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Abstract: In the present study, the target variable is the soil liquefaction potential, which is provided to the model as 

labeled data. Therefore, the use of supervised learning algorithms is necessary. Supervised learning algorithms are 

generally applied in either regression or classification tasks. Since the target variable in this research is binary, the 

problem is addressed as a classification task. In many studies, experimenting with various ML algorithms helps to 

identify which one delivers better performance. The accurate prediction of soil liquefaction under seismic loading 

conditions is a major challenge in geotechnical engineering. In this study, two tree-based gradient boosting models, 

XGBoost and LightGBM, were trained using Cone Penetration Test (CPT) data to classify liquefied and non-liquefied 

soil conditions. The models were evaluated using performance metrics including ROC-AUC, Accuracy, Precision, 

Recall, and F1-score. The LightGBM model achieved a higher AUC (0.96) compared to XGBoost (0.93), indicating 

better discriminatory performance. The results suggest that LightGBM can serve as a robust and reliable predictive tool 

for liquefaction assessment in practical applications. 
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Highlights: 

 A comparative machine learning framework was developed to evaluate liquefaction susceptibility using CPT-

based geotechnical parameters. 

 Two advanced gradient boosting classifiers, XGBoost and LightGBM, were trained and validated on field-

based liquefaction case data. 

 LightGBM demonstrated superior predictive performance, achieving a higher ROC-AUC score (0.96) 

compared to XGBoost (0.93). 

 The class imbalance in liquefaction datasets was addressed through model tuning and evaluation using 

threshold-dependent and threshold-independent performance metrics. 

 The findings confirm that LightGBM can serve as a reliable screening tool for liquefaction assessment in 

engineering practice. 

 

1. Introduction 
 

Seismic soil liquefaction represents a major 

concern in geotechnical earthquake 

engineering due to its potential to cause 

severe structural damage, ground 

deformation, and loss of bearing capacity. 

Traditional empirical and semi-empirical 

evaluation procedures based on the Cone 

Penetration Test (CPT) have been extensively 

utilized in practice owing to their practicality, 

repeatability, and strong correlation with in-

situ soil behavior. However, these procedures 

often rely on simplified boundary curves and 

correction factors that may not fully capture 

the inherent nonlinearity, spatial variability, 

and uncertainty associated with soil fabric and 

seismic loading [1, 2]. 

 

With the increasing availability of high-

resolution CPT data and the growth of 

computational intelligence, machine learning 

(ML) approaches have emerged as a strong 

alternative for liquefaction susceptibility 

assessment. Ensemble learning algorithms 

such as XGBoost and LightGBM, as well as 

deep learning and hybrid metaheuristic 

optimization frameworks, have shown 

improved predictive accuracy, robustness to 

noisy field records, and greater ability to 

model nonlinear soil behavior patterns [3-6]. 

Moreover, the integration of Bayesian 

inference, explainable AI (XAI), and 

probabilistic modeling provides a pathway for 

quantifying and communicating uncertainty, 

calibrating prediction confidence, and 

improving engineering decision reliability [6-

8]. 

This study builds upon these advancements 

by employing XGBoost and LightGBM 

models trained using CPT-based liquefaction 

case records, comparing their predictive 

capabilities, sensitivity in detecting liquefied 

cases, model stability, and engineering 

applicability. 

2. Literature Review 
 

Fully Probabilistic ML Frameworks: 

Zhao et al. (2022) integrated XGBoost with 

Bayesian probabilistic updating to estimate 

liquefaction probability distributions rather 

than binary outputs, significantly reducing 

epistemic uncertainty and improving the 

interpretability of liquefaction hazard 

mapping [6]. 

CPT-Based Ensemble Learning Approaches: 

Moayedi Far and Zare (2025) developed an 

ensemble-based soil liquefaction prediction 

framework using CPT features, demonstrating 

that ensemble fusion increases robustness and 

improves predictive reliability under data 

imbalance conditions [4]. 

Similarly, Bherde et al. (2025) applied a 

voting ensemble classifier, showing notable 

improvements in liquefaction susceptibility 
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prediction and reduced overfitting relative to 

standalone ML classifiers [5]. 

Hybrid Numerical Probabilistic Models: 

Gupta et al. (2023) proposed a hybrid 

numerical–probabilistic method for predicting 

liquefaction-induced settlement using CPT 

input parameters, confirming that 

incorporating mechanistic modeling 

corrections into ML improves continuous 

settlement prediction accuracy [9]. 

Deep Learning and Ensemble Performance 

Comparisons: 

Kumar and Wipulanusat (2025) provided a 

comparative synthesis of ensemble and deep 

neural architectures, highlighting notable 

performance improvements but stressing the 

need for stronger interpretability and 

standardized validation [3]. 

Bayesian Hyperparameter Optimization: 

Sadik and Khoshnevisan (2024) showed that 

Bayesian hyperparameter tuning significantly 

improves XGBoost performance, lowers 

misclassification rates, and reduces 

overfitting, especially in CPT-based 

liquefaction classification problems [10]. 

Explainable AI and Feature Attribution: 

Hsiao et al. (2025) used Explainable AI (XAI) 

and SHAP-based feature importance to 

interpret ML predictions of lateral spreading, 

confirming that physically meaningful 

patterns can be extracted from ML models 

trained on CPT datasets [7, 8]. 

Soft Computing and Neural Network 

Approaches: 

Kumar et al. (2022) demonstrated that ANN-

based models can capture complex soil 

behavior patterns; however, they also reported 

sensitivity to training datasets and reduced 

generalizability due to limited interpretability 

[11]. 

Hybrid Metaheuristic–ANN Liquefaction 

Optimization: 

Samui (2025) introduced a metaheuristic-

optimized ANN for liquefaction probability 

estimation, showing improved predictive 

performance but again noting complexity and 

limited transparency for engineering use [2]. 

State-of-the-Art Reviews: 

Jas and Dodagoudar (2023) summarized ML-

based liquefaction studies from 1994–2021 

and identified critical ongoing challenges 

including dataset diversity, generalization 

across geographic regions, and the need for 

interpretable probabilistic decision 

frameworks [1]. 

 

3. Methodology  

 

In this study, a comprehensive database was 

compiled from geotechnical studies 

conducted in northern regions of the country. 

A sample field log of drilled boreholes from 

the projects above is presented in Figure. The 

native companies in various cities of 

Mazandaran and Gilan provinces performed 

the geotechnical studies, including Amol, 

Babol, Sari, Chalus, Astaneh Ashrafieh, 

Anzali, and Astara.  

CPT data containing geotechnical input 

variables and binary liquefaction labels were 

preprocessed and divided into training and 

testing subsets. Both XGBoost and 

LightGBM were applied as supervised 

classification models. The evaluation included 

confusion matrices and ROC curves to ensure 

both threshold-dependent and threshold-

independent performance assessment. 
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Figure 1. Distribution of geotechnical input features. 

 

This figure illustrates the distribution 

characteristics of the primary CPT-based 

input variables used in the modeling process. 

The histogram provides insight into the 

variability and spread of the soil mechanical 

parameters across recorded field conditions. 

Such visual assessment helps identify 

skewness, outliers, and the presence of natural 

stratification effects in granular soils. 

Understanding the underlying data 

distribution assists in confirming whether the 

dataset is appropriate for training machine 

learning classifiers and whether normalization 

or scaling may be required. 

 

 
Figure 2. Alternative histogram representation 
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This complementary histogram representation 

reinforces the statistical interpretation of the 

CPT dataset by offering an alternative view of 

the parameter frequency distribution. The 

presence of overlapping density patterns 

suggests heterogeneity in soil behavior under 

seismic loading. This observation supports the 

rationale for selecting non-linear ensemble 

learning algorithms (XGBoost and 

LightGBM), which can effectively handle 

complex feature interactions. 

This figure demonstrates the imbalance 

between samples classified as liquefied and 

non-liquefied. Typically, field datasets 

contain fewer confirmed liquefaction cases 

relative to non-liquefaction records. This 

imbalance introduces classification bias risks, 

where a model may favor the majority class. 

Recognizing this distribution is essential 

because it justifies the use of metrics beyond 

accuracy (e.g., Recall, Precision, F1-score, 

and AUC) and underscores the importance of 

comparing classifier robustness under 

imbalanced conditions. 

 

 

 
Figure 3. Class distribution of liquefied vs non-liquefied samples 

 

4. Comparison with Empirical 

CPT Models 

 

CPT Empirical Models: 

 Examples: Seed & Idriss (1971)[12], 

Youd et al. (2001)[13]. 

 Based on empirical relationships 

between CPT parameters and 

liquefaction probability 

 Fast and simple but limited 

generalizability 

 Cannot learn from new data 

Advantages of XGBoost and LightGBM over 

empirical models: 

1. Ability to learn complex nonlinear 

relationships between CPT parameters 

and liquefaction potential 

2. Higher prediction accuracy typically 

90–95% vs. lower accuracy in 

empirical models 

3. Feature importance analysis – identify 

which CPT parameters contribute 

most 

4. Flexibility models can be adapted to 

different datasets or regions easily 

XGBoost and LightGBM provide a data-

driven, machine learning framework that is 

precise, generalizable, and suitable for large 

and complex datasets, while traditional 
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empirical CPT models are limited to fixed 

relationships. 

 

5. XGBoost (Extreme Gradient 

Boosting) 

 

Description: 

XGBoost is an enhanced gradient boosting 

algorithm widely used for classification and 

regression problems. 

Its main mechanism: 

1. Builds decision trees sequentially. 

2. Each new tree attempts to correct the 

errors (residuals) of previous models. 

3. Utilizes an objective function and 

gradients to optimize the final model. 

Key features of XGBoost: 

 Regularization to prevent overfitting 

 Automatic handling of missing values 

 Parallel processing for faster 

computation 

 Weighted quantile sketch for large 

datasets 

Applications in geotechnical engineering: 

 Soil liquefaction prediction 

 Shear strength and pore pressure 

estimation 

Main formula: 

Obj θ (1) 

 

 

Where: 

 L = loss function (e.g., MSE, 

log-loss) 

 Equation 2: regularization term 

)=Γt+(Ω 
(2) 

 

 = the k-th decision tree[14] 

6. LightGBM (Light Gradient 

Boosting Machine) 

 

Description: 

LightGBM is a faster and lighter version of 

XGBoost, developed by Microsoft. 

Features: 

 Uses Histogram-based Decision Tree 

Learning → reduces memory and 

increases speed 

 Employs Leaf-wise tree growth 

instead of level-wise → higher 

accuracy but needs overfitting control 

 Supports large and sparse datasets 

 Faster training, especially for big 

datasets 

Applications in geotechnical engineering: 

Similar to XGBoost, used for liquefaction 

prediction and soil behavior modeling. 

Formula: 

 The general objective is the same: 

minimize loss + regularization 

 Main differences are in Leaf-wise 

growth and Histogram-based splitting 

7. Comparison Between XGBoost 

and LightGBM Models 

 

Both XGBoost and LightGBM belong to the 

family of Gradient Boosting Decision Tree 

(GBDT) algorithms. 

They are ensemble learning techniques that 

build a series of decision trees sequentially, 

where each tree aims to correct the residual 

errors of the previous ones. 
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Although they share the same conceptual 

foundation, their internal mechanisms differ 

significantly, resulting in variations in 

computational efficiency, accuracy, and 

suitability for different datasets. 

 

 

7.1  Tree Growth Strategy 

• XGBoost uses a level-wise tree growth 

strategy, meaning that all leaves at a given 

depth are expanded simultaneously. 

This ensures a balanced tree structure but 

increases computational cost. 

• LightGBM, on the other hand, adopts a 

leaf-wise tree growth strategy, where the 

algorithm expands the leaf with the largest 

loss reduction. 

This approach generally improves accuracy 

and reduces training time but can lead to 

overfitting when the dataset is small. 

The split gain in LightGBM can be 

mathematically expressed as: 

 

 

(3) 

 

where: 

G and H represent the first and second 

derivatives (gradient and Hessian) of the loss 

function, 

and ,  are regularization parameters 

controlling model complexity. 

 

 

7.2 Speed and Memory Efficiency 
 

LightGBM is significantly faster and more 

memory-efficient than XGBoost due to its 

optimized techniques, including: 

• Histogram-based algorithm – discretizes 

continuous features into bins. 

• Gradient-based One-Side Sampling 

(GOSS) keeps instances with larger 

gradients for faster convergence. 

• Exclusive Feature Bundling (EFB) 

combines mutually exclusive features to 

reduce dimensionality. 

These optimizations make LightGBM 5–10 

times faster than XGBoost on large-scale 

datasets such as CPT-based or seismic data. 

 

 

7.3 Model Accuracy and Stability 

• XGBoost tends to perform more robustly 

on small or noisy datasets, providing 

stable and consistent predictions. 

• LightGBM excels on large and high-

dimensional datasets, often achieving 

similar or higher accuracy with shorter 

training times. 

 

 

7.4 Regularization and Hyperparameter 

Control 
 

XGBoost provides more explicit 

regularization parameters (e.g., lambda and 

alpha for L2 and L1 penalties), offering finer 

control over model complexity. 

LightGBM introduces additional parameters 

related to its sampling and bundling strategies 

(GOSS and EFB), which are particularly 

effective in handling high-dimensional 

features. 

 

 

7.5 Application to CPT-Based Liquefaction 

Assessment 
 

In liquefaction potential evaluation, XGBoost 

provides stable and interpretable performance, 

while LightGBM offers superior efficiency 

and scalability, especially when dealing with 

large, high-dimensional CPT datasets. 
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8. Model Validation 

 

The ROC curve evaluates the threshold-

independent classification performance of the 

XGBoost model. An AUC value of 0.93 

indicates strong discriminatory ability 

between liquefied and non-liquefied soil 

states. The curve’s steep rise demonstrates 

that the model effectively identifies positive 

cases (liquefaction) at relatively low false 

alarm rates. This confirms that the gradient-

boosting framework effectively captures non-

linear feature relationships intrinsic to soil 

behavior under seismic excitation. 

 

 
Figure 4. ROC curve for the XGBoost model (AUC 

= 0.93) 

 

The LightGBM ROC curve shows an 

improved classification performance 

compared to XGBoost, with an AUC of 0.96. 

This higher score indicates superior 

sensitivity and generalization capability. The 

smoother curvature and near-top alignment of 

the ROC curve signify reduced 

misclassification risk. The result suggests that 

LightGBM’s leaf-wise tree growth and 

histogram-based splitting provide 

computational and predictive advantages in 

modeling complex geotechnical response 

data. 

 

 
Figure 5. ROC curve for the LightGBM model 

(AUC = 0.96) 

 

This comparative ROC visualization 

highlights the performance gap between 

LightGBM and XGBoost. The LightGBM 

curve remains consistently above the 

XGBoost curve across varying classification 

thresholds, confirming stronger robustness. 

This figure provides visual evidence 

supporting the selection of LightGBM as the 

preferred predictive algorithm for liquefaction 

susceptibility screening (figure 6). 

 

 
Figure 6. Comparative ROC curves for both models 

 

The confusion matrix summarizes the 

threshold-dependent performance of the 

XGBoost classifier. While the model 

correctly identifies the majority of non-

liquefied cases, a portion of liquefied samples 

may be misclassified, which is consistent with 

the class imbalance observed earlier. This 

observation reinforces the importance of 
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evaluating Recall (sensitivity), particularly for 

liquefaction-positive cases where 

misclassification could lead to severe 

engineering consequences (figure 7). 

 

 
Figure 7. Confusion Matrix for XGBoost 

 

The LightGBM confusion matrix 

demonstrates improved classification of 

liquefied cases compared to XGBoost. The 

reduction in false negatives indicates better 

sensitivity and more reliable identification of 

high-risk soil conditions. This performance 

advantage is particularly important in seismic 

design, where underprediction of liquefaction 

hazard poses significant safety risks (figure 

8). 

  

 
Figure 8. Confusion Matrix for LightGBM. 

 

 

 

 

9. Results and Discussion 

 

The LightGBM model outperformed 

XGBoost in terms of AUC and exhibited 

stronger classification capability. However, 

XGBoost still demonstrated competitive 

generalization performance. The class 

distribution analysis indicates that imbalanced 

data conditions influenced classification 

sensitivity, reflecting the real-world nature of 

liquefaction events. 

The performance evaluation of the XGBoost 

and LightGBM models was conducted using 

multiple statistical indicators to ensure a 

comprehensive and unbiased assessment of 

liquefaction susceptibility. The ROC curves 

(Figures 4–6) demonstrate that both models 

possess notable discriminatory capabilities; 

however, the LightGBM model shows a 

consistently higher AUC value (0.96) 

compared to XGBoost (0.93). This 

improvement suggests that LightGBM is 

better able to capture the nonlinear 

interactions among CPT-based geotechnical 

parameters such as cone tip resistance, lateral 

stress, and soil gradation effects. 

The class distribution analysis (Figure 3) 

reveals a natural imbalance in the dataset, 

where non-liquefied cases dominate over 

liquefied observations. This imbalance 

reflects real-world seismic field records; 

however, it also introduces classification 

sensitivity challenges, particularly when 

identifying liquefied cases. Thus, accuracy 

alone cannot provide a sufficient measure of 

model reliability. Instead, the interpretation 

must consider Recall and F1-score, which 

quantify the model’s effectiveness in 

detecting high-risk soil conditions. 

The confusion matrices for both models 

(Figures 7 and 8) further clarify this 

distinction. XGBoost correctly identifies the 

majority of non-liquefied samples but exhibits 

a higher rate of false negatives than 

LightGBM. Misclassification of liquefied 

samples represents a critical engineering 

concern, as failing to detect liquefaction may 

lead to unsafe design decisions in 
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geotechnical practice. In contrast, the 

LightGBM model significantly reduces false 

negatives, indicating superior sensitivity and a 

more reliable risk screening capability. 

Additionally, the histogram-based feature 

representation (Figures 1 and 2) and the 

comparative ROC visualization (Figure 6) 

support the conclusion that LightGBM 

benefits from histogram-based decision tree 

growth and leaf-wise splitting, enabling more 

efficient learning on imbalanced geotechnical 

datasets. The improvement in classification 

robustness suggests that LightGBM can better 

generalize unseen field data, mitigating the 

risk of model overfitting that sometimes 

affects tree-based ensemble algorithms in 

geotechnical applications. 

Overall, the experimental results confirm that 

while both models are effective, LightGBM 

provides a more dependable and stable 

framework for liquefaction identification, 

especially under conditions where accurate 

detection of positive liquefaction cases is 

critical. 

10. Conclusion 

 

This study presents a comparative evaluation 

of XGBoost and LightGBM machine learning 

models for the prediction of seismic soil 

liquefaction using CPT-based geotechnical 

parameters. Both models exhibited strong 

classification performance, demonstrating that 

gradient boosting architectures are capable of 

effectively modeling the complex nonlinear 

relationships associated with liquefaction 

processes. However, the LightGBM model 

consistently outperformed XGBoost in terms 

of ROC-AUC performance, sensitivity toward 

detecting liquefied cases, and overall 

predictive robustness. 

The superior performance of LightGBM can 

be attributed to its leaf-wise tree growth 

strategy and histogram-based feature selection 

optimization, which provide enhanced 

learning efficiency and greater adaptability to 

imbalanced datasets. These findings suggest 

that LightGBM is particularly suitable for 

engineering applications where reliable 

liquefaction screening is essential, such as 

seismic hazard zonation, rapid site evaluation, 

and risk-informed foundation design. 

Future work may include expanding the 

dataset with additional CPT case histories, 

applying feature importance analysis to 

identify dominant controlling parameters, and 

integrating LightGBM within GIS-based 

liquefaction susceptibility mapping 

frameworks to support large-scale 

engineering decision making. 

In conclusion, LightGBM stands as a robust, 

accurate, and practically applicable model for 

liquefaction assessment using CPT data, 

offering a dependable predictive tool for 

geotechnical seismic design. 

Both machine learning models are effective 

for liquefaction prediction using CPT data. 

LightGBM demonstrated superior overall 

performance and can be recommended as a 

primary predictive model in engineering 

applications. 
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