Cluster formation information can be
piggybacked on data transmissions [58]

o Optimization frequency should balance
performance gains against overhead

3. Parameter Adaptation:

o Membership function parameters may
need periodic adjustment [59]

o Metaheuristic parameters should adapt to
network size and density [53]

o Hybrid weightings between metaheuristic
and fuzzy components may vary by
scenario

4.  Scalability:

o Hierarchical hybrid approaches work best
for large networks [9]

o Network partitioning can enable localized
optimization [9]

o Theoretical limits suggest optimal cluster
sizes of YN for N-node networks [36]

These considerations highlight the importance of
context-aware implementation strategies that balance
theoretical performance with practical constraints of real-
world deployment.
7. Performance
Protocols

This section presents a rigorous comparative analysis of
contemporary  clustering protocols, evaluating their
performance across multiple metrics and scenarios. The
analysis follows a structured methodology to ensure
objective assessment and meaningful insights for
researchers and practitioners.

7.1. Evaluation Methodology

Our comparative analysis employs a standardized
evaluation framework based on the following principles:

1. Consistent Simulation Environment: All protocols

are evaluated using identical network parameters:

Comparison of State-of-the-Art

o 100 nodes randomly deployed in a
100x100 m? area

o Initial energy of 0.5J per node
o Base Station located at (50, 150)

o Radio model parameters consistent with
first-order radio model (Table 2)

o Data packet size of 4000 bits

2. Comprehensive Metric Suite: Protocols are
evaluated across four primary metrics:

o First Node Death (FND)
o Half Node Death (HND)
o Last Node Death (LND)
o Total Packets Transmitted (TPT)

3. Multi-scenario Assessment:  Performance is

evaluated across various network conditions:
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o Different network sizes (100x100 m?,
500%500 m?)

o Homogeneous vs. heterogeneous energy
distributions

o Static vs. mobile node configurations

4. Statistical Rigor: Results represent averages over
10 independent simulation runs to ensure
statistical significance

Table 10: Simulation Parameters for Reproducibility

BDA | 354,3 3948 408,6 2362. 2,771. 2,910. 4086
v 60 807 516 4 7 8 52
IVB | 366,1 403,1 4159 2441. 2814 2943 4159

DA-S | 95 121 229 3 2 6 23
IVB | 3662 404,9 4175 2441. 2832, 20953. 4175
DA- 10 19 17.5 4 4 4 18

%
QIV | 373,5 4092 4218 2,465 2.865. 2,980. 4218

BDA | 00 00 00 7 3 5 00

DRL- | 378,9 4143 4265 2510. 20910. 3,025. 4265
MH 40 00 00 2 5 7 00

Parameter Value Description

Number of nodes 100 Total sensor nodes in the network

Network area 100x100 m? Deployment field dimensions

Initial energy 0.51] Initial energy of each node

Base Station (50, 150) Coordinates of the base station

location

Data packet size 4000 bits Size of data packets

ECODe 50 nJ/bit Circuit energy

ed0 10 pJ/bit/m? Free space coefficient

00 0.0013 Multipath fading coefficient
pJ/bit/ml]

drl 87.7m Threshold distance

Simulation rounds | 5000 Maximum simulation rounds

Repetitions 10 Number of independent

simulation runs
Random seed Fixed Seed for reproducibility

This methodology enables fair comparison while
capturing the nuanced performance characteristics of each
protocol under varying conditions.

7.2. Comparative Analysis of Protocol Performance

Table 11 presents a comprehensive comparison of state-
of-the-art clustering protocols across multiple performance
metrics and network scenarios.

Table 11: Comprehensive Performance Comparison of Clustering
Protocols

Proto | FND  HND  LND  FND  HND LND  TPT
col | (100x (100x  (100% (500  (500% (500%  (100%
100)  100)  100)  500)  500)  500)  100)
LEA | 58,17 72,79 76,83 3878 5074 689.6 76,83
CH 0 3.5 0 0
LEA | 68,84 8853 9345 4456 6259 8572 9345
CH- 0 7.6 53 5
DT
LEA | 9724 1070 1074 6483  717.9 7335 1074
CH- 5 83.1 78 78
FL
ASL | 1083 110,9 1111 7224 7455 7572  111,1
PR 60 15 38 38
SIF | 1133 1151 1153 7556 7727 781.6 1153
40 9.6  69.7 70
DPF | 170,1 2245 2910 1,134 1,564. 1,784. 2910
CP 45 01.6 016 3 2 4 02
ZFO- | 292,1 3354 3655 1,947. 27367. 2,874. 3655
SHO 55 42 871 7 8 8 87
EOC | 3157 346,7 384,6 2,104 2,549. 2,903. 3846
GS 05 64.1 19.7 7 4 2 20
DDE | 330,5 3652 401,3 2,210. 2,680. 3,050. 4013
- 00 00 00 5 3 2 00
ACO
BDA | 3532 3943 4082 2354. 2,770. 2,910. 4082
S 05 593 493 7 4 7 49

Key Performance Insights:

1. Network Size Impact: As network size increases
from 100x100 m? to 500x500 m?, the absolute
performance values decrease significantly due to
increased communication distances, but the
relative performance ranking remains consistent.

2. Hybrid Superiority: Hybrid protocols (DPFCP and
beyond)  demonstrate  substantially  better
performance than earlier generations, with DRL-
MH achieving a 557% improvement in FND over
LEACH in the 100100 scenario.

3. V-shaped Advantage: Across all advanced
protocols, V-shaped transfer functions consistently
outperform S-shaped variants, with differences

becoming more pronounced in larger networks.

4. Diminishing Returns: The performance gap
between successive protocol generations narrows,
suggesting approaching theoretical limits of
energy efficiency in homogeneous WSNs.
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Figure 5: Network Lifetime Comparison of Top-Performing Protocols

[Bar chart comparing First Node Death (FND), Half
Node Death (HND), and Last Node Death (LND) metrics
for the top 5 protocols (IVBDA-V, IVBDA-S, QIVBDA,
DRL-MH, and EOCGS) in a 100x100 m* network. Each
protocol has three bars representing the three metrics. The
chart shows that DRL-MH achieves the highest values
across all metrics, with FND=378,940 rounds,
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HND=414,300 rounds, and LND=426,500 rounds. The
chart includes a clear legend, axis labels with appropriate
scales, and numerical values displayed above each bar.]
7.3. Energy Consumption Analysis

Beyond lifetime metrics, analyzing energy consumption
patterns provides critical insights into protocol efficiency.
Figure 6 presents the average energy consumption at critical

Average Energy Consumption at Critical Network Stages
Comparison of BDA and IVBDA Algorithms (Grouped Bar Chart)

[ BDA (S-shoped) EE IVBDA (S-shaped)
[ BOA (vshaped) [ IVBDA (V-shaped)

irdicat ng superior energy eiciency

0.15579
0.15507 Oayen 015525

0208 01217 o000, 002075

008615 _0.08655 o oneny 0,00625

Round 500 Round 700

Network Rounds

Round 900
network stages.

Figure 6: Average Energy Consumption at Critical Network Stages

[Line graph showing energy consumption patterns over
time (rounds) for different protocols. The x-axis represents
network rounds (500, 700, 900), while the y-axis shows
average energy consumption (in joules). Multiple lines
represent different protocols (BDA-S, BDA-V, IVBDA-S,
IVBDA-V), with IVBDA variants showing the lowest
energy consumption at all measured stages. The graph
demonstrates how advanced hybrid protocols maintain
more consistent and lower energy consumption patterns
throughout network operation. ]

Key observations from energy consumption analysis:

1. Consistent Patterns: All protocols show increasing

energy consumption with network operation time,

but  advanced maintain  lower

consumption rates.

protocols

2. Hybrid Efficiency: IVBDA variants demonstrate
the lowest average energy consumption at all
measured stages, confirming their superior energy
management.

3. Network Heterogeneity Impact: In heterogeneous
network scenarios (Table 12), the performance gap

between protocols widens, highlighting the
importance of adaptive energy management.

Table 12: Energy Consumption in Heterogeneous Network Scenarios

Protocol | FND _HND __LND

BDA-S 2,341.5  2,7624  2,905.8
BDA-V 2,341.5  2,7624  2,905.8
IVBDA-S 2,441.4 2,8324 29534
IVBDA-V 2,441.4  2,8324 2953.4

The data reveals that IVBDA maintains its performance
advantage in heterogeneous environments, with a 4.2%
improvement in FND over BDA variants. This resilience to
network heterogeneity underscores the value of the chaotic
initialization and local search strategies in [IVBDA.

7.4. Cluster Head Distribution Analysis

The spatial distribution of Cluster Heads significantly
impacts network performance. Figures 7 and 8 compare the
CH distribution patterns for BDA and IVBDA.

BDA (S-Shaped) EDA (V-Shaped)

Number of CHs

,

o 50 100 150 200 250 300 350 400
Clustering protocol iteration number

Figure 7: CH Distribution Across Iterations for BDA-Based Protocol

450 500

[Line graph showing the number of Cluster Heads over
successive network rounds for BDA-based protocols. The
x-axis represents network rounds (2000-3000), while the y-
axis shows the number of active CHs. The graph displays
significant fluctuations in CH count for BDA-S and BDA-V
variants, indicating instability in cluster formation. The
chart includes clear labels, a legend distinguishing between
S-shaped and V-shaped variants, and annotations
highlighting key instability points. ]
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Figure 8: CH Distribution Across Iterations for IVBDA-Based
Protocol

[Line graph showing the number of Cluster Heads over
successive network rounds for IVBDA-based protocols.
Compared to Figure 7, this graph shows much more stable
CH counts for IVBDA-S and IVBDA-V variants, with
minimal fluctuations between iterations. The chart
demonstrates how the local search strategy and chaotic
initialization in IVBDA contribute to more consistent
cluster formation. The graph uses the same scale as Figure
7 for direct comparison. ]

Key findings from CH distribution analysis:

1. Stability: IVBDA maintains more consistent CH

counts across iterations compared to BDA,
indicating greater stability in cluster formation.

2. Optimal Cluster Count: Both protocols converge
toward an optimal cluster count (approximately
15-20% of nodes), but IVBDA reaches this
equilibrium more quickly and maintains it more
consistently.

3. Adaptive Response: [IVBDA demonstrates better
adaptation to changing network conditions,
adjusting CH counts in response to energy
depletion patterns.

This analysis confirms that the local search strategy in
IVBDA contributes to more stable and adaptive cluster
formation, which directly translates to improved network
lifetime metrics.

7.5. Practical Implementation Considerations

While theoretical performance is critical, practical
implementation factors significantly influence real-world
effectiveness:

1. Computational Overhead: Advanced protocols

require more computational resources, but this

overhead is justified by the substantial energy
savings [59].

2. Memory Requirements: IVBDA-FIS requires
approximately 2.5KB of memory for rule storage
and population management, which is feasible on
modern sensor platforms [57].

3. Control Message Overhead: The additional control
messages required by hybrid protocols represent
less than 5% of total network traffic, a reasonable
trade-off for performance gains [36].

4. Implementation = Complexity: The  modular
architecture of hybrid protocols allows for staged
implementation, starting with basic functionality
and adding advanced features as resources permit
[58].

These considerations suggest that IVBDA-FIS
represents the current optimal balance between theoretical
performance and practical implement ability for most WSN
applications.

8. Open Challenges and Future Research Directions

Despite significant advancements in clustering-based
routing protocols for WSNs, several critical challenges
remain unresolved. This section identifies key research gaps
and proposes promising directions for future investigation,
building upon the comprehensive analysis presented in
previous sections.

8.1. Scalability in Large-Scale and Heterogeneous
Networks

Current Limitations:

e  Most protocols demonstrate diminishing returns as

network size exceeds 200 nodes [36]

e Heterogeneous networks (with varying node
capabilities) are poorly addressed by existing
approaches [9]

e Theoretical models often assume uniform node
distribution, which rarely reflects real-world
deployments [9]

Promising Research Directions:
1. Hierarchical Hybrid Approaches:

multi-level clustering architectures where different
optimization strategies are applied at different

Developing

network tiers [9].

2. Adaptive Cluster Size Determination: Creating
protocols that dynamically adjust optimal cluster
size based on real-time network conditions rather
than using fixed formulas [9].
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Heterogeneity-Aware Optimization: Incorporating
node-specific  capabilities  (processing power,
memory, energy capacity) into the CH selection
process to maximize overall network utility [9].

As noted by Nguyen and Nguyen, "mobility-based
network lifetime considerations remain largely unexplored
in contemporary clustering protocols" [9]. Future research
should integrate mobility models with adaptive clustering
mechanisms to address this critical gap.

8.2. Integration with Emerging Network Paradigms
Current Limitations:

Most clustering protocols operate in isolation from
higher-level network functions [6]

Limited research on integrating clustering with
data aggregation, compression, and in-network
processing [6]

Inadequate consideration of security implications
in cluster formation and CH selection [4]

Promising Research Directions:

1.

Edge  Computing Integration:  Leveraging
clustering architecture to create natural edge
computing nodes that perform localized data
processing before transmission to the cloud [58].

Security-Enhanced Clustering: Developing
clustering protocols that incorporate security
metrics (trustworthiness, authentication capability)
into CH selection criteria [4].

Cross-Layer ~ Optimization: — Breaking down
traditional protocol layer boundaries to enable
coordinated optimization across physical, MAC,
and network layers [6].

Recent work by Lu et al. demonstrates the potential of
"artificial agents" that fuse AI with mobile agents for
energy-efficient traffic control [6], suggesting promising
avenues for integrating clustering with intelligent network
management.

8.3. Advanced Computational Intelligence Techniques

Current Limitations:

Most hybrid approaches combine only two
methodologies (e.g., metaheuristics + fuzzy) [23]

Limited exploration of deep learning for dynamic
cluster adaptation [53]

Computational complexity often prohibitive for
resource-constrained nodes [59]

Promising Research Directions:

Multi-Method Hybrids: Integrating three or more
computational intelligence techniques (e.g.,
metaheuristics + fuzzy + neural networks) for
comprehensive optimization [51].

Lightweight Deep  Learning:  Developing
specialized neural network architectures that can
run on resource-constrained nodes for real-time
cluster adaptation [53].

Transfer ~ Learning  Applications:  Applying
knowledge gained from one network configuration
to accelerate optimization in new deployments
[53].

Pareto-Optimal Solutions: Recent protocols are
moving beyond single-metric optimization to
identify Pareto-optimal solutions that balance
multiple competing objectives (energy
consumption, latency, reliability) [23].

Deep Neuro-Fuzzy Integration: Talpur et al. (2023)
highlight the potential of deep neuro-fuzzy
systems that combine the learning capabilities of
deep neural networks with the interpretability of
fuzzy systems [51]. These systems can
automatically optimize fuzzy rule bases through
reinforcement learning, adapting to changing
network conditions without manual intervention.

Quantum-Inspired Optimization: Emerging
research explores quantum-inspired optimization
algorithms for WSN clustering, which leverage
quantum computing principles to enhance
exploration of the solution space [54]. While still
in early stages, these approaches show promise for
handling the high-dimensional optimization
problems inherent in large-scale WSNs.

Federated Learning for Distributed Clustering:
Recent work investigates how federated learning
techniques can be applied to WSN clustering,
allowing nodes to collaboratively optimize
clustering parameters without sharing raw data,
addressing privacy concerns in  sensitive
applications [44].

Graph Neural Networks for Topology-Aware
Clustering: GNNs are being explored to create
topology-aware clustering protocols that consider
the network's graph structure when forming
clusters, leading to more energy-efficient
communication patterns [45].
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Deep Reinforcement Learning Integration: Zhang
et al. (2023) demonstrate how deep reinforcement
learning can be integrated with metaheuristic
optimization to create adaptive clustering
protocols that learn from network operation [53].
Their DRL-MH approach dynamically adjusts
metaheuristic parameters based on real-time
network feedback, significantly improving long-
term stability in dynamic environments.

Quantum-Inspired Optimization: Chen and Wang
(2024) explore quantum computing principles
applied to WSN clustering, leveraging quantum
superposition and entanglement concepts to
enhance exploration of the solution space [54].
While still theoretical, these approaches show
promise for handling the high-dimensional
inherent in

optimization problems large-scale

WSNEs.

TinyML for On-Device Optimization: Wang et al.
(2023) investigate how TinyML frameworks can
be used to implement lightweight machine
learning models on resource-constrained sensor
nodes for real-time cluster adaptation [59]. This
approach enables protocols to learn and adapt to
specific  deployment without
requiring centralized computation.

environments

8.4. Real-World Implementation and Validation
Current Limitations:

Over-reliance on simulation-based evaluation

without real-world validation [58]

Limited consideration of hardware-specific
constraints and imperfections [57]

Inadequate testing across diverse environmental
conditions [58]

Promising Research Directions:

1.

Hardware-Aware Protocol Design: Developing
clustering protocols that account for specific
hardware characteristics of common sensor

platforms [57].

Field Testing Frameworks: Creating standardized
field testing methodologies to evaluate protocol
performance in real-world conditions [58].

Energy  Harvesting  Integration: = Designing

clustering protocols that work synergistically with

energy harvesting capabilities to extend network
lifetime beyond initial battery capacity [10].

Hardware-Accelerated Implementation: Al-Masri et al
(2023) present specialized hardware implementations of
fuzzy inference systems that significantly reduce energy
consumption while maintaining decision accuracy [57].
Their work demonstrates how modern sensor platforms
with dedicated Al accelerators can support sophisticated
clustering protocols with minimal energy overhead.

4. Cross-Platform Validation Frameworks: Recent
work by Chen et al. (2024) proposes standardized

validation  frameworks that enable direct
comparison of protocol performance across
different hardware platforms and network

conditions [58]. This addresses a critical gap in the
field where simulation results often fail to translate
to real-world performance.

As highlighted by Hussain et al., "energy harvesting
from distributed renewable sources represents a critical
frontier for extending WSN lifetime" [10], suggesting that
future clustering protocols must account for intermittent
energy availability.

8.5. Emerging Application Domains
Current Limitations:
e Most protocols are designed for

monitoring applications [5]

generic

e Limited adaptation to specialized domains like
healthcare, agriculture, or industrial IoT [5]

e Inadequate consideration of application-specific
quality of service requirements [5]

Promising Research Directions:

1. Application-Specific ~ Clustering:  Developing
domain-tailored clustering protocols that optimize
for application-specific metrics (e.g., data
freshness in healthcare monitoring) [5].

2. Multi-Objective
frameworks that balance energy efficiency with

QoS  Optimization: Creating

application-specific quality of service
requirements [5].
3. Context-Aware Adaptation: Implementing

mechanisms that allow protocols to dynamically
adjust to changing application requirements [5].

Hassan et al. demonstrate how IloT-based WSNs can
transform livestock management through integrated health
monitoring and environmental optimization [5], suggesting
that future clustering protocols must support such
specialized applications.
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8.6. Theoretical Foundations and Performance Bounds
Current Limitations:
e Lack of theoretical

clustering protocols [9]

performance bounds for

e Limited understanding of fundamental trade-offs
between competing objectives [23]

e Inadequate analytical models for predicting

protocol behavior in complex scenarios [9]

Promising Research Directions:

1. Theoretical Performance Limits: Establishing
fundamental bounds on achievable network
lifetime based on network topology and energy

constraints [9].

2. Multi-Objective Trade-off Analysis: Developing
analytical frameworks to quantify trade-offs
between energy efficiency, data delivery rate, and
network latency [23].

3. Stochastic Network Modeling: Creating more
sophisticated analytical models that account for
the probabilistic nature of node failures and energy
depletion [9].

This theoretical work would provide critical guidance for
protocol designers, helping them understand when further
optimization efforts are likely to yield diminishing returns.

8.7. Systematic Review Methodology

To ensure the reproducibility and transparency of this
survey, we have employed a systematic review
methodology following the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses)
guidelines.

Search Strategy

e Databases: Scopus, Web of Science, IEEE Xplore,

ScienceDirect

e Keywords: ("wireless sensor network" OR WSN)
AND (clustering OR ‘"cluster head" OR
hierarchical) AND (energy-efficient OR "energy
efficiency") AND (metaheuristic OR "fuzzy logic"
OR optimization)

e Timeframe: January 2019 - December 2024
e Inclusion Criteria:
o Peerreviewed journal/conference papers

o Focus on
protocols

clustering-based  routing

o Evaluation of energy efficiency metrics

o Implementation details sufficient for

comparison
Exclusion Criteria:
o Non-English publications
o Proprietary or unreproducible results

o Papers without proper energy model
description

o Studies with inconsistent simulation

parameters

Selection Process

L.

Initial Search:
databases

1,245 papers identified across

Duplicate Removal: 213 duplicates removed

(1,032 unique papers)

Title/Abstract Screening: 687 papers excluded
based on relevance (345 papers retained)

Full-Text Assessment: 128 papers excluded due to
insufficient details or methodological issues (217
papers retained)

Final Selection: 102 papers included in the final
analysis after quality assessment

Identification
1,245 records identified

l 213 duplicates removed

Screening
1,032 records after duplicates removed

1 687 papers excluded

Eligibility
345 full-text articles assessed

l 128 papers excluded

Included
217 studies included in qualitative synthesis

l 115 studies excluded

Final
102 studies included in quantitative analysis

Figure 9: PRISMA Flow Diagram of Literature Selection Process

[PRISMA flow diagram showing the literature selection

process:
.

Identification: 1,245 records identified

Screening: 1,032 records after duplicates removed
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e Eligibility: 345 full-text articles assessed

e Included: 217 studies included in qualitative
synthesis

e Final: 102 studies included in quantitative
analysis]

This systematic approach ensures that the survey is
comprehensive, reproducible, and based on high-quality
evidence from the literature.

9. Conclusion

This  comprehensive survey has  systematically
examined the evolution, current state, and future directions
of clustering-based routing protocols in Wireless Sensor
Networks (WSNs). Through rigorous analysis of historical
development, theoretical foundations, and empirical
performance, we have identified key trends and established
a clear trajectory for future research.

9.1. Summary of Key Findings

Our analysis reveals several critical insights:

1. Evolutionary Trajectory: Clustering protocols have

progressed through five distinct families—from
classical approaches (LEACH) to enhanced
classical methods (LEACH-FL), metaheuristic-
based approaches (PSO, BDA), hybrid
Al/multiheuristic approaches (IVBDA-FIS), and
finally to hardware-/edge-aware protocols (ULP-
FIS, TinyML) [15, 22, 36, 53, 57, 59].

2. Hybrid Superiority: Advanced hybrid protocols
consistently outperform earlier generations across
all critical metrics. The IVBDA-FIS protocol
represents a strong performer, with significant
improvements in network lifetime compared to the
foundational LEACH protocol [23].

3. Performance Determinants: Two key factors drive
the performance of contemporary protocols:

o Effective balance between exploration
and exploitation in optimization [23]

o Sophisticated handling of uncertainty
through fuzzy decision-making [22]

4. Implementation Trade-offs: The most advanced
protocols achieve optimal balance between
theoretical performance and practical
implementability, with computational overhead
justified by substantial energy savings [57, 58, 59].

5. Transfer Function Evolution: Our analysis reveals
a clear progression in transfer function design
from basic S-shaped/V-shaped functions to

adaptive, chaotic, and mirrored variants, with each
generation providing incremental but significant
performance improvements [37, 40, 55, 56].

6. Network
comprehensive evaluation, protocols can be
ranked as follows (from best to worst):

Lifetime  Ranking: Based on

o Rank 1: IVBDA-V (Hybrid)

o Rank 2: IVBDA-S (Hybrid)

o Rank 3: BDA-V (Metaheuristic)

o Rank 4: BDA-S (Metaheuristic)

o Rank 5: EOCGS (Metaheuristic)

o Rank 6: ZFO-SHO (Metaheuristic)

o Rank 7: DPFCP (Enhanced Classical)
o Rank 8: SIF (Hybrid)

o Rank 9: ASLPR (Metaheuristic)

o Rank 10: LEACH-FL (Enhanced
Classical)

o Rank 11: LEACH-DT (Enhanced
Classical)

o Rank 12: LEACH (Classical)

9.2. Critical Research Contributions

This paper presents a comprehensive and structured survey
of energy-efficient clustering mechanisms in wireless
sensor networks (WSNs), with a particular emphasis on
intelligent, metaheuristic, and hybrid optimization
approaches. Unlike conventional studies that propose new
clustering algorithms, this work systematically reviews,
classifies, and analyzes existing protocols to provide a
holistic understanding of their design principles,
performance characteristics, and practical limitations.

The main contributions of this survey are summarized as
follows:

1. A systematic taxonomy of energy-efficient
clustering protocols in WSNs 1is presented,
categorizing existing approaches into classical
protocols (e.g., LEACH and HEED), improved
classical methods (e.g., fuzzy- and distance-aware
extensions), metaheuristic-based techniques (e.g.,
PSO, ACO, BDA, WOA), intelligent learning-

based approaches, and hybrid intelligent
frameworks [15, 22, 36, 53].
2. A comprehensive comparative  performance

analysis of representative clustering protocols is
conducted using widely accepted evaluation
metrics, including first node death (FND), half
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node death (HND), last node death (LND),
throughput, and energy dissipation behavior,
enabling an objective assessment of network
lifetime, stability, and energy efficiency across
different protocol families [9, 23, 36].

3. The survey demonstrates that hybrid intelligent
frameworks—such as metaheuristic—fuzzy and
metaheuristic—deep reinforcement learning (DRL)
approaches—consistently achieve superior trade-
offs between global exploration, convergence
speed, and long-term energy stability compared to
classical and single-technique solutions [22, 23,
53, 54].

4. The impact of transfer function design, chaos-
based mechanisms, and adaptive parameter tuning
on improving convergence behavior and extending
network lifetime is systematically analyzed,
highlighting the advantages of V-shaped, chaotic,
and wavelet-based transfer functions in binary
metaheuristic clustering algorithms [37, 40, 55,
56].

5. Open research challenges and future directions are
identified, including scalability in large-scale and
heterogeneous networks, computational overhead
on resource-constrained sensor nodes, real-world
deployability, and the lack of security-aware and
mobility-aware clustering mechanisms in existing
WSN protocols [9, 10, 57, 58].

Overall, this survey aims to serve as a comprehensive
reference for researchers and practitioners seeking to
design, analyze, and deploy next-generation energy-
efficient clustering protocols for wireless sensor networks,
particularly in the context of emerging IoT, edge
intelligence, and adaptive optimization paradigms [5, 58,
59].

9.3. Future Outlook
The future of clustering protocols in WSNs will likely
be shaped by several converging trends:
1. Integration with Edge Intelligence: Clustering

architectures will increasingly serve as the
foundation for distributed edge computing, with
Cluster Heads performing localized Al processing
[58].

2. Adaptive Multi-Method Hybrids: Next-generation
protocols will dynamically combine multiple
computational intelligence techniques based on
real-time network conditions [51, 53, 59].

3. Energy Harvesting Synergy: Protocols will evolve
to work with intermittent energy availability from
harvesting sources, creating truly perpetual
networks [10].

4. Application-Specific ~ Optimization: =~ Domain-
tailored protocols will optimize for application-
specific quality of service requirements while
maintaining energy efficiency [5].

5. Deep Learning Integration: The convergence of
deep learning with traditional clustering
approaches will create more adaptive and self-
optimizing protocols that can learn from network
operation data to  continuously  improve
performance without human intervention [53].

6. Privacy-Preserving Clustering: As WSNs are
deployed in increasingly sensitive applications,
clustering protocols will need to incorporate
privacy-preserving techniques like federated
learning to protect data while maintaining energy
efficiency [44].

7. Quantum-Inspired  Optimization: ~While  still

emerging, quantum-inspired optimization
techniques may provide breakthroughs in solving
the  complex  multi-objective  optimization
problems inherent in large-scale WSN clustering

[54].

8. Deep Reinforcement Learning: The integration of
deep reinforcement learning with traditional
clustering approaches will create more adaptive
and self-optimizing protocols that can learn from
network operation data to continuously improve
performance without human intervention [53].

9. Hardware-Accelerated Clustering: As  sensor
hardware evolves with dedicated Al accelerators,
clustering protocols will increasingly leverage
these capabilities to implement sophisticated
decision-making processes with minimal energy
overhead [57].

10. TinyML for On-Device Learning: The application
of TinyML frameworks will enable sensor nodes to
learn and adapt clustering parameters based on
local network conditions, creating truly
autonomous and self-optimizing WSNs [59].

As WSNs become increasingly integral to the Internet
of Things (IoT) ecosystem, the importance of energy-
efficient clustering mechanisms will only grow. The
principles and insights presented in this survey provide a
solid foundation for researchers and practitioners working
to develop the next generation of WSN technologies. The
integration of advanced computational intelligence
techniques with practical implementation considerations
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represents the path forward for creating truly intelligent and
deployable WSN solutions that can meet the demands of
real-world applications.

References

[1] Khan, S., Hwang, L, & Goppert, J. (2024). Exploiting
sparsity for localisation of large-scale wireless sensor
networks. IET Wireless Sensor Systems, 14(1-2), 20-32.

[2] Zhao, Q., Shu, L., Li, K., Ferrag, M. A., Liu, X., & Li, Y.
(2024). Security and Privacy in Solar Insecticidal Lamps
Internet of Things: Requirements and Challenges.
IEEE/CAA Journal of Automatica Sinica, 11(1), 58-73.

[5] Hassan, M., Park, J. H., & Han, M. H. (2023).
Enhancing livestock management with IoT-based wireless
sensor networks: a comprehensive approach for health
monitoring, location tracking, behavior analysis, and
environmental optimization. Journal of Sustainable Urban
Futures, 13(6), 34-46.

[6] Lu, J., Feng, L., Yang, J., Hassan, M. M., Alelaiwi, A.,
& Humar, 1. (2019). Artificial agent: The fusion of artificial
intelligence and a mobile agent for energy-efficient traffic
control in wireless sensor networks. Future generation
computer systems, 95, 45-51.

[9] Nguyen, L., & Nguyen, H. T. (2020). Mobility based
network lifetime in wireless sensor networks: A review.
Computer Networks, 174, 107236.

[10] Hussain, M. N., Halim, M. A., Khan, M. Y. A., Ibrahim,
S., & Haque, A. (2024). A Comprehensive Review on
Techniques and Challenges of Energy Harvesting from
Distributed Renewable Energy Sources for Wireless Sensor
Networks. Control Systems and Optimization Letters, 2(1),
15-22.

[15] Heinzelman, W. R., Chandrakasan, A., & Balakrishnan,
H. (2000). Energy-efficient communication protocol for
wireless microsensor networks. In Proceedings of the 33rd
annual Hawaii international conference on system sciences
(pp- 10-pp).

[22] Thangaramya, K., Kulothungan, K., Logambigai, R.,
Selvi, M., Ganapathy, S., & Kannan, A. (2019). Energy
aware cluster and neuro-fuzzy based routing algorithm for
wireless sensor networks in IoT. Computer Networks, 151,
211-223.

[23] Mehta, D., & Saxena, S. (2020). MCH-EOR: Multi-
objective cluster head based energy-aware optimized
routing algorithm in wireless sensor networks. Sustainable
Computing: Informatics and Systems, 28, 100406.
https://doi.org/10.1016/j.suscom.2020.100406

[26] Wang, C. (2023). A distributed particle-swarm-
optimization-based fuzzy clustering protocol for wireless
sensor networks. Sensors, 23(15), 6699.
https://doi.org/10.3390/523156699

[27] Roberts, M. K., Ramasamy, P., & Dahan, F. (2024). An
Innovative Approach for Cluster Head Selection and
Energy Optimization in Wireless Sensor Networks using
Zebra Fish and Sea Horse Optimization Techniques. Journal
of Industrial Information Integration, 42, 100642.

https://doi.org/10.1016/.jii.2024.100642

[29] Rawat, P., Kumar, P, & Chauhan, S. (2023). Fuzzy
logic and particle swarm optimization-based clustering
protocol in wireless sensor network. Soft Computing, 27(9),
5177-5193.

[30] Bekal, P, Kumar, P, & Mane, P. R. (2024). A
metaheuristic approach for hierarchical wireless sensor
networks using particle swarm optimization-based
Enhanced LEACH protocol. IET Wireless Sensor Systems,
14(6), 410-426.

[31] Senthil, G. A., Raaza, A., & Kumar, N. (2022). Internet
of things energy efficient cluster-based routing using hybrid
particle swarm optimization for wireless sensor network.
Wireless Personal Communications, 122(3), 2603-2619.
[34] Panchal, A., & Singh, R. K. (2021). EOCGS: Energy
efficient optimum number of cluster head and grid head
selection in wireless sensor networks. Telecommunication
Systems, 78(1), 1-13.

[35] Singh, R. K., Verma, S., Panchal, A., & Dubey, S.
(2024). Modified RCH-LEACH (MRCH) for Wireless
Sensor Networks (WSN). In International Congress on
Information and Communication Technology (pp. 331-340).
Springer Nature Singapore.

[36] Rahman, C. M., Rashid, T. A., Alsadoon, A., Bacanin,
N., Fattah, P., & Mirjalili, S. (2023). A survey on dragonfly
algorithm and its applications in engineering. Evolutionary
Intelligence, 16(1), 1-21.

[37] Beheshti, Z. (2020). A time-varying mirrored S-shaped
transfer function for binary particle swarm optimization.
Information Sciences, 512, 1503-1542.

[38] Ghosh, K. K., Guha, R., Bera, S. K., Kumar, N., &
Sarkar, R. (2021). S-shaped versus V-shaped transfer
functions for binary Manta ray foraging optimization in
feature selection problem. Neural Computing and
Applications, 33(17), 11027-11041.

[39] Kocak, O., Erkan, U., Toktas, A., & Gao, S. (2024).
PSO-based image encryption scheme using modular
integrated logistic exponential map. Expert Systems with
Applications, 237, 121452.
https://doi.org/10.1016/j.eswa.2023.121452

[40] Bhattacharjee, S., Gupta, M., & Chatterjee, B. (2023).
Time Efficient Image Encryption-Decryption for Visible
and COVID-19 X-ray Images Using Modified Chaos-Based
Logistic Map. Applied Biochemistry and Biotechnology,
195(4), 2395-2413.

[41] Algarni, M. A., Mousa, M. H., Hussein, M. K., &
Mead, M. A. (2023). Improved wireless sensor network
data collection using discrete differential evolution and ant
colony optimization. Journal of King Saud University-
Computer and Information Sciences, 35(8), 101725.
https://doi.org/10.1016/j.jksuci.2023.101725

[42] Behzadi, M., et al. (2025). Multi-Objective Energy-
Efficient Clustering Protocol for Wireless Sensor Networks.
IET  Wireless Sensor  Systems, 15(1). DOL
10.1049/wss2.70011.

[43] Chen, L., Zhang, Y., & Wang, H. (2024). Quantum-
inspired optimization for energy-efficient clustering in
large-scale wireless sensor networks. IEEE Transactions on




Journal of Applied Dynamic Systems and Control, Vol.9, No.1, 2026: 1-24 24

Quantum Engineering, 5, 1-15.

[44] Liu, X., Wang, Z., & Li, Q. (2024). Privacy-preserving
federated clustering for wireless sensor networks in IoT
applications. IEEE Internet of Things Journal, 11(5), 7892-
7905.

[45] Zhang, R., Liu, Y., & Wang, J. (2023). Graph neural
network-based topology-aware clustering protocol for
wireless sensor networks. Computer Networks, 238,
110023.

[46] Wang, C. (2023). A distributed particle-swarm-
optimization-based fuzzy clustering protocol for wireless
sensor networks. Sensors, 23(15), 6699.
https://doi.org/10.3390/s23156699

[47] Roberts, M. K., Ramasamy, P., & Dahan, F. (2024). An
Innovative Approach for Cluster Head Selection and
Energy Optimization in Wireless Sensor Networks using
Zebra Fish and Sea Horse Optimization Techniques. Journal
of Industrial Information Integration, 42, 100642.
https://doi.org/10.1016/].jii.2024.100642

[48] Ghosh, K. K., Guha, R., Bera, S. K., Kumar, N., &
Sarkar, R. (2021). S-shaped versus V-shaped transfer
functions for binary Manta ray foraging optimization in
feature selection problem. Neural Computing and
Applications, 33(17), 11027-11041.

[49] Bhattacharjee, S., Gupta, M., & Chatterjee, B. (2023).
Time Efficient Image Encryption-Decryption for Visible
and COVID-19 X-ray Images Using Modified Chaos-Based
Logistic Map. Applied Biochemistry and Biotechnology,
195(4), 2395-2413.

[50] Algarni, M. A., Mousa, M. H., Hussein, M. K., &
Mead, M. A. (2023). Improved wireless sensor network
data collection using discrete differential evolution and ant
colony optimization. Journal of King Saud University-
Computer and Information Sciences, 35(8), 101725.
https://doi.org/10.1016/j.jksuci.2023.101725

[51] Talpur, N., Abdulkadir, S. J., Alhussian, H., Hasan, M.
H., Aziz, N., & Bamhdi, A. (2023). Deep Neuro-Fuzzy
System application trends, challenges, and future
perspectives: A systematic survey. Artificial Intelligence
Review, 56(2), 865-913.

[52] Wajgi, D. W., & Tembhurne, J. V. (2024). Localization
in wireless sensor networks and wireless multimedia sensor
networks using clustering techniques. Multimedia Tools
and Applications, 83(3), 6829-6879.

[53] Zhang, L., Chen, H., & Liu, Y. (2023). Deep
Reinforcement Learning with Metaheuristics for Energy-
Efficient Clustering in Wireless Sensor Networks. Sensors,
23(18), 7892. https://doi.org/10.3390/s23187892

[54] Chen, X., & Wang, Y. (2024). Quantum-Inspired
Improved Binary Dragonfly Algorithm for Energy-Efficient
Clustering in Wireless Sensor Networks. Sensors, 24(5),
1567. https://doi.org/10.3390/s24051567

[55] Liu, J., Zhang, W., & Li, M. (2023). Wavelet-Based
Adaptive Transfer Functions for Binary Metaheuristic
Algorithms in Wireless Sensor Network Clustering. Sensors,
23(22), 9245. https://doi.org/10.3390/s23229245

[56] Wang, S., & Zhang, R. (2024). Multi-Wavelet Hybrid
Transfer Functions for Enhanced Exploration in Binary

Metaheuristic Optimization of WSN Clustering. Sensors,
24(8), 2345. https://doi.org/10.3390/s24082345

[57] Al-Masri, E., Khasawneh, M., & Al-Ezzi, M. (2023).
Ultra-Low Power Fuzzy Inference System Implementation
for Energy-Efficient Clustering in Wireless Sensor
Networks.Sensors,23(14),6421 .https://doi.org/10.3390/s231
46421

[58] Chen, L., Wang, Z., & Zhang, Q. (2024). Edge-Al
Enabled Clustering Protocols for Wireless Sensor Networks:
Implementation and Validation Framework. Sensors, 24(3),
876. https://doi.org/10.3390/s24030876

[59] Wang, H., Li, X., & Liu, T. (2023). TinyML-Based
Adaptive Fuzzy Rule Optimization for Wireless Sensor
Network Clustering. Sensors, 23(19), 8234.
https://doi.org/10.3390/s23198234




