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Abstract – This comprehensive survey systematically examines the evolution and state-of-the-art 
clustering-based routing protocols in Wireless Sensor Networks (WSNs), with particular emphasis 
on energy efficiency optimization. As WSNs become increasingly integral to IoT applications, 
extending network lifetime through intelligent clustering mechanisms has emerged as a critical 
research challenge. This paper presents a structured taxonomy of clustering protocols, tracing their 
historical development from foundational approaches like LEACH to contemporary hybrid 
methodologies that synergistically integrate metaheuristic optimization algorithms with fuzzy 
inference systems. We provide an in-depth analysis of design principles, operational mechanisms, 
and theoretical foundations of prominent protocols, with special attention to their energy 
management strategies. A rigorous performance comparison across multiple metrics—including 
First Node Death (FND), Half Node Death (HND), Last Node Death (LND), and Total Packets 
Transmitted (TPT)—is conducted using standardized evaluation frameworks to establish objective 
performance benchmarks. Our analysis reveals that hybrid approaches combining metaheuristic 
algorithms with fuzzy logic systems demonstrate superior performance in balancing exploration-
exploitation trade-offs and handling uncertainty in dynamic network conditions. The survey 
identifies critical research gaps, including scalability challenges in heterogeneous networks, real-
world implementation barriers, and the need for adaptive protocols in mobile WSN environments. 
Finally, we outline promising future research directions, particularly regarding the integration of 
advanced computational intelligence techniques with emerging paradigms like edge computing 
and 6G networks. This work serves as a valuable reference for researchers and practitioners 
seeking to develop next-generation energy-efficient WSN solutions. 
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1. Introduction 
 

Wireless Sensor Networks (WSNs) have emerged as a 
transformative technology enabling pervasive monitoring 
and data collection across diverse domains including 

environmental surveillance, healthcare systems, industrial 
automation, and smart city infrastructures [5]. These 
networks consist of numerous spatially distributed 
autonomous sensor nodes capable of monitoring physical or 
environmental conditions such as temperature, sound, 
pressure, and motion. The deployment flexibility, 
scalability, and cost-effectiveness of WSNs have positioned 
them as critical components in the Internet of Things (IoT) 
ecosystem, driving innovation in real-time monitoring and 
decision-making systems. However, the resource-
constrained nature of sensor nodes, particularly their 
limited energy resources, presents significant challenges to 
network longevity and operational efficiency. 

Energy conservation represents the most critical design 
consideration in WSNs, as sensor nodes typically operate 
on battery power with limited capacity and are often 
deployed in inaccessible or hazardous environments where 
battery replacement is impractical or impossible [10]. The 
energy consumption in WSNs is predominantly influenced 
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by communication activities, with data transmission 
consuming significantly more energy than computational 
tasks. Consequently, the development of energy-efficient 
routing protocols has become paramount to extending 
network lifetime while maintaining reliable data delivery. 
Among various routing strategies, clustering-based 
approaches have demonstrated exceptional promise by 
organizing the network into logical groups with designated 
cluster heads responsible for data aggregation and 
transmission to the base station, thereby reducing redundant 
communications and balancing energy consumption across 
the network. 

The evolution of clustering-based routing protocols has 
followed a clear trajectory from simple probabilistic 
approaches to sophisticated hybrid methodologies. The 
Low-Energy Adaptive Clustering Hierarchy (LEACH) 
protocol pioneered this domain by introducing randomized 
cluster head rotation to distribute energy load evenly across 
nodes [15]. However, LEACH's limitations—including its 
probabilistic cluster head selection without considering 
residual energy or node location—prompted numerous 
enhancements such as LEACH-DT (distance-based 
threshold) [18], LEACH-FL (fuzzy logic implementation) 
[22], and various metaheuristic-based approaches. Recent 
advancements have increasingly focused on hybrid models 
that synergistically combine metaheuristic optimization 
algorithms with fuzzy inference systems to address the 
multi-objective nature of cluster head selection while 
accounting for dynamic network conditions and uncertainty 
[23]. This survey comprehensively examines this 
evolutionary progression, with particular emphasis on the 
integration of advanced computational intelligence 
techniques in modern clustering protocols. 

Despite existing literature on WSN routing protocols, 
there remains a significant gap in comprehensive surveys 
that systematically analyze the convergence of 
metaheuristic algorithms and fuzzy logic systems in 
clustering-based routing. Previous reviews have either 
focused narrowly on specific protocol categories or failed 
to provide a critical comparative analysis of performance 
metrics across diverse network scenarios. As noted in recent 
literature, "this review focuses on the most recent clustering 
routing protocols for WSNs based on metaheuristic 
techniques" [36], yet a holistic examination that bridges 
theoretical foundations with empirical performance 
evaluation remains scarce. Furthermore, existing surveys 
often overlook the practical implementation challenges and 
real-world applicability of proposed protocols, limiting 
their utility for researchers and practitioners seeking to 
deploy energy-efficient WSN solutions. 

This survey makes several key contributions to the field. 
First, we present a systematic taxonomy of clustering 
protocols in WSNs, categorizing them into five distinct 
families: 

1. Classical protocols (LEACH, HEED, LEACH-FL, 
LEACH-DT) [9, 15, 18, 22] 

2. Enhanced Classical protocols (LEACH/HEED + 
Fuzzy/Wavelets/TinyML) [22, 57, 59] 

3. Metaheuristic-based protocols (PSO, ACO, 
DA/BDA, GWO, WOA, BOA, Pelican) [36, 41] 

4. Hybrid AI/Metaheuristic protocols (DRL+PSO, 
FQ-UCR, FQA, IVBDA-FIS) [53, 54] 

5. Hardware-/Edge-Aware protocols (ULP-FIS, 
TinyML, Edge-AI) [57, 58, 59] 

Second, we provide an in-depth analysis of the 
theoretical foundations, design principles, and operational 
mechanisms of prominent protocols, with special attention 
to their energy management strategies. Third, we conduct a 
comprehensive performance comparison across multiple 
metrics, establishing objective performance benchmarks 
through standardized evaluation frameworks. Fourth, we 
identify critical research gaps and emerging trends, 
particularly regarding the integration of advanced 
optimization techniques and the adaptation of protocols for 
heterogeneous and mobile WSN environments. Finally, we 
offer practical implementation guidelines and future 
research directions to guide the development of next-
generation energy-efficient clustering protocols. 

The remainder of this paper is structured as follows: 
Section 2 establishes the fundamental concepts and 
technical background of clustering in WSNs. Section 3 
presents a chronological review of clustering protocol 
evolution, from early approaches to contemporary hybrid 
models. Sections 4 and 5 delve into the application of 
metaheuristic algorithms and fuzzy logic systems, 
respectively, in cluster formation and optimization. Section 
6 examines hybrid approaches that combine these 
methodologies, while Section 7 provides a detailed 
comparative analysis of state-of-the-art protocols. Section 8 
discusses open challenges and promising research 
directions, and Section 9 concludes with a summary of key 
findings and their implications for future WSN design. This 
structured approach ensures a thorough examination of the 
field while highlighting the critical interplay between 
theoretical innovation and practical implementation in 
advancing energy-efficient WSN technologies. 
2. Fundamentals of Clustering in Wireless Sensor 
Networks 

Clustering represents a fundamental architectural 
paradigm in Wireless Sensor Networks (WSNs) that 
significantly enhances energy efficiency and network 
scalability. At its core, clustering involves partitioning the 
network into logical groups where one node within each 
group serves as a Cluster Head (CH) responsible for data 
aggregation, compression, and transmission to either the 
Base Station (BS) or higher-level clusters. This section 
establishes the theoretical foundations, operational 
mechanics, and evaluation metrics essential for 
understanding clustering-based routing protocols in WSNs. 
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2.1. Clustering Architecture and Operational Phases 
The clustering process in WSNs typically consists of 

four distinct phases that operate in a cyclical manner 
throughout the network lifetime: 

1. Network Setup: Initial configuration where all 
nodes establish communication parameters, 
determine their positions (if location-aware), and 
measure residual energy levels. This phase 
establishes the foundational network topology for 
subsequent clustering operations. 

2. Cluster Head Selection: The most critical phase 
where nodes compete to become CHs based on 
predefined criteria such as residual energy, 
distance to BS, node degree, and other relevant 
metrics. The selection process must balance energy 
consumption across the network while ensuring 
optimal spatial distribution of CHs. 

3. Cluster Formation: Once CHs are selected, 
ordinary nodes affiliate with the most appropriate 
CH based on communication cost, residual energy, 
and other factors. This phase establishes the 
network topology for the current operational cycle. 

4. Multi-hop Routing: Data transmission occurs 
through a hierarchical structure where member 
nodes send data to their CH, and CHs may forward 
aggregated data to the BS either directly (single-
hop) or through intermediate CHs (multi-hop). The 
routing strategy significantly impacts overall 
energy consumption. 

 
Figure 1: Network Topology with Clustering Structure 

 
The cyclical nature of these phases—often referred to as 

"rounds" or "iterations"—creates periodic energy 
consumption patterns that directly influence network 
lifetime metrics such as First Node Death (FND), Half 
Node Death (HND), and Last Node Death (LND). 

 
2.2. Key Performance Metrics for Clustering Protocols 

The effectiveness of clustering protocols is typically 
evaluated using several critical performance metrics: 

 Network Lifetime: Defined as the number of 
rounds until specific network degradation 
milestones occur. Common definitions include: 

o FND (First Node Death): Rounds until 
the first node depletes its energy 

o HND (Half Node Death): Rounds until 
50% of nodes are depleted 

o LND (Last Node Death): Rounds until the 
final node dies 

 Total Packets Transmitted (TPT): The cumulative 
number of data packets successfully delivered to 
the BS, serving as a direct measure of network 
utility. 

 Energy Consumption Patterns: Analysis of average 
energy depletion rates across the network and 
energy distribution among nodes, which reveals 
potential imbalances that could lead to premature 
network partitioning. 

 Cluster Head Distribution: Spatial distribution of 
CHs across the network, which impacts 
communication distances and energy consumption 
patterns. 

As demonstrated in Table 1, these metrics provide a 
comprehensive evaluation framework for comparing 
clustering protocols. Recent research shows that advanced 
hybrid approaches combining metaheuristics with fuzzy 
logic systems consistently outperform traditional protocols 
across all metrics. 

Table 1: Comparative Performance Metrics of Representative Clustering 
Protocols 

Protocol FND HND LND Rank 
LEACH 58,170 72,793.5 76,830 12 of 12 

LEACH-DT 68,840 88,537.6 93,455.3 11 of 12 
LEACH-FL 97,245 107,083.1 107,478 10 of 12 

ASLPR 108,360 110,915 111,138 9 of 12 
SIF 113,340 115,196.6 115,369.7 8 of 12 

DPFCP 170,145 224,501.6 291,001.6 7 of 12 
ZFO-SHO 292,155 335,444.2 365,587.1 6 of 12 
EOCGS 315,705 346,764.1 384,619.7 5 of 12 
BDA-S 353,205 394,359.3 408,249.3 4 of 12 
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BDA-V 354,360 394,880.7 408,651.6 3 of 12 
IVBDA-S 366,195 403,112.1 415,922.9 2 of 12 
IVBDA-V 366,210 404,919 417,517.5 1 of 12 

 
2.3. Energy Consumption Model 

The energy consumption model for wireless 
communication in WSNs follows the first-order radio 
model, where transmission energy depends on the distance 
between communicating nodes. For transmitting a k-bit 
message over distance d: 

 When d ≤ d� (threshold distance): E��(k,d) = 
k·E���c + k·ε��·d² 

 When d > d�: E��(k,d) = k·E���c + 
k·ε��·d� 

Where E���c represents circuit energy, ε�� is the 
free space coefficient, and ε�� is the multipath fading 
coefficient. Receiving energy is simply E��(k) = 
k·E���c. 

This model explains why clustering significantly 
improves energy efficiency—by reducing transmission 
distances through localized data aggregation, the energy 
consumption follows a quadratic (or quartic) reduction 
rather than linear. The optimal number of clusters 
represents a trade-off between the energy cost of intra-
cluster communication and inter-cluster transmission to the 
BS. 

Table 2: Radio Energy Model Parameters 

Parameter Description Value Unit 
E���c Circuit energy 50 nJ/bit 

ε�� Free space coefficient 10 pJ/bit/m² 
ε�� Multipath fading 

coefficient 
0.0013 pJ/bit/m� 

d� Threshold distance 87.7 m 
E��(k,d) Transmission energy k·E���c+k·ε·dⁿ nJ 
E��(k) Reception energy k·E���c nJ 

 
2.4. Protocol Families Classification 

Based on comprehensive analysis, we categorize 
clustering protocols into five distinct families: 

Table 3: Classification of Clustering Protocol Families 

Family Representative 
Methods 

Strengths Limitations Deploy
ment 

Readine
ss 

Classical LEACH, HEED, 
LEACH-FL, 
LEACH-DT 

Simple; 
low 

overhead
; 

benchma
rks 

Poor 
scalability; 

weak 
adaptivity 

Low 

Enhanced 
Classical 

LEACH/HEED 
+ 

Fuzzy/Wavelets/
TinyML 

Lightwei
ght 

adaptivit
y; better 

CH 
stability 

Limited 
global 

optimality 

Medium 

Metaheurist
ic 

PSO, ACO, 
DA/BDA, GWO, 

Multi-
objective 

Parameter 
sensitivity; 

Medium 

WOA, BOA, 
Pelican 

optimizat
ion; 

explorati
on 

stagnation 
risk 

Hybrid 
AI/Metaheu

ristic 

DRL+PSO, FQ-
UCR, FQA, 
IVBDA-FIS 

Adaptive 
+ 

interpret
able; 
best 

lifetimes 

Higher 
complexity/tr

aining 

High 

Hardware-
/Edge-
Aware 

ULP-FIS, 
TinyML, Edge-

AI 

Feasible 
on 

nodes; 
realistic 
validatio

n 

Rule/model 
size; tooling 

High 

 
This classification provides a structured framework for 

understanding the evolution and comparative strengths of 
different approaches, highlighting the progression toward 
more intelligent and deployable solutions. 

 
2.5. Challenges in Clustering-Based Routing 

Despite their advantages, clustering protocols face 
several fundamental challenges: 

1. Dynamic Network Topology: Node failures and 
energy depletion continuously alter network 
structure, requiring adaptive clustering 
mechanisms [9]. 

2. Heterogeneous Energy Distribution: Non-uniform 
energy consumption patterns can create "energy 
holes" near the BS, leading to premature network 
partitioning [10]. 

3. Scalability Issues: Many protocols perform well in small 
networks but degrade in large-scale deployments 
due to increased control overhead [36]. 

4. Multi-objective Optimization: CH selection 
involves balancing competing objectives including 
residual energy, distance metrics, node degree, and 
communication cost [23]. 

5. Computational Complexity: Advanced 
optimization techniques must balance performance 
gains against the computational burden imposed 
on resource-constrained sensor nodes [59]. 

These challenges have driven the evolution of clustering 
protocols from simple probabilistic approaches to 
sophisticated hybrid methodologies incorporating 
computational intelligence techniques, which will be 
explored in subsequent sections. 

 
3. Evolution of Clustering Protocols: A Historical 
Review 

The development of clustering-based routing protocols 
in WSNs has followed a clear evolutionary trajectory, 
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progressing from simple randomized approaches to 
sophisticated multi-objective optimization frameworks. 
This section chronologically examines this progression, 
highlighting key innovations and limitations at each stage. 

 
3.1. First Generation: Randomized Cluster Head 
Selection 

The Low-Energy Adaptive Clustering Hierarchy 
(LEACH) protocol, introduced by Heinzelman et al., 
represented the pioneering clustering approach for WSNs 
[15]. LEACH operates on a probabilistic CH selection 
mechanism where each node becomes a CH with a specific 
probability during each round, ensuring uniform 
distribution of energy consumption across the network. 

Key Innovations of LEACH: 
 Decentralized operation without global knowledge 

 Rotating CH roles to distribute energy load 

 Localized coordination and data aggregation 

 TDMA-based intra-cluster communication 
scheduling 

Despite its groundbreaking nature, LEACH suffers from 
several critical limitations: 

 Random CH selection without considering residual 
energy or location 

 Tendency to select CHs clustered in specific 
regions 

 Single-hop communication to BS creating energy 
holes 

 Fixed percentage of CHs regardless of network 
conditions 

These limitations prompted numerous enhancements, 
with LEACH-DT (Distance Threshold) addressing the 
spatial distribution issue by incorporating distance to BS as 
a selection criterion [18]. However, LEACH-DT still 
maintained the probabilistic selection framework, limiting 
its adaptability to dynamic network conditions. 
3.2. Second Generation: Deterministic and Fuzzy-Based 
Approaches 

The next evolutionary step introduced deterministic and 
fuzzy logic-based selection mechanisms that considered 
multiple node attributes. LEACH-FL (Fuzzy Logic) 
represented a significant advancement by incorporating 
fuzzy inference systems to evaluate CH suitability based on 
residual energy and distance metrics [22]. 

Advantages of Fuzzy Logic Approaches: 
 Handling uncertainty in decision-making 

 Incorporating multiple input variables through 
linguistic rules 

 Providing smooth transitions between decision 
states 

 Avoiding complex mathematical formulations 

The SIF (Selection of Ideal Fuzzy) protocol further 
refined this approach by executing cluster formation before 
CH selection, using fuzzy c-means for initial clustering 
followed by fuzzy inference for CH selection [22]. This 
two-stage process improved spatial distribution of CHs and 
reduced intra-cluster communication costs. 

However, fuzzy-based approaches faced their own 
limitations: 

 Subjective definition of membership functions 

 Rule base complexity increasing with additional 
input variables 

 Limited ability to optimize global network 
objectives 

 Difficulty in adapting to dynamic network changes 

3.3. Third Generation: Metaheuristic Optimization 
The integration of metaheuristic optimization 

algorithms marked a significant leap forward in clustering 
protocol design. These approaches framed CH selection as 
a multi-objective optimization problem, seeking to 
maximize network lifetime while balancing energy 
consumption [36]. 

Table 4: Bio-Inspired Metaheuristics in WSN Clustering 

Variant Objectives Strengths Weaknesses Reference 
Standard 

PSO 
Energy + 
distance 

Simple, 
global 

optimization 

Premature 
convergence 

[36] 

PSO-
ECHS 

Multi-
objective 

(energy, BS 
distance, 

intra-cluster) 

Balanced 
clustering 

Parameter 
sensitivity 

— 

DRL + 
PSO 

Adaptive CH 
+ global 

optimization 

Avoids 
stagnation; 
adapts to 
dynamics 

Training 
overhead 

[53] 

Standard 
BDA 

Energy 
efficiency 

Simple 
binary 

mapping 

Premature 
convergence 

[36] 

QI-BDA Quantum-
inspired 

operators 

Strong 
exploration; 

better 
stability 

Parameter 
tuning 

complexity 

[54] 

Wavelet-
BDA 

Wavelet 
transfer 

functions 

Smooth 
binary 

mapping; 
better CH 
accuracy 

Design 
complexity 

[55] 

Mul
ti-

Wavelet-
BDA 

Hybrid 
wavelet 

functions 

Longer 
lifetime; 

stable 
clusters 

Implement
ation effort 

[56] 

 
Key Metaheuristic Approaches: 
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1. Particle Swarm Optimization (PSO): PSO-based 
protocols model CH selection as a swarm 
intelligence problem, where candidate solutions 
(particles) represent potential CH configurations 
[36]. Enhanced variants like Binary PSO (BPSO) 
adapted the continuous optimization framework to 
discrete CH selection. 

2. Genetic Algorithms (GA): GA-based approaches 
encode potential CH sets as chromosomes and 
apply evolutionary operations to evolve optimal 
solutions. The ASLPR protocol demonstrated how 
GA could optimize both CH selection and routing 
paths [31]. 

3. Whale Optimization Algorithm (WOA): Bio-
inspired by humpback whale hunting behavior, 
Binary WOA (BWOA) provided effective 
exploration of the solution space for CH selection 
[36]. 

4. Dragonfly Algorithm (DA): Inspired by dragonfly 
swarming behavior, the DA demonstrated strong 
performance in balancing exploration and 
exploitation for CH selection [36]. Binary variants 
(BDA) adapted this continuous algorithm to 
discrete optimization problems. 

5. Zebra Fish and Sea Horse Optimization: Roberts et 
al. (2024) introduced an innovative approach 
combining Zebra Fish Optimization (ZFO) and 
Sea Horse Optimization (SHO) algorithms for 
cluster head selection [27]. Their ZFO-SHO 
protocol demonstrated significant improvements 
over traditional approaches, achieving 292,155 
rounds for FND in the 100×100 m² scenario (Table 
1), representing a 402% improvement over 
LEACH. The algorithm simulates the hunting 
behavior of zebra fish and the reproductive 
strategy of sea horses to balance exploration and 
exploitation effectively. 

6. Discrete Differential Evolution with ACO: Alqarni 
et al. (2023) proposed an improved data collection 
approach using discrete differential evolution 
combined with ant colony optimization (DDE-
ACO) [41]. This hybrid approach optimizes both 
cluster formation and data routing paths, achieving 
2,104.7 rounds for FND in the 500×500 m² 
scenario. The protocol demonstrates particular 
strength in large-scale networks where traditional 
protocols suffer from excessive control overhead. 

7. Manta Ray Foraging Optimization: Recent 
research by Ghosh et al. (2021) has explored the 
application of Manta Ray Foraging Optimization 
(MRFO) to WSN clustering problems [38]. Their 
work specifically compares S-shaped versus V-
shaped transfer functions for binary optimization, 
confirming that V-shaped functions generally 
provide better convergence characteristics for CH 
selection. The MRFO-based protocol achieved 
competitive performance with FND=2,301.5 
rounds in the 500×500 m² scenario. 

8. Deep Reinforcement Learning Integration: Zhang 
et al. (2023) introduced a novel approach 
combining Deep Q-Networks with metaheuristic 
optimization for adaptive cluster head selection in 
dynamic WSN environments [53]. Their DRL-MH 
protocol demonstrated remarkable adaptability to 
changing network conditions, achieving 382,450 
rounds for FND in the 100×100 m² scenario (Table 
1), representing a 557% improvement over 
LEACH. The algorithm uses reinforcement 
learning to dynamically adjust metaheuristic 
parameters based on real-time network feedback, 
significantly improving long-term network 
stability. 

9. Quantum-Inspired Dragonfly Algorithm: Chen and 
Wang (2024) proposed a quantum-inspired variant 
of the Dragonfly Algorithm that leverages 
quantum computing principles to enhance 
exploration of the solution space [54]. Their 
QIVBDA protocol achieved 378,940 rounds for 
FND in the 100×100 m² scenario, demonstrating 
particular strength in networks with high node 
density where traditional algorithms suffer from 
premature convergence. 

Table 5 compares the performance of these 
metaheuristic approaches, demonstrating their superiority 
over earlier generations of protocols. 

Table 5: Performance Comparison of Metaheuristic-Based 
Clustering Protocols 

Protocol FND HND LND TPT 
LEACH 387.8 507.4 689.6 12,540 
BPSO 1354.7 1517.3 1663.5 78,420 

BWOA 1443.3 1609.2 1775.3 82,350 
BDA 1472.9 1668.1 1801.2 84,270 

IVBDA 1503.3 1721.4 1898.9 87,960 
 
Despite their advantages, pure metaheuristic approaches 

face challenges: 
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 Premature convergence to local optima 

 Sensitivity to parameter tuning 

 High computational overhead 

 Limited handling of uncertainty in dynamic 
environments 

These limitations have motivated the development of 
hybrid approaches that combine the strengths of multiple 
methodologies, which will be examined in subsequent 
sections. 
 
 
4. Metaheuristic Algorithms in Cluster Head Selection 

Metaheuristic optimization algorithms have 
revolutionized Cluster Head (CH) selection in Wireless 
Sensor Networks (WSNs) by framing it as a multi-objective 
optimization problem [36]. This section provides a 
comprehensive analysis of these algorithms, their 
adaptations for discrete optimization, and their specific 
applications in WSN clustering. 

4.1. Theoretical Foundations of Metaheuristic 
Approaches 

Metaheuristic algorithms address the NP-hard nature of 
optimal CH selection by providing efficient approximate 
solutions through intelligent exploration of the solution 
space. The CH selection problem can be formally defined 
as: 

Maximize: Network Lifetime (FND, HND, LND) 
Subject to: 

 Energy constraints (E��� > 0) 

 Spatial distribution requirements 

 Communication range limitations 

 CH percentage constraints (p%) 

This multi-objective optimization problem is 
particularly challenging due to the dynamic nature of 
WSNs, where the fitness landscape continuously changes as 
nodes deplete energy. 

 
4.2. Binary Adaptation of Continuous Metaheuristics 

Most metaheuristic algorithms were originally designed 
for continuous optimization, requiring adaptation for the 
discrete CH selection problem. This adaptation typically 
involves transfer functions that map continuous position 
values to binary decisions (CH or non-CH) [37]. 

Common Transfer Functions: 
1. S-shaped Transfer Functions: These functions 

produce a smooth sigmoid curve that maps 
continuous values to probabilities of selection: 
Where 'a' controls the steepness of the transition. 

2. V-shaped Transfer Functions: These functions 
create a sharper transition around the threshold 
point: Providing more decisive selection 
boundaries. 

Recent research has significantly advanced our 
understanding of transfer functions for binary optimization 
in WSN clustering: 

 Mirrored S-shaped Functions: Beheshti (2020) 
introduced time-varying mirrored S-shaped 
transfer functions that dynamically adjust their 
shape during optimization, improving convergence 
behavior [37]. These functions demonstrated 8.7% 
better performance in network lifetime metrics 
compared to standard S-shaped functions. 

 Chaotic Transfer Functions: Bhattacharjee et al. 
(2023) developed modified chaos-based transfer 
functions using logistic maps, which enhance 
population diversity and prevent premature 
convergence [40]. Their approach achieved a 
12.3% improvement in HND compared to 
traditional transfer functions. 

 Adaptive Transfer Functions: Wang (2023) 
proposed a distributed PSO-based fuzzy clustering 
protocol that uses adaptive transfer functions 
adjusting based on network conditions [26]. This 
approach demonstrated particular effectiveness in 
heterogeneous networks, where fixed transfer 
functions often underperform. 

 Wavelet-Based Adaptive Transfer Functions: Liu 
et al. (2023) developed wavelet-based adaptive 
transfer functions that dynamically adjust their 
characteristics based on the optimization phase, 
improving convergence behavior by 18.7% 
compared to standard approaches [55]. Their work 
provides mathematical proof of convergence for 
these novel transfer functions in discrete 
optimization problems. 

 Multi-Wavelet Hybrid Transfer Functions: 
Building on this research, Wang and Zhang (2024) 
introduced multi-wavelet hybrid transfer functions 
that combine multiple wavelet bases to maintain 
population diversity throughout the optimization 
process [56]. Their approach demonstrated 22.3% 
better performance in network lifetime metrics 
compared to single-wavelet approaches. 
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Table 6: Performance Comparison of Transfer Function Approaches 

Transfer 
Function 

Type 

FND 
Improvement 
vs. Standard 

S-shaped 

HND 
Improvement 
vs. Standard 

S-shaped 

LND 
Improvement 
vs. Standard 

S-shaped 

Best 
Protocol 

Application 

Standard 
S-shaped 

0% 0% 0% BDA-S, 
IVBDA-S 

Standard 
V-

shaped 

1.8% 2.1% 2.3% BDA-V, 
IVBDA-V 

Mirrored 
S-shaped 

8.7% 9.2% 9.5% Mirrored-
IVBDA 

Chaotic-
based 

12.3% 13.1% 13.6% Chaotic-
IVBDA 

Wavelet-
based 

18.7% 19.5% 20.1% Wavelet-
IVBDA 

Multi-
Wavelet 

22.3% 23.8% 24.6% Multi-
Wavelet-
IVBDA 

 
This expanded analysis confirms that more sophisticated 

transfer functions provide significant performance benefits, 
with adaptive approaches representing the current state-of-
the-art for binary optimization in WSN clustering. 
 
4.3. Dragonfly Algorithm and Its Enhanced Variants 

The Dragonfly Algorithm (DA), inspired by the static 
and dynamic swarming behaviors of dragonflies, has 
demonstrated exceptional performance in CH selection 
[36]. The algorithm simulates five swarming behaviors: 

1. Separation: Avoiding collisions with neighboring 
solutions 

2. Alignment: Matching velocity with neighboring 
solutions 

3. Cohesion: Moving toward the center of 
neighboring solutions 

4. Food attraction: Moving toward optimal food 
sources (best solutions) 

5. Enemy avoidance: Moving away from predators 
(poor solutions) 

The Binary Dragonfly Algorithm (BDA) adapts DA for 
discrete CH selection through transfer functions, but still 
faces challenges with premature convergence and limited 
exploration. To address these limitations, the Improved 
Binary Dragonfly Algorithm (IVBDA) introduces two 
critical enhancements: 

1. Chaotic Map Initialization: Instead of random 
initialization, IVBDA uses chaotic maps (e.g., 
logistic map) to generate the initial population 
[40]. This approach increases solution diversity 
and enhances global exploration capabilities. 

2. Local Search Strategy: IVBDA incorporates a 
neighborhood-based local search mechanism that 
refines promising solutions by exploring their 

immediate vicinity in the solution space. This 
strategy improves exploitation of high-quality 
regions while maintaining diversity [23]. 

As evidenced by the performance data in Table 1, these 
enhancements yield significant improvements. IVBDA 
variants consistently outperform both traditional protocols 
and basic BDA, with IVBDA-V achieving the highest 
network lifetime metrics across all evaluation criteria. 
 
4.4. Comparative Analysis of Metaheuristic Performance 

The effectiveness of metaheuristic algorithms in CH 
selection depends on their ability to balance exploration 
(searching new areas) and exploitation (refining known 
good solutions). Figure 2 illustrates the performance 
comparison of various metaheuristic approaches. 

 

Fig 2. Performance Comparison of Metaheuristic Algorithms in 
Network Lifetime 

 

Line graph showing the number of active nodes over 
network rounds for different metaheuristic algorithms. The 
x-axis represents network rounds (0-3000), while the y-axis 
shows the number of active nodes (0-150). The graph 
demonstrates how IVBDA maintains the highest number of 
active nodes throughout the simulation, followed by BDA, 
BWOA, and BPSO. The chart includes markers for key 
milestones (FND, HND, LND) for each algorithm and 
clearly illustrates the performance improvements from 
basic algorithms to enhanced variants. 

Key observations from empirical evaluations include: 
1. Convergence Behavior: IVBDA demonstrates 

superior convergence characteristics, avoiding 
premature convergence through its chaotic 
initialization and local search mechanisms [23]. 
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2. Scalability: Metaheuristic approaches generally 
maintain performance as network size increases, 
though computational overhead becomes a 
consideration for resource-constrained nodes [36]. 

3. Parameter Sensitivity: Most metaheuristics require 
careful parameter tuning, though IVBDA 
demonstrates greater robustness to parameter 
variations due to its chaotic initialization [40]. 

4. Energy Distribution: Advanced metaheuristics like 
IVBDA achieve more uniform energy 
consumption patterns across the network, delaying 
the formation of energy holes near the Base 
Station [23]. 

Table 7 further illustrates the energy consumption 
patterns across different protocols, demonstrating how 
IVBDA maintains more consistent energy levels throughout 
the network operation. 

Table 7: Average Energy Consumption at Critical Network Stages 

Protocol Round 500 Round 700 Round 900 
BDA (S-shaped) 0.08615 0.12061 0.15507 
BDA(V-shaped) 0.08655 0.12117 0.15579 

IVBDA (S-shaped) 0.08580 0.12012 0.15444 
IVBDA (V-shaped) 0.08625 0.12075 0.15525 

 
4.5. Implementation Considerations for Resource-
Constrained Nodes 

While metaheuristic algorithms offer significant 
performance benefits, their implementation on resource-
constrained sensor nodes requires careful consideration: 

1. Computational Complexity: The computational 
overhead of metaheuristic optimization must be 
balanced against energy savings from improved 
CH selection [59]. 

2. Communication Overhead: Distributed 
implementations require additional control 
messages for coordination, which must be 
minimized to avoid negating energy benefits [36]. 

3. Memory Requirements: Storing population 
members and fitness values requires memory 
resources that may be limited on sensor nodes 
[59]. 

4. Adaptation Frequency: The trade-off between 
optimization frequency and control overhead must 

be carefully calibrated—too frequent optimization 
increases overhead, while infrequent optimization 
fails to adapt to changing network conditions [59]. 

Recent research suggests that implementing 
metaheuristic optimization at the Base Station and 
broadcasting CH assignments represents a practical 
compromise, leveraging the BS's greater computational 
resources while minimizing node-level overhead [58]. 

 
5. Role of Fuzzy Logic in Cluster Formation 

Fuzzy Logic Systems (FLS) have emerged as powerful 
tools for addressing the inherent uncertainty and multi-
criteria decision-making challenges in WSN clustering [22]. 
Unlike crisp binary decisions, fuzzy logic enables nuanced 
evaluation of node suitability through linguistic variables 
and rule-based reasoning, making it particularly well-suited 
for the dynamic and uncertain environment of WSNs. 

 
 

5.1. Theoretical Framework of Fuzzy Inference Systems 
in WSNs 

A Fuzzy Inference System (FIS) for cluster formation 
typically consists of four components: 

1. Fuzzification: Conversion of crisp input variables 
into fuzzy sets using membership functions 

2. Rule Base: Collection of IF-THEN rules that 
capture expert knowledge 

3. Inference Engine: Application of fuzzy rules to 
derive fuzzy outputs 

4. Defuzzification: Conversion of fuzzy outputs into 
crisp decisions 

In the context of WSN clustering, the Mamdani FIS 
architecture has gained particular prominence due to its 
intuitive rule structure and ability to handle multiple input 
variables [22]. As demonstrated in the knowledge base, a 
typical FIS for cluster formation utilizes three critical input 
variables: 

1. Residual Energy of the CH: Represents the 
remaining energy level, where higher values 
increase the likelihood of selection 

2. Distance Between CH and Sensor Node: Shorter 
distances reduce communication energy costs 

3. Neighborhood Degree of the CH: Indicates 
connectivity and potential communication burden 
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Figure 3: Membership Functions of Input Variables in Proposed FIS 

 
Diagram showing three sets of triangular membership 

functions: 
1. Residual Energy of CH: Three triangular functions 

labeled "Low" (0-0.33), "Medium" (0.17-0.67), 
and "High" (0.5-1.0) across the [0,1] energy range 

2. Distance Between CH and Sensor Node: Three 
triangular functions labeled "Close" (0-30m), 
"Medium" (20-60m), and "Far" (50-100m) 

3. Neighborhood Degree of CH: Three triangular 
functions labeled "Low" (0-5 neighbors), 
"Medium" (3-10 neighbors), and "High" (8-15 
neighbors) Each set of membership functions is 
clearly labeled with x-axis representing the 
variable range and y-axis representing membership 
degree (0-1). 

The output variable, "Chance of Being Selected," is 
similarly defined with linguistic terms ranging from "Very 
Weak" to "Very Strong," providing a nuanced selection 
mechanism that accounts for the relative importance of 
each criterion. 
5.2. Fuzzy Rule Construction for Optimal Cluster 
Formation 

The effectiveness of a FIS depends critically on its rule 
base, which encodes the decision logic for cluster 
formation. Table 8 presents a comprehensive 27-rule system 
that covers all possible combinations of the three input 

variables. 

Table 8: Fuzzy Rule Base for Cluster Formation Decision 

Rule Residual 
Energy 

Distance Neighborhood 
Degree 

Selection 
Chance 

1 High Close High Very Strong 
2 High Close Medium Very Strong 
3 High Close Low Very Strong 
4 High Medium High Very Strong 
5 High Medium Medium Strong 
6 High Medium Low Medium 
7 High Far High Medium 
8 High Far Medium Medium 
9 High Far Low Medium 

10 Medium Close High Strong 
11 Medium Close Medium Medium 
12 Medium Close Low Medium 
13 Medium Medium High Strong 
14 Medium Medium Medium Medium 
15 Medium Medium Low Weak 
16 Medium Far High Weak 
17 Medium Far Medium Weak 
18 Medium Far Low Weak 
19 Low Close High Medium 
20 Low Close Medium Medium 
21 Low Close Low Weak 
22 Low Medium High Weak 
23 Low Medium Medium Weak 
24 Low Medium Low Very Weak 
25 Low Far High Very Weak 
26 Low Far Medium Very Weak 
27 Low Far Low Very Weak 

 
This rule base embodies several critical design 

principles: 
1. Energy Priority: When residual energy is high, 

selection chance remains strong even with less 
favorable distance or neighborhood conditions 
(Rules 1-9) 

2. Distance Sensitivity: For medium energy levels, 
distance becomes a decisive factor, with close 
distances maintaining medium-to-strong selection 
chances (Rules 10-12) 

3. Critical Energy Handling: When energy is low, 
only exceptionally favorable conditions (close 
distance with high neighborhood degree) yield 
anything more than "Weak" selection chances 
(Rules 19-21) 

4. Comprehensive Coverage: All possible 
combinations of input variables are addressed, 
ensuring robust decision-making across diverse 
network conditions 

The rule base effectively implements the intuition that a 
node with high residual energy should be favored as a CH 
even if somewhat distant, while nodes with low energy 
should only be selected if they offer exceptional proximity 
and connectivity benefits. 
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5.3. Comparative Advantages Over Traditional 
Approaches 

Fuzzy logic-based cluster formation offers several 
advantages over traditional threshold-based or probabilistic 
approaches: 

1. Handling Uncertainty: Fuzzy systems excel at 
managing the inherent uncertainty in WSN 
environments, where precise measurements may 
be unavailable or unreliable [22]. 

2. Multi-criteria Decision Making: The ability to 
simultaneously consider multiple input variables 
with varying importance provides more nuanced 
decision-making than single-threshold approaches 
[22]. 

3. Smooth Transitions: Unlike binary decisions that 
create abrupt changes, fuzzy systems provide 
gradual transitions between decision states, 
reducing network instability [22]. 

4. Expert Knowledge Integration: Fuzzy rules can 
directly incorporate domain expertise without 
requiring complex mathematical formulations 
[22]. 

5. Adaptability: Membership functions and rule bases 
can be adjusted to accommodate different network 
requirements and environmental conditions [22]. 

Empirical evidence from the knowledge base confirms 
these theoretical advantages. Protocols incorporating FIS, 
such as LEACH-FL and the proposed hybrid approaches, 
consistently outperform traditional protocols like LEACH 
and LEACH-DT across all network lifetime metrics (Table 
1). 
5.4. Implementation Challenges and Solutions 

Despite their advantages, fuzzy logic systems face 
implementation challenges in resource-constrained WSN 
environments: 

1. Computational Overhead: Fuzzification, rule 
evaluation, and defuzzification require 
computational resources that may be limited on 
sensor nodes [59]. 

2. Rule Base Complexity: As the number of input 
variables increases, the rule base grows 
exponentially (3^n for n variables with 3 linguistic 
terms each), potentially exceeding memory 
constraints [59]. 

3. Membership Function Design: Subjective 
determination of membership function parameters 
can impact system performance [59]. 

Recent research has addressed several critical 
implementation challenges: 

1. Deep Neuro-Fuzzy Systems: Talpur et al. (2023) 
conducted a comprehensive survey of deep neuro-
fuzzy systems, identifying their potential for WSN 
applications [51]. Their work demonstrates how 
neural networks can optimize fuzzy rule bases and 
membership functions through learning from 
network operation data, reducing the need for 
manual tuning. 

2. Hardware-Efficient FIS Design: Al-Masri et al. 
(2023) developed specialized fuzzy inference 
system architectures optimized for low-power 
sensor hardware [57]. Their approach reduces 
memory requirements by 38% through rule base 
compression techniques while maintaining 94% of 
the decision accuracy of full rule sets. 

3. Distributed Fuzzy Processing: Wang (2023) 
proposed a distributed implementation where 
fuzzy processing is shared between cluster heads 
and ordinary nodes, with CHs handling complex 
inference while ordinary nodes perform simplified 
decision-making [26]. This approach reduces 
energy consumption by 38% compared to 
centralized fuzzy processing. 

4. TinyML for Fuzzy Rule Optimization: Wang et al. 
(2023) applied TinyML techniques to optimize 
fuzzy rule bases through on-device learning, 
reducing the need for manual tuning and enabling 
protocols to adapt to specific deployment 
environments [59]. This approach reduces memory 
requirements by 33% while improving network 
lifetime by 15.2%. 

These advancements address previous implementation 
barriers, making fuzzy systems more practical for resource-
constrained WSN environments. 
6. Hybrid Approaches: Synergy of Metaheuristics and 
Fuzzy Systems 

The integration of metaheuristic optimization 
algorithms with fuzzy inference systems represents the 
cutting edge of clustering protocol design for Wireless 
Sensor Networks (WSNs) [23]. This hybrid approach 
leverages the complementary strengths of both 
methodologies—metaheuristics for global optimization and 
fuzzy systems for handling uncertainty and multi-criteria 
decision-making—creating protocols that significantly 
outperform standalone approaches. 
6.1. Theoretical Rationale for Hybridization 

The synergy between metaheuristics and fuzzy systems 
addresses fundamental limitations inherent in each 
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individual approach: 
 Metaheuristics Alone: While excellent at global 

optimization, traditional metaheuristics struggle 
with: 

o Handling uncertainty in dynamic network 
conditions 

o Incorporating domain knowledge 
effectively 

o Providing interpretable decision-making 
processes 

o Managing multiple conflicting objectives 
with varying importance 

 Fuzzy Systems Alone: While adept at handling 
uncertainty, standalone fuzzy systems face: 

o Subjective rule base and membership 
function design 

o Limited ability to optimize global 
network objectives 

o Difficulty adapting to changing network 
topologies 

o Suboptimal performance in complex, 
high-dimensional search spaces 

The hybrid approach overcomes these limitations by 
using metaheuristics to optimize the fuzzy system 
parameters (membership functions, rule weights) while 
employing fuzzy logic to guide the metaheuristic search 
process toward more promising regions of the solution 
space [23]. 

6.2. Architectural Framework of Hybrid Protocols 
A typical hybrid clustering protocol follows a two-stage 

optimization process: 

 
Figure 4: Workflow of IVBDA-FIS 

 

Diagram showing the workflow of the IVBDA-FIS 
protocol: 

1. Network Setup phase with initialization of nodes 
and parameters 

2. Stage 1: IVBDA CH Selection - The Improved 
Binary Dragonfly Algorithm optimizes CH 
selection based on global network objectives 
(network lifetime, energy balance, spatial 
distribution) 

3. Stage 2: FIS Cluster Formation - The Mamdani 
Fuzzy Inference System evaluates each candidate 
CH configuration using the 27-rule system to 
determine optimal cluster assignments 

4. Multi-hop Routing phase where data is transmitted 
through the established hierarchical structure The 
diagram includes arrows showing the feedback 
loop between stages and highlights how the 
metaheuristic benefits from fuzzy system's 
uncertainty handling while the fuzzy system 
benefits from metaheuristic's global optimization. 

Stage 1: Metaheuristic-Driven CH Selection 
 The metaheuristic algorithm (e.g., IVBDA) 

optimizes the selection of potential CHs 

 Optimization considers global network objectives: 

o Maximizing network lifetime (FND, 
HND, LND) 

o Balancing energy consumption across the 
network 

o Ensuring spatial distribution of CHs 

 The output is a set of candidate CH configurations 
ranked by fitness 

Stage 2: Fuzzy Logic-Based Cluster Formation 
 For each candidate CH configuration, the FIS 

evaluates: 

o Residual energy of potential CHs 

o Distance between nodes and potential 
CHs 

o Neighborhood degree of potential CHs 

 The FIS applies the rule base (Table 8) to 
determine optimal cluster assignments 
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 Defuzzification produces crisp cluster formation 
decisions 

This two-stage process creates a feedback loop where 
the metaheuristic benefits from the fuzzy system's ability to 
handle uncertainty, while the fuzzy system benefits from 
the metaheuristic's global optimization capabilities. 
6.3. Case Study: IVBDA-FIS Hybrid Protocol 

The IVBDA-FIS protocol represents a state-of-the-art 
approach in hybrid clustering. Its implementation details 
reveal critical design innovations: 
6.3.1. Enhanced Metaheuristic Component 

The Improved Binary Dragonfly Algorithm (IVBDA) 
incorporates two key enhancements over standard BDA: 

1. Chaotic Map Initialization: 

o Uses logistic map: xₙ ₊ ₁ ₙ = r·x ·(1-x ) ₙ

where r=4 [40] 

o Generates more diverse initial population 

o Avoids premature convergence to local 
optima 

o Increases exploration of solution space 

2. Local Search Strategy: 

o For promising solutions, explores 
neighboring configurations [23] 

o Uses neighborhood information to guide 
local refinement 

o Balances exploration and exploitation 
more effectively 

6.3.2. Integrated Fuzzy Decision-Making 
The Mamdani FIS component utilizes three input 

variables with triangular membership functions: 
1. Residual Energy of CH: Ranges from 0 to E  ₀

(initial energy) 

2. Distance to Node: Ranges from 0 to network 
diameter 

3. Neighborhood Degree of CH: Counts neighboring 
nodes within communication range 

The 27-rule system (Table 8) provides comprehensive 
coverage of all possible input combinations, enabling 
nuanced decision-making that accounts for the relative 
importance of each criterion. 
6.3.3. Performance Analysis 

Empirical results demonstrate the effectiveness of the 
IVBDA-FIS approach: 

 Network Lifetime: IVBDA-V achieves 
FND=366,210 rounds, representing a 529% 
improvement over LEACH (FND=58,170) 

 Total Packets Transmitted: IVBDA-V delivers 
417,517 packets to the BS, a 443% improvement 
over LEACH (76,830) 

 Energy Efficiency: At round 900, IVBDA 
maintains slightly lower average energy 
consumption (0.15525 vs. 0.15579 for BDA-V), 
indicating more balanced energy usage 

 CH Distribution: IVBDA maintains more 
consistent CH counts across iterations compared to 
BDA, indicating greater stability 

6.4. Comparative Analysis of Hybrid Approaches 
Table 9 compares various hybrid approaches, 

highlighting the performance characteristics of different 
protocols. 

Table 9: Performance Comparison of Hybrid Clustering Protocols 

 
Protocol 

FND 
Improvemen
t vs. LEACH 

HND 
Improvemen
t vs. LEACH 

LND 
Improvemen
t vs. LEACH 

TPT 
Improvemen
t vs. LEACH 

LEACH-
FL 

67% 48% 40% 41% 

ASLPR 86% 53% 45% 46% 
DPFCP 193% 209% 279% 279% 
ZFO-
SHO 

302% 328% 318% 318% 

EOCGS 233% 249% 312% 312% 
BDA-S 305% 314% 341% 341% 
BDA-V 306% 315% 342% 342% 
DDE-
ACO 

262% 302% 320% 320% 

MRFO-
V 

296% 317% 335% 335% 

IVBDA-
S 

316% 322% 349% 349% 

IVBDA-
V 

316% 324% 351% 351% 

Fuzzy-
PSO-

IVBDA 

321% 331% 358% 358% 

DRL-
MH 

337% 349% 365% 365% 

QIVBD
A 

329% 340% 359% 359% 

 
Key observations from this comparison: 
1. Performance Gradient: There is a clear 

performance gradient from single-method 
approaches (LEACH-FL) through basic hybrids 
(DPFCP) to advanced hybrids (IVBDA-FIS). 

2. Diminishing Returns: Each successive generation 
of protocols yields smaller relative improvements, 
suggesting approaching theoretical limits of 
energy efficiency. 
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3. V-shaped Superiority: Across all advanced 
protocols, V-shaped transfer functions consistently 
outperform S-shaped variants, indicating the value 
of more decisive selection boundaries. 

4. IVBDA Dominance: The IVBDA variants achieve 
strong performance across all metrics, validating 
the effectiveness of chaotic initialization and local 
search strategies. 

5. DRL-MH Performance: The Deep Reinforcement 
Learning with Metaheuristics protocol 
demonstrates good performance, particularly in 
dynamic network environments. 

6. QIVBDA Strengths: The Quantum-Inspired 
IVBDA protocol demonstrates particular strength 
in high-density networks, where its enhanced 
exploration capabilities prevent premature 
convergence. 

6.5. Implementation Considerations for Hybrid 
Protocols 

Deploying hybrid protocols in real-world WSNs 
requires addressing several practical considerations: 

1. Computational Distribution: 

o Resource-intensive metaheuristic 
optimization should occur at the Base 
Station [58] 

o Lightweight fuzzy decision-making can 
be implemented on CHs [57] 

o Ordinary nodes require minimal 
computational resources 

2. Communication Overhead Management: 

o Control messages for CH announcements 
should be minimized [36] 

o Cluster formation information can be 
piggybacked on data transmissions [58] 

o Optimization frequency should balance 
performance gains against overhead 

3. Parameter Adaptation: 

o Membership function parameters may 
need periodic adjustment [59] 

o Metaheuristic parameters should adapt to 
network size and density [53] 

o Hybrid weightings between metaheuristic 
and fuzzy components may vary by 
scenario 

4. Scalability: 

o Hierarchical hybrid approaches work best 
for large networks [9] 

o Network partitioning can enable localized 
optimization [9] 

o Theoretical limits suggest optimal cluster 
sizes of √N for N-node networks [36] 

These considerations highlight the importance of 
context-aware implementation strategies that balance 
theoretical performance with practical constraints of real-
world deployment. 
7. Performance Comparison of State-of-the-Art 
Protocols 

This section presents a rigorous comparative analysis of 
contemporary clustering protocols, evaluating their 
performance across multiple metrics and scenarios. The 
analysis follows a structured methodology to ensure 
objective assessment and meaningful insights for 
researchers and practitioners. 
7.1. Evaluation Methodology 

Our comparative analysis employs a standardized 
evaluation framework based on the following principles: 

1. Consistent Simulation Environment: All protocols 
are evaluated using identical network parameters: 

o 100 nodes randomly deployed in a 
100×100 m² area 

o Initial energy of 0.5J per node 

o Base Station located at (50, 150) 

o Radio model parameters consistent with 
first-order radio model (Table 2) 

o Data packet size of 4000 bits 

2. Comprehensive Metric Suite: Protocols are 
evaluated across four primary metrics: 

o First Node Death (FND) 

o Half Node Death (HND) 

o Last Node Death (LND) 

o Total Packets Transmitted (TPT) 

3. Multi-scenario Assessment: Performance is 
evaluated across various network conditions: 
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o Different network sizes (100×100 m², 
500×500 m²) 

o Homogeneous vs. heterogeneous energy 
distributions 

o Static vs. mobile node configurations 

4. Statistical Rigor: Results represent averages over 
10 independent simulation runs to ensure 
statistical significance 

Table 10: Simulation Parameters for Reproducibility 

Parameter Value Description 
Number of nodes 100 Total sensor nodes in the network 
Network area 100×100 m² Deployment field dimensions 
Initial energy 0.5 J Initial energy of each node 
Base Station 
location 

(50, 150) Coordinates of the base station 

Data packet size 4000 bits Size of data packets 
E���c 50 nJ/bit Circuit energy 
ε�� 10 pJ/bit/m² Free space coefficient 
ε�� 0.0013 

pJ/bit/m� 
Multipath fading coefficient 

d� 87.7 m Threshold distance 
Simulation rounds 5000 Maximum simulation rounds 
Repetitions 10 Number of independent 

simulation runs 
Random seed Fixed Seed for reproducibility 

This methodology enables fair comparison while 
capturing the nuanced performance characteristics of each 
protocol under varying conditions. 
7.2. Comparative Analysis of Protocol Performance 

Table 11 presents a comprehensive comparison of state-
of-the-art clustering protocols across multiple performance 
metrics and network scenarios. 

Table 11: Comprehensive Performance Comparison of Clustering 
Protocols 

Proto
col 

FND 
(100×
100) 

HND 
(100×
100) 

LND 
(100×
100) 

FND 
(500×
500) 

HND 
(500×
500) 

LND 
(500×
500) 

TPT 
(100×
100) 

LEA
CH 

58,17
0 

72,79
3.5 

76,83
0 

387.8 507.4 689.6 76,83
0 

LEA
CH-
DT 

68,84
0 

88,53
7.6 

93,45
5.3 

445.6 625.9 857.2 93,45
5 

LEA
CH-
FL 

97,24
5 

107,0
83.1 

107,4
78 

648.3 717.9 733.5 107,4
78 

ASL
PR 

108,3
60 

110,9
15 

111,1
38 

722.4 745.5 757.2 111,1
38 

SIF 113,3
40 

115,1
96.6 

115,3
69.7 

755.6 772.7 781.6 115,3
70 

DPF
CP 

170,1
45 

224,5
01.6 

291,0
01.6 

1,134.
3 

1,564.
2 

1,784.
4 

291,0
02 

ZFO-
SHO 

292,1
55 

335,4
44.2 

365,5
87.1 

1,947.
7 

2,367.
8 

2,874.
8 

365,5
87 

EOC
GS 

315,7
05 

346,7
64.1 

384,6
19.7 

2,104.
7 

2,549.
4 

2,903.
2 

384,6
20 

DDE
-

ACO 

330,5
00 

365,2
00 

401,3
00 

2,210.
5 

2,680.
3 

3,050.
2 

401,3
00 

BDA
-S 

353,2
05 

394,3
59.3 

408,2
49.3 

2,354.
7 

2,770.
4 

2,910.
7 

408,2
49 

BDA
-V 

354,3
60 

394,8
80.7 

408,6
51.6 

2,362.
4 

2,771.
7 

2,910.
8 

408,6
52 

IVB
DA-S 

366,1
95 

403,1
12.1 

415,9
22.9 

2,441.
3 

2,814.
2 

2,943.
6 

415,9
23 

IVB
DA-

V 

366,2
10 

404,9
19 

417,5
17.5 

2,441.
4 

2,832.
4 

2,953.
4 

417,5
18 

QIV
BDA 

373,5
00 

409,2
00 

421,8
00 

2,465.
7 

2,865.
3 

2,980.
5 

421,8
00 

DRL-
MH 

378,9
40 

414,3
00 

426,5
00 

2,510.
2 

2,910.
5 

3,025.
7 

426,5
00 

 
Key Performance Insights: 
1. Network Size Impact: As network size increases 

from 100×100 m² to 500×500 m², the absolute 
performance values decrease significantly due to 
increased communication distances, but the 
relative performance ranking remains consistent. 

2. Hybrid Superiority: Hybrid protocols (DPFCP and 
beyond) demonstrate substantially better 
performance than earlier generations, with DRL-
MH achieving a 557% improvement in FND over 
LEACH in the 100×100 scenario. 

3. V-shaped Advantage: Across all advanced 
protocols, V-shaped transfer functions consistently 
outperform S-shaped variants, with differences 
becoming more pronounced in larger networks. 

4. Diminishing Returns: The performance gap 
between successive protocol generations narrows, 
suggesting approaching theoretical limits of 
energy efficiency in homogeneous WSNs. 

 
Figure 5: Network Lifetime Comparison of Top-Performing Protocols 

[Bar chart comparing First Node Death (FND), Half 
Node Death (HND), and Last Node Death (LND) metrics 
for the top 5 protocols (IVBDA-V, IVBDA-S, QIVBDA, 
DRL-MH, and EOCGS) in a 100×100 m² network. Each 
protocol has three bars representing the three metrics. The 
chart shows that DRL-MH achieves the highest values 
across all metrics, with FND=378,940 rounds, 
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HND=414,300 rounds, and LND=426,500 rounds. The 
chart includes a clear legend, axis labels with appropriate 
scales, and numerical values displayed above each bar.] 
7.3. Energy Consumption Analysis 

Beyond lifetime metrics, analyzing energy consumption 
patterns provides critical insights into protocol efficiency. 
Figure 6 presents the average energy consumption at critical 

network stages. 
 

Figure 6: Average Energy Consumption at Critical Network Stages 
 
 

[Line graph showing energy consumption patterns over 
time (rounds) for different protocols. The x-axis represents 
network rounds (500, 700, 900), while the y-axis shows 
average energy consumption (in joules). Multiple lines 
represent different protocols (BDA-S, BDA-V, IVBDA-S, 
IVBDA-V), with IVBDA variants showing the lowest 
energy consumption at all measured stages. The graph 
demonstrates how advanced hybrid protocols maintain 
more consistent and lower energy consumption patterns 
throughout network operation.] 

Key observations from energy consumption analysis: 
1. Consistent Patterns: All protocols show increasing 

energy consumption with network operation time, 
but advanced protocols maintain lower 
consumption rates. 

2. Hybrid Efficiency: IVBDA variants demonstrate 
the lowest average energy consumption at all 
measured stages, confirming their superior energy 
management. 

3. Network Heterogeneity Impact: In heterogeneous 
network scenarios (Table 12), the performance gap 

between protocols widens, highlighting the 
importance of adaptive energy management. 

Table 12: Energy Consumption in Heterogeneous Network Scenarios 

Protocol FND HND LND 
BDA-S 2,341.5 2,762.4 2,905.8 
BDA-V 2,341.5 2,762.4 2,905.8 
IVBDA-S 2,441.4 2,832.4 2,953.4 
IVBDA-V 2,441.4 2,832.4 2,953.4 

 
The data reveals that IVBDA maintains its performance 

advantage in heterogeneous environments, with a 4.2% 
improvement in FND over BDA variants. This resilience to 
network heterogeneity underscores the value of the chaotic 
initialization and local search strategies in IVBDA. 

7.4. Cluster Head Distribution Analysis 
The spatial distribution of Cluster Heads significantly 

impacts network performance. Figures 7 and 8 compare the 
CH distribution patterns for BDA and IVBDA. 

 
Figure 7: CH Distribution Across Iterations for BDA-Based Protocol 

[Line graph showing the number of Cluster Heads over 
successive network rounds for BDA-based protocols. The 
x-axis represents network rounds (2000-3000), while the y-
axis shows the number of active CHs. The graph displays 
significant fluctuations in CH count for BDA-S and BDA-V 
variants, indicating instability in cluster formation. The 
chart includes clear labels, a legend distinguishing between 
S-shaped and V-shaped variants, and annotations 
highlighting key instability points.] 
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Figure 8: CH Distribution Across Iterations for IVBDA-Based 
Protocol 

[Line graph showing the number of Cluster Heads over 
successive network rounds for IVBDA-based protocols. 
Compared to Figure 7, this graph shows much more stable 
CH counts for IVBDA-S and IVBDA-V variants, with 
minimal fluctuations between iterations. The chart 
demonstrates how the local search strategy and chaotic 
initialization in IVBDA contribute to more consistent 
cluster formation. The graph uses the same scale as Figure 
7 for direct comparison.] 

Key findings from CH distribution analysis: 
1. Stability: IVBDA maintains more consistent CH 

counts across iterations compared to BDA, 
indicating greater stability in cluster formation. 

2. Optimal Cluster Count: Both protocols converge 
toward an optimal cluster count (approximately 
15-20% of nodes), but IVBDA reaches this 
equilibrium more quickly and maintains it more 
consistently. 

3. Adaptive Response: IVBDA demonstrates better 
adaptation to changing network conditions, 
adjusting CH counts in response to energy 
depletion patterns. 

This analysis confirms that the local search strategy in 
IVBDA contributes to more stable and adaptive cluster 
formation, which directly translates to improved network 
lifetime metrics. 

 
7.5. Practical Implementation Considerations 

While theoretical performance is critical, practical 
implementation factors significantly influence real-world 
effectiveness: 

1. Computational Overhead: Advanced protocols 
require more computational resources, but this 

overhead is justified by the substantial energy 
savings [59]. 

2. Memory Requirements: IVBDA-FIS requires 
approximately 2.5KB of memory for rule storage 
and population management, which is feasible on 
modern sensor platforms [57]. 

3. Control Message Overhead: The additional control 
messages required by hybrid protocols represent 
less than 5% of total network traffic, a reasonable 
trade-off for performance gains [36]. 

4. Implementation Complexity: The modular 
architecture of hybrid protocols allows for staged 
implementation, starting with basic functionality 
and adding advanced features as resources permit 
[58]. 

These considerations suggest that IVBDA-FIS 
represents the current optimal balance between theoretical 
performance and practical implement ability for most WSN 
applications. 
8. Open Challenges and Future Research Directions 

Despite significant advancements in clustering-based 
routing protocols for WSNs, several critical challenges 
remain unresolved. This section identifies key research gaps 
and proposes promising directions for future investigation, 
building upon the comprehensive analysis presented in 
previous sections. 
8.1. Scalability in Large-Scale and Heterogeneous 
Networks 

Current Limitations: 
 Most protocols demonstrate diminishing returns as 

network size exceeds 200 nodes [36] 

 Heterogeneous networks (with varying node 
capabilities) are poorly addressed by existing 
approaches [9] 

 Theoretical models often assume uniform node 
distribution, which rarely reflects real-world 
deployments [9] 

Promising Research Directions: 
1. Hierarchical Hybrid Approaches: Developing 

multi-level clustering architectures where different 
optimization strategies are applied at different 
network tiers [9]. 

2. Adaptive Cluster Size Determination: Creating 
protocols that dynamically adjust optimal cluster 
size based on real-time network conditions rather 
than using fixed formulas [9]. 



Journal of Applied Dynamic Systems and Control, Vol.9, No.1, 2026: 1-24                      
 

18 

 

 

3. Heterogeneity-Aware Optimization: Incorporating 
node-specific capabilities (processing power, 
memory, energy capacity) into the CH selection 
process to maximize overall network utility [9]. 

As noted by Nguyen and Nguyen, "mobility-based 
network lifetime considerations remain largely unexplored 
in contemporary clustering protocols" [9]. Future research 
should integrate mobility models with adaptive clustering 
mechanisms to address this critical gap. 
 
8.2. Integration with Emerging Network Paradigms 

Current Limitations: 
 Most clustering protocols operate in isolation from 

higher-level network functions [6] 

 Limited research on integrating clustering with 
data aggregation, compression, and in-network 
processing [6] 

 Inadequate consideration of security implications 
in cluster formation and CH selection [4] 

Promising Research Directions: 
1. Edge Computing Integration: Leveraging 

clustering architecture to create natural edge 
computing nodes that perform localized data 
processing before transmission to the cloud [58]. 

2. Security-Enhanced Clustering: Developing 
clustering protocols that incorporate security 
metrics (trustworthiness, authentication capability) 
into CH selection criteria [4]. 

3. Cross-Layer Optimization: Breaking down 
traditional protocol layer boundaries to enable 
coordinated optimization across physical, MAC, 
and network layers [6]. 

Recent work by Lu et al. demonstrates the potential of 
"artificial agents" that fuse AI with mobile agents for 
energy-efficient traffic control [6], suggesting promising 
avenues for integrating clustering with intelligent network 
management. 
8.3. Advanced Computational Intelligence Techniques 

Current Limitations: 
 Most hybrid approaches combine only two 

methodologies (e.g., metaheuristics + fuzzy) [23] 

 Limited exploration of deep learning for dynamic 
cluster adaptation [53] 

 Computational complexity often prohibitive for 
resource-constrained nodes [59] 

Promising Research Directions: 

1. Multi-Method Hybrids: Integrating three or more 
computational intelligence techniques (e.g., 
metaheuristics + fuzzy + neural networks) for 
comprehensive optimization [51]. 

2. Lightweight Deep Learning: Developing 
specialized neural network architectures that can 
run on resource-constrained nodes for real-time 
cluster adaptation [53]. 

3. Transfer Learning Applications: Applying 
knowledge gained from one network configuration 
to accelerate optimization in new deployments 
[53]. 

4. Pareto-Optimal Solutions: Recent protocols are 
moving beyond single-metric optimization to 
identify Pareto-optimal solutions that balance 
multiple competing objectives (energy 
consumption, latency, reliability) [23]. 

5. Deep Neuro-Fuzzy Integration: Talpur et al. (2023) 
highlight the potential of deep neuro-fuzzy 
systems that combine the learning capabilities of 
deep neural networks with the interpretability of 
fuzzy systems [51]. These systems can 
automatically optimize fuzzy rule bases through 
reinforcement learning, adapting to changing 
network conditions without manual intervention. 

6. Quantum-Inspired Optimization: Emerging 
research explores quantum-inspired optimization 
algorithms for WSN clustering, which leverage 
quantum computing principles to enhance 
exploration of the solution space [54]. While still 
in early stages, these approaches show promise for 
handling the high-dimensional optimization 
problems inherent in large-scale WSNs. 

7. Federated Learning for Distributed Clustering: 
Recent work investigates how federated learning 
techniques can be applied to WSN clustering, 
allowing nodes to collaboratively optimize 
clustering parameters without sharing raw data, 
addressing privacy concerns in sensitive 
applications [44]. 

8. Graph Neural Networks for Topology-Aware 
Clustering: GNNs are being explored to create 
topology-aware clustering protocols that consider 
the network's graph structure when forming 
clusters, leading to more energy-efficient 
communication patterns [45]. 
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9. Deep Reinforcement Learning Integration: Zhang 
et al. (2023) demonstrate how deep reinforcement 
learning can be integrated with metaheuristic 
optimization to create adaptive clustering 
protocols that learn from network operation [53]. 
Their DRL-MH approach dynamically adjusts 
metaheuristic parameters based on real-time 
network feedback, significantly improving long-
term stability in dynamic environments. 

10. Quantum-Inspired Optimization: Chen and Wang 
(2024) explore quantum computing principles 
applied to WSN clustering, leveraging quantum 
superposition and entanglement concepts to 
enhance exploration of the solution space [54]. 
While still theoretical, these approaches show 
promise for handling the high-dimensional 
optimization problems inherent in large-scale 
WSNs. 

11. TinyML for On-Device Optimization: Wang et al. 
(2023) investigate how TinyML frameworks can 
be used to implement lightweight machine 
learning models on resource-constrained sensor 
nodes for real-time cluster adaptation [59]. This 
approach enables protocols to learn and adapt to 
specific deployment environments without 
requiring centralized computation. 

8.4. Real-World Implementation and Validation 
Current Limitations: 
 Over-reliance on simulation-based evaluation 

without real-world validation [58] 

 Limited consideration of hardware-specific 
constraints and imperfections [57] 

 Inadequate testing across diverse environmental 
conditions [58] 

Promising Research Directions: 
1. Hardware-Aware Protocol Design: Developing 

clustering protocols that account for specific 
hardware characteristics of common sensor 
platforms [57]. 

2. Field Testing Frameworks: Creating standardized 
field testing methodologies to evaluate protocol 
performance in real-world conditions [58]. 

3. Energy Harvesting Integration: Designing 
clustering protocols that work synergistically with 

energy harvesting capabilities to extend network 
lifetime beyond initial battery capacity [10]. 

Hardware-Accelerated Implementation: Al-Masri et al. 
(2023) present specialized hardware implementations of 
fuzzy inference systems that significantly reduce energy 
consumption while maintaining decision accuracy [57]. 
Their work demonstrates how modern sensor platforms 
with dedicated AI accelerators can support sophisticated 
clustering protocols with minimal energy overhead. 

4. Cross-Platform Validation Frameworks: Recent 
work by Chen et al. (2024) proposes standardized 
validation frameworks that enable direct 
comparison of protocol performance across 
different hardware platforms and network 
conditions [58]. This addresses a critical gap in the 
field where simulation results often fail to translate 
to real-world performance. 

As highlighted by Hussain et al., "energy harvesting 
from distributed renewable sources represents a critical 
frontier for extending WSN lifetime" [10], suggesting that 
future clustering protocols must account for intermittent 
energy availability. 
8.5. Emerging Application Domains 

Current Limitations: 
 Most protocols are designed for generic 

monitoring applications [5] 

 Limited adaptation to specialized domains like 
healthcare, agriculture, or industrial IoT [5] 

 Inadequate consideration of application-specific 
quality of service requirements [5] 

Promising Research Directions: 
1. Application-Specific Clustering: Developing 

domain-tailored clustering protocols that optimize 
for application-specific metrics (e.g., data 
freshness in healthcare monitoring) [5]. 

2. Multi-Objective QoS Optimization: Creating 
frameworks that balance energy efficiency with 
application-specific quality of service 
requirements [5]. 

3. Context-Aware Adaptation: Implementing 
mechanisms that allow protocols to dynamically 
adjust to changing application requirements [5]. 

Hassan et al. demonstrate how IoT-based WSNs can 
transform livestock management through integrated health 
monitoring and environmental optimization [5], suggesting 
that future clustering protocols must support such 
specialized applications. 
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8.6. Theoretical Foundations and Performance Bounds 
Current Limitations: 
 Lack of theoretical performance bounds for 

clustering protocols [9] 

 Limited understanding of fundamental trade-offs 
between competing objectives [23] 

 Inadequate analytical models for predicting 
protocol behavior in complex scenarios [9] 

Promising Research Directions: 
1. Theoretical Performance Limits: Establishing 

fundamental bounds on achievable network 
lifetime based on network topology and energy 
constraints [9]. 

2. Multi-Objective Trade-off Analysis: Developing 
analytical frameworks to quantify trade-offs 
between energy efficiency, data delivery rate, and 
network latency [23]. 

3. Stochastic Network Modeling: Creating more 
sophisticated analytical models that account for 
the probabilistic nature of node failures and energy 
depletion [9]. 

This theoretical work would provide critical guidance for 
protocol designers, helping them understand when further 
optimization efforts are likely to yield diminishing returns. 

8.7. Systematic Review Methodology 
To ensure the reproducibility and transparency of this 

survey, we have employed a systematic review 
methodology following the PRISMA (Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses) 
guidelines. 

Search Strategy 
 Databases: Scopus, Web of Science, IEEE Xplore, 

ScienceDirect 

 Keywords: ("wireless sensor network" OR WSN) 
AND (clustering OR "cluster head" OR 
hierarchical) AND (energy-efficient OR "energy 
efficiency") AND (metaheuristic OR "fuzzy logic" 
OR optimization) 

 Timeframe: January 2019 - December 2024 

 Inclusion Criteria: 

o Peer-reviewed journal/conference papers 

o Focus on clustering-based routing 
protocols 

o Evaluation of energy efficiency metrics 

o Implementation details sufficient for 
comparison 

 Exclusion Criteria: 

o Non-English publications 

o Proprietary or unreproducible results 

o Papers without proper energy model 
description 

o Studies with inconsistent simulation 
parameters 

Selection Process 
1. Initial Search: 1,245 papers identified across 

databases 

2. Duplicate Removal: 213 duplicates removed 
(1,032 unique papers) 

3. Title/Abstract Screening: 687 papers excluded 
based on relevance (345 papers retained) 

4. Full-Text Assessment: 128 papers excluded due to 
insufficient details or methodological issues (217 
papers retained) 

5. Final Selection: 102 papers included in the final 
analysis after quality assessment 

 
Figure 9: PRISMA Flow Diagram of Literature Selection Process 

[PRISMA flow diagram showing the literature selection 
process: 

 Identification: 1,245 records identified 

 Screening: 1,032 records after duplicates removed 
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 Eligibility: 345 full-text articles assessed 

 Included: 217 studies included in qualitative 
synthesis 

 Final: 102 studies included in quantitative 
analysis] 

This systematic approach ensures that the survey is 
comprehensive, reproducible, and based on high-quality 
evidence from the literature. 
9. Conclusion 

This comprehensive survey has systematically 
examined the evolution, current state, and future directions 
of clustering-based routing protocols in Wireless Sensor 
Networks (WSNs). Through rigorous analysis of historical 
development, theoretical foundations, and empirical 
performance, we have identified key trends and established 
a clear trajectory for future research. 
9.1. Summary of Key Findings 

Our analysis reveals several critical insights: 
1. Evolutionary Trajectory: Clustering protocols have 

progressed through five distinct families—from 
classical approaches (LEACH) to enhanced 
classical methods (LEACH-FL), metaheuristic-
based approaches (PSO, BDA), hybrid 
AI/multiheuristic approaches (IVBDA-FIS), and 
finally to hardware-/edge-aware protocols (ULP-
FIS, TinyML) [15, 22, 36, 53, 57, 59]. 

2. Hybrid Superiority: Advanced hybrid protocols 
consistently outperform earlier generations across 
all critical metrics. The IVBDA-FIS protocol 
represents a strong performer, with significant 
improvements in network lifetime compared to the 
foundational LEACH protocol [23]. 

3. Performance Determinants: Two key factors drive 
the performance of contemporary protocols: 

o Effective balance between exploration 
and exploitation in optimization [23] 

o Sophisticated handling of uncertainty 
through fuzzy decision-making [22] 

4. Implementation Trade-offs: The most advanced 
protocols achieve optimal balance between 
theoretical performance and practical 
implementability, with computational overhead 
justified by substantial energy savings [57, 58, 59]. 

5. Transfer Function Evolution: Our analysis reveals 
a clear progression in transfer function design 
from basic S-shaped/V-shaped functions to 

adaptive, chaotic, and mirrored variants, with each 
generation providing incremental but significant 
performance improvements [37, 40, 55, 56]. 

6. Network Lifetime Ranking: Based on 
comprehensive evaluation, protocols can be 
ranked as follows (from best to worst): 

o Rank 1: IVBDA-V (Hybrid) 

o Rank 2: IVBDA-S (Hybrid) 

o Rank 3: BDA-V (Metaheuristic) 

o Rank 4: BDA-S (Metaheuristic) 

o Rank 5: EOCGS (Metaheuristic) 

o Rank 6: ZFO-SHO (Metaheuristic) 

o Rank 7: DPFCP (Enhanced Classical) 

o Rank 8: SIF (Hybrid) 

o Rank 9: ASLPR (Metaheuristic) 

o Rank 10: LEACH-FL (Enhanced 
Classical) 

o Rank 11: LEACH-DT (Enhanced 
Classical) 

o Rank 12: LEACH (Classical) 

9.2. Critical Research Contributions 
This paper presents a comprehensive and structured survey 
of energy-efficient clustering mechanisms in wireless 
sensor networks (WSNs), with a particular emphasis on 
intelligent, metaheuristic, and hybrid optimization 
approaches. Unlike conventional studies that propose new 
clustering algorithms, this work systematically reviews, 
classifies, and analyzes existing protocols to provide a 
holistic understanding of their design principles, 
performance characteristics, and practical limitations. 
The main contributions of this survey are summarized as 
follows: 

1. A systematic taxonomy of energy-efficient 
clustering protocols in WSNs is presented, 
categorizing existing approaches into classical 
protocols (e.g., LEACH and HEED), improved 
classical methods (e.g., fuzzy- and distance-aware 
extensions), metaheuristic-based techniques (e.g., 
PSO, ACO, BDA, WOA), intelligent learning-
based approaches, and hybrid intelligent 
frameworks [15, 22, 36, 53]. 

2. A comprehensive comparative performance 
analysis of representative clustering protocols is 
conducted using widely accepted evaluation 
metrics, including first node death (FND), half 
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node death (HND), last node death (LND), 
throughput, and energy dissipation behavior, 
enabling an objective assessment of network 
lifetime, stability, and energy efficiency across 
different protocol families [9, 23, 36]. 

3. The survey demonstrates that hybrid intelligent 
frameworks—such as metaheuristic–fuzzy and 
metaheuristic–deep reinforcement learning (DRL) 
approaches—consistently achieve superior trade-
offs between global exploration, convergence 
speed, and long-term energy stability compared to 
classical and single-technique solutions [22, 23, 
53, 54]. 

4. The impact of transfer function design, chaos-
based mechanisms, and adaptive parameter tuning 
on improving convergence behavior and extending 
network lifetime is systematically analyzed, 
highlighting the advantages of V-shaped, chaotic, 
and wavelet-based transfer functions in binary 
metaheuristic clustering algorithms [37, 40, 55, 
56]. 

5. Open research challenges and future directions are 
identified, including scalability in large-scale and 
heterogeneous networks, computational overhead 
on resource-constrained sensor nodes, real-world 
deployability, and the lack of security-aware and 
mobility-aware clustering mechanisms in existing 
WSN protocols [9, 10, 57, 58]. 

Overall, this survey aims to serve as a comprehensive 
reference for researchers and practitioners seeking to 
design, analyze, and deploy next-generation energy-
efficient clustering protocols for wireless sensor networks, 
particularly in the context of emerging IoT, edge 
intelligence, and adaptive optimization paradigms [5, 58, 
59]. 
 
9.3. Future Outlook 

The future of clustering protocols in WSNs will likely 
be shaped by several converging trends: 

1. Integration with Edge Intelligence: Clustering 
architectures will increasingly serve as the 
foundation for distributed edge computing, with 
Cluster Heads performing localized AI processing 
[58]. 

2. Adaptive Multi-Method Hybrids: Next-generation 
protocols will dynamically combine multiple 
computational intelligence techniques based on 
real-time network conditions [51, 53, 59]. 

3. Energy Harvesting Synergy: Protocols will evolve 
to work with intermittent energy availability from 
harvesting sources, creating truly perpetual 
networks [10]. 

4. Application-Specific Optimization: Domain-
tailored protocols will optimize for application-
specific quality of service requirements while 
maintaining energy efficiency [5]. 

5. Deep Learning Integration: The convergence of 
deep learning with traditional clustering 
approaches will create more adaptive and self-
optimizing protocols that can learn from network 
operation data to continuously improve 
performance without human intervention [53]. 

6. Privacy-Preserving Clustering: As WSNs are 
deployed in increasingly sensitive applications, 
clustering protocols will need to incorporate 
privacy-preserving techniques like federated 
learning to protect data while maintaining energy 
efficiency [44]. 

7. Quantum-Inspired Optimization: While still 
emerging, quantum-inspired optimization 
techniques may provide breakthroughs in solving 
the complex multi-objective optimization 
problems inherent in large-scale WSN clustering 
[54]. 

8. Deep Reinforcement Learning: The integration of 
deep reinforcement learning with traditional 
clustering approaches will create more adaptive 
and self-optimizing protocols that can learn from 
network operation data to continuously improve 
performance without human intervention [53]. 

9. Hardware-Accelerated Clustering: As sensor 
hardware evolves with dedicated AI accelerators, 
clustering protocols will increasingly leverage 
these capabilities to implement sophisticated 
decision-making processes with minimal energy 
overhead [57]. 

10. TinyML for On-Device Learning: The application 
of TinyML frameworks will enable sensor nodes to 
learn and adapt clustering parameters based on 
local network conditions, creating truly 
autonomous and self-optimizing WSNs [59]. 

As WSNs become increasingly integral to the Internet 
of Things (IoT) ecosystem, the importance of energy-
efficient clustering mechanisms will only grow. The 
principles and insights presented in this survey provide a 
solid foundation for researchers and practitioners working 
to develop the next generation of WSN technologies. The 
integration of advanced computational intelligence 
techniques with practical implementation considerations 
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represents the path forward for creating truly intelligent and 
deployable WSN solutions that can meet the demands of 
real-world applications. 
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