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Abstract

In this study, the primary objective is to identify and forecast the price trend of 18-carat gold in the
Iranian market using machine learning and deep learning algorithms. To this end, daily gold price data
spanning the years 1393 to 1403 were utilized, including full candlestick-format information opening
price, closing price, intraday high, and intraday low which accurately capture the day to day dynamics of
gold price fluctuations. The forecasting framework was constructed based on lagged historical price
values as well as the current day’s price, aiming to generate precise predictions for next day’s gold price.
Several models from both classical machine learning and neural network families were implemented for
analysis and prediction. The results of running these models showed that SARIMAX model had the most
accurate prediction of next day's price compared to other models. This study examined the potential
contribution of selected macroeconomic indicators including USD/IRR exchange rate, Brent crude oil
price, and Tehran Stock Exchange overall index to improving forecast accuracy, which findings
demonstrated that these variables could not provide useful information for better gold price forecasting,
and performance of models with macroeconomic variables was weaker than models including gold’s
daily price data. To further enhance predictive accuracy, several hybrid deep learning architectures such
as combined LSTM-CNN models and permutation-based CNN structures were also explored. These
models proved particularly useful for extracting complex temporal patterns; however, but the best
performance belonged to SARIMAX model with a time lag of 1. Finally, to assess model generalizability
and robustness, forecasting outcomes were evaluated against global gold ounce price data. The
comparative analysis showed consistent results: forecasting based on 18 carat domestic gold data closely
mirrored predictions derived from global gold ounce prices, and SARIMAX remained the superior
performer across both datasets.

Keywords: Gold price forecasting, Neural network models, Time series prediction, Hybrid forecasting
models.
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QUANTIATIVE REASEARCHES
ON INTELLIGENT FINANCIAL SYSTEMS
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QUANTIATIVE REASEARCHES
ON INTELLIGENT FINANCIAL SYSTEMS

LSTM Joe gyless G Joux

Layer (Type) Output Shape Param
Istm (LSTM) (None, 2, 400) 648000
dropout (Dropout) (None, 2, 400) 0
Istm_1 (LSTM) (None, 2, 400) 1281600
dropout_1 (Dropout) (None, 2, 400) 0
Istm_2 (LSTM) (None, 400) 1281600
dropout_2 (Dropout) (None, 400) 0
dense (Dense) (None, 1) 401

LS o ooliiw] (ot sl 1) 41d3E Conlml 90 (29,5 oS cl alidl> 0>l 400 LLSTM Jlgie 40Y aw ol oais >k Joe
2y Jae 5050l BB sla el )b ggeme .ol 0 ools 51,8 DropouUt Y o LSTM Y ja 5l e i)l piin s Grals jglatea
S s LDense 4y G a Jaw (g5 woles o aib o DENSE g LSTM slaa¥ slo bl g lagyss Jolis 45 0052 3,213,801 L
sloosls b (jgal anl b el 401 L il o sl el slas g o)l oage 1y w555 Sl Sood (i Aoy 4 99300 025 (199
s ools o390l 0.0001 (5,50l #5 9 10 axws ojlail « 0,90 50 Jolts ijgel Slowlas g AAM loaigs 51 eslinnl b was Jls
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QUANTIATIVE REASEARCHES
ON INTELLIGENT FINANCIAL SYSTEMS

a305] slaesls wlwlp LSTM Jaw ks zls: (5) Jgox

slade PEh)
710183.09 RMSE
505314.90 MAE
50.97 MAPE
0.9942 R?
6455786.16 AIC
22506070.42 BIC

30 Joe by easmoplis I a4 Kooy R? jlaie g oS S |y BCwd S Wy, YU cdo b el ailys LSTM Juse (S yeba
b SaeolisS Sllugs ldya g i 5o Jow a5 das w0 oLis MAE s RMSE &5, LHMJ polas (Jlo ol b caslaosls il jlg zodgs

sz (smas S Joo 4.4

1255 0,90 55 o Sloj Slocs i s o Lt ol ot 5 (e sl Fhg gliiinl yo Ul JoIo & iz (orae sladSus
9 (eSO (oBk Cwed) (Pl laesly p (piomy lald Jleel L laaSed (ol b Ceed (st alis jo ailaid 513
la S5 zlyinl sl CONVID slaay 5l ol caidlbanwg Joo o aiind Gleds Sllog g Soeoliss slagSl olulis 4,0l (Ll
Dropout 5 MaxPooling1D slaa¥ 1 5 e o5 09 RELU (g3luJled @l 52 plo J5,5 L 2ld 64 Jols Jgl 4Y .o eolial
5 099 04 L Jgl Y s ools DENSE Y g0 o Flatten 51w o 9,5 9 09 alie il 50 Jolss 35 pgo aY s 5 1,5 (0.1)
b el 0l b ools a0l MSE (gllas s s AdAM jluaiagr b Joo . SbL Cead it sln 0y e L pgo Y 5 ReLU
(8) Jsaz o cd 3 plil lpiiw 5 o Ssl> sl Early Stopping ;i esliiwl 3 16 & ojlasl «SLol 100 was Jloy slaosls

ool 00 00ld Lioles CNN oS 5 o (5 lons

CNN Jow g_g)l.a..sm : (6) de.?

Layer (Type) Output Shape Param
ConvlD (None, 2, 64) 576
Dropout (None, 2, 64) 0
ConvlD (None, 2, 32) 4128
Dropout (Nong, 2, 32) 0

Dense (None, 50) 3250
Dense (None, 1) 51
Total Params 8005

Ay @ rSol B slo el ggazme adlbico 2 Sloj oy 9 (Sho 4 L oyss, 578 ot a5 el (4,2 .578) olal (sl b a5 (53,5
ol gt 5 Joe Y Cds saasylis R?2=0.9927 jlais .cul 8,005 L
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QUANTIATIVE REASEARCHES
ON INTELLIGENT FINANCIAL SYSTEMS
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1L ol laceiSols ot ®
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G a5 0 Jol> R2=0.9937 Jlaie g o, 44,225 & Lo piol b ggamme ails (24,16 ,578) olul aSiis (639,59 5 10,5 cyuns 4

el 03 58 (7) Jgoz 50 oy, 99 50 ol e oo (Lad o9 adgl (), 4

s3] slosls bl CNN Jaw ol s : (7) Jga

08 slado

- CiSyle s Cuisyle b
RMSE 620069.77 574520.04
MAE 410109.90 376891.41

MAPE 0.0140 0.0128

R? 0.9927 0.9937
AIC 38334.83 110780.22
BIC 73233.22 303582.37

caSl leolatwl i8S St Yo cBs L1 Mo cood Slilug g (S &g, Sl el CNIN Jow a5 amo oo oylis (7)) Jgo gl

M‘jﬁ‘ uh'j) ué; JL».IO » 0531; JM as és.wu;a odaliv (9) J&u Be ] 00 u;u.’u,wu ésl U’“J‘)s‘ 9 JJ.A Q)Sl.o.i‘- D9 9 (Ssl.n)

Actual vs Predicted Prices (Train + Test]

Aled adgish ol <8 L1y ST 59, Cand polie

Actual vs Predicted Prices (Train + Test]

101 7
— ctual st Prces — ctual st Prces
~~ Fredicted Test rices ~~ Predicted Test Prices
o
H
B
N
FLr
WY
et
14 W
/
o 1
i l_.\ﬂ\n_rr o
o]
2015 Flot 017 018 2019 2020 Fieral 022 20, 24 02! 015 2016 2017 018 2019 w020 202 022 2023 024 2025
inex inex

(o) cuiXol> oy 5 (Cawly) cXsl> LCNN s sl p ot 9 Hly slaools ) Js

(1404 ul—u».o)—)-ojb') J5| a)l.o&'b ‘J3| 0390 MUJ»A.@— Msb ‘;Lo ‘5th )° ‘505 ‘_glbgmb,).‘! ‘sol.c 44,»4

\f



& " / sl i . ,._‘
;fxdtgéﬂ“ 2SS o

QUANTIATIVE REASEARCHES
ON INTELLIGENT FINANCIAL SYSTEMS

20 )9hun i cmas Al Jow 4.5

059> ;o ilos,S sl gloy slag w9 oy il ooy ool hslsy s Dl ‘“4?53 plSe p aSS L ‘Aﬁ)}m; sl Jae
0,505, SO Gleie 40 alddS slaosls jo lemman g ol sl Sl ololis jo las o Sl b e Jow ol Sl Cad o i
slolaug, b ool slaSes DM golaidl Joloe ﬁb ayld (Sloy bly woled oo Jodow b e jstud  loads ylae g

ol 00 &l y0 5580 5 Joe (5 5lere «(8) Jgaz 10 .08 (g5lw e 90 Sloj slaejl jo i b i 1) Sy 55

Transformer Joo s,lese : (8) Jsox

Layer (Type) Output Shape Param Connected to
input_layer 8 (None, 2, 4) 0 -
multi_head_attention_8 (None, 2, 4) 6,084 input_layer 8, input_layer 8
dropout 39 (None, 2, 4) 0 multi_head attention 8
layer _normalization 16 (Nong, 2, 4) 8 dropout 39
add 16 (Nong, 2, 4) 0 layer normalization_ 16 ,input layer 8
convld_24 (None, 1, 256) 2,304 add_16
layer _normalization 17 (None, 1, 4) 8 convld 25
add 17 (None, 2, 4) 0 layer normalization 17,add 16
multi_head attention 9 (None, 2, 4) 6,084 add 17
dropout 42 (None, 2, 4) 0 multi_head attention 9
layer normalization 18 (Nong, 2, 4) 8 dropout 42
add 18 (None, 2, 4) 0 layer _normalization 18 ,add_17
convld 26 (None, 1, 256) 2,304 add 18
dropout_43 (None, 1, 256) 0 convld 26
convld_27 (None, 1, 4) 1,028 dropout_43
layer _normalization 19 (None, 1, 4) 8 convld 27
add 19 (None, 2, 4) - layer_normalization 19, add 18
global_average poolingld (None, 2) - add 19
dense_16 (None, 128) 384 global_average poolingld
dropout 44 (None, 128) - dense 16
dense 17 (None, 1) 129 dense 16
Total Params 19,377

500,5 ol | Jlyzan b Sloj (Sl Simsly ¥ (g iz 4z 55 3l (6 pForte bMWD Cad (i Sl o0d 38,5 54y a9 5 S
St 52 Sloj oz )55, 578 Julis (4.2 ,578) olal slls Jae (539,505 o0 g5l | pae slaShs 13550, slaSsh L
o FEN isv e jiii 5 Jae (s loms 50 .2l 19,377 (6,55l BB (sla ol )by ggommo .l ((Sbb on teS cop i (ajL)
oY ‘QT 3o ol eage n 1) eadzl el o S il st 5 il andy a5 cul ConvlD 4y 5o el

18 Transformer
19 Attention
20 Multi-Head Attention
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QUANTIATIVE REASEARCHES
ON INTELLIGENT FINANCIAL SYSTEMS

5 DENse slaay ol o g e 48,5 Sa IS sla Sy zlsunl § slul el jshiiea, GlobalAveragePoolinglD
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Actual vs Predicted Prices (Train + Test)
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QUANTIATIVE REASEARCHES
ON INTELLIGENT FINANCIAL SYSTEMS
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QUANTIATIVE REASEARCHES
ON INTELLIGENT FINANCIAL SYSTEMS

S99 912 by opmu 0,55, 578 Juls a5 el (9,12 ,578) slul slls a5 639,5 «(10) Jgaz 0 oais aull (5 loxs (@llas
aY & MaxPoolinglD 4 < ReLU g5loJlé ab 92 plo S 5 58 64 LCONVID 4Y 6 ol Jow (5 lons il oo
oozl b g oo JolwalS MSE (las o g Adam jluaig b Jow ool DENSE Y 48 culys 4o 4 Flatten 4y .Dropout (0.05)

el 13,569 L ol (6,50l JB sl il )b ggame .0 o0l 334901 Early Stopping ;|

CNN Jae s)lese a0 Jgua

Layer (Type) Output Shape Param
ConvlD (None, 2, 64) 576
MaxPooling1D (None, 2, 64) 0
Dropout (None, 2, 64) 0
Flatten (None, 384) 0
Dense (None, 32) 12,320
Dense (None, 1) 33
Total Params 13,569

e o Ty sl ;o CNN bl 5 Slej (g 4525 sblse 5l Glajer Wlsn Jao b ab 250 CNN 3 EEMD Cos'5
Oy ,S5Le 0.9927 Jaie b R? asls g anslo M SLL Caad i 5o Vb 80 0504, ol 45 wisls ylis gl .0gd dies oo
) 00 03l Oles A2y S adnh Joaz o EEMD-CNN Jowe G.LQJ C"L‘-‘ el Wosly il ylg o8 )0 NED)

995] osls Lulwl,, EEMD-CNN o szl A1) Jeoo

Hlado e ls
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(1804 ;b - 35L) Jgl o )los (Jgl 0595 anlifuad — winign (Jlo (spsiumnes 33 (05 SR g} (ole & i

YA



) » / R
oy st (’ S S T

QUANTIATIVE REASEARCHES
ON INTELLIGENT FINANCIAL SYSTEMS

1e7 Actual vs Predicted Gold Prices

— Actual Train
Predicted Train
— Actual Test
ad Predicted Test
----- Train-Test Split
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EEMD-CNN .5 5 Jaw (wlaly oo g i polie g (o28ly polie loges: (12) JSCo
Al ool gS alidls Al g (s (omas ASUl (oS Y Jowo 4.7
L )alS LSTM g9 009 M‘y L:LA) Sy L_SLQOQ‘\) )‘ ;L’>LA 6[.@;,9 C‘ ;b.w | B CNN | a0y u,us) 90 @ Q.SL"]“‘ )l \_AJS)J LJ"‘
il 1) 69955 sloosls Lol sla Sis CNN 1ozl Glsle ol je cwl ole Gl g o Y Sl sl Kwsly (o5lw Jowe

J5A> ) CNN'LSTM JM 6}.@.&0 ..\J‘SA 61L..:L.w ‘) GaLA) L;Lbsi““‘"‘j 9 Lb..\.15) LQ‘S?JJs U"‘ )‘ oolaiwl L\ LSTM O 9 oé;

] 00 00l U,wl.o_v (12)

CNN-LSTM .5 5 Jow 5 lese 1 (12) Jgo

Layer (Type) Output Shape Param
ConvlD (None, 2, 64) 576
MaxPooling1D (None, 2, 64) 0
Dropout (None, 2, 64) 0
ConvlD (None, 2, 32) 4128
MaxPooling1D (None, 2, 32) 0
Dropout (None, 2, 32) 0
LSTM (None, 2, 50) 16,600
Dropout (None, 2, 50) 0
LSTM (None, 50) 0
Dropout (None, 50) 20,200
Dense (None, 50) 2,550
Dense (None, 1) 51
Total Params 44,105
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QUANTIATIVE REASEARCHES
ON INTELLIGENT FINANCIAL SYSTEMS
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W PR

an),‘ sosls u"L“-"r.‘ CNN-LSTM Hﬂ NEY gLQH CJL:.I :(13) Jgo=

525245.87 RMSE
330331.65 MAE
0.0113 MAPE
0.9947 R?
103436.39 AIC
295715.40 BIC
1e7 Actual vs Predicted Prices (Train + Test)
= Actual Test Prices
== Predicted Test Prices
= Actual Train Prices
4 Predicted Train Prices
----- Train-Test Split
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QUANTIATIVE REASEARCHES
ON INTELLIGENT FINANCIAL SYSTEMS
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