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Abstract: In the present study, the target variable is the soil liquefaction potential, which is provided to the model as
labeled data. Therefore, the use of supervised learning algorithms is necessary. Supervised learning algorithms are
generally applied in either regression or classification tasks. Since the target variable in this research is binary, the
problem is addressed as a classification task. In many studies, experimenting with various ML algorithms helps to
identify which one delivers better performance. The accurate prediction of soil liquefaction under seismic loading
conditions is a major challenge in geotechnical engineering. In this study, two tree-based gradient boosting models,
XGBoost and LightGBM, were trained using Cone Penetration Test (CPT) data to classify liquefied and non-liquefied
soil conditions. The models were evaluated using performance metrics including ROC-AUC, Accuracy, Precision,
Recall, and F1-score. The LightGBM model achieved a higher AUC (0.96) compared to XGBoost (0.93), indicating
better discriminatory performance. The results suggest that LightGBM can serve as a robust and reliable predictive tool
for liquefaction assessment in practical applications.
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Highlights:

e A comparative machine learning framework was developed to evaluate liquefaction susceptibility using CPT-

based geotechnical parameters.

e Two advanced gradient boosting classifiers, XGBoost and LightGBM, were trained and validated on field-

based liquefaction case data.

e LightGBM demonstrated superior predictive performance, achieving a higher ROC-AUC score (0.96)

compared to XGBoost (0.93).

e The class imbalance in liquefaction datasets was addressed through model tuning and evaluation using
threshold-dependent and threshold-independent performance metrics.

e The findings confirm that LightGBM can serve as a reliable screening tool for liquefaction assessment in

engineering practice.

1. Introduction

Seismic soil liquefaction represents a major
concern  in  geotechnical  earthquake
engineering due to its potential to cause
severe structural damage, ground
deformation, and loss of bearing capacity.
Traditional empirical and semi-empirical
evaluation procedures based on the Cone
Penetration Test (CPT) have been extensively
utilized in practice owing to their practicality,
repeatability, and strong correlation with in-
situ soil behavior. However, these procedures
often rely on simplified boundary curves and
correction factors that may not fully capture
the inherent nonlinearity, spatial variability,
and uncertainty associated with soil fabric and
seismic loading [1, 2].

With the increasing availability of high-
resolution CPT data and the growth of
computational intelligence, machine learning
(ML) approaches have emerged as a strong
alternative for liquefaction susceptibility
assessment. Ensemble learning algorithms
such as XGBoost and LightGBM, as well as
deep learning and hybrid metaheuristic
optimization  frameworks, have shown
improved predictive accuracy, robustness to
noisy field records, and greater ability to
model nonlinear soil behavior patterns [3-6].
Moreover, the integration of Bayesian
inference, explainable Al (XAl), and
probabilistic modeling provides a pathway for
quantifying and communicating uncertainty,

calibrating  prediction confidence, and
improving engineering decision reliability [6-
8].

This study builds upon these advancements
by employing XGBoost and LightGBM
models trained using CPT-based liquefaction
case records, comparing their predictive
capabilities, sensitivity in detecting liquefied
cases, model stability, and engineering
applicability.

2. Literature Review

Fully Probabilistic ML Frameworks:

Zhao et al. (2022) integrated XGBoost with
Bayesian probabilistic updating to estimate
liquefaction probability distributions rather
than binary outputs, significantly reducing
epistemic uncertainty and improving the
interpretability  of  liquefaction  hazard

mapping [6].
CPT-Based Ensemble Learning Approaches:

Moayedi Far and Zare (2025) developed an
ensemble-based soil liquefaction prediction
framework using CPT features, demonstrating
that ensemble fusion increases robustness and
improves predictive reliability under data
imbalance conditions [4].

Similarly, Bherde et al. (2025) applied a
voting ensemble classifier, showing notable
improvements in liquefaction susceptibility
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prediction and reduced overfitting relative to
standalone ML classifiers [5].

Hybrid Numerical Probabilistic Models:

Gupta et al. (2023) proposed a hybrid
numerical—probabilistic method for predicting
liquefaction-induced settlement using CPT
input parameters, confirming that
incorporating mechanistic modeling
corrections into ML improves continuous
settlement prediction accuracy [9].

Deep Learning and Ensemble Performance
Comparisons:

Kumar and Wipulanusat (2025) provided a
comparative synthesis of ensemble and deep
neural architectures, highlighting notable
performance improvements but stressing the
need for stronger interpretability and
standardized validation [3].

Bayesian Hyperparameter Optimization:

Sadik and Khoshnevisan (2024) showed that
Bayesian hyperparameter tuning significantly
improves XGBoost performance, lowers
misclassification ~ rates, and  reduces
overfitting,  especially in  CPT-based
liquefaction classification problems [10].

Explainable Al and Feature Attribution:

Hsiao et al. (2025) used Explainable Al (XAI)
and SHAP-based feature importance to
interpret ML predictions of lateral spreading,
confirming that physically meaningful
patterns can be extracted from ML models
trained on CPT datasets [7, 8].

Soft Computing and Neural Network
Approaches:

Kumar et al. (2022) demonstrated that ANN-
based models can capture complex soil
behavior patterns; however, they also reported
sensitivity to training datasets and reduced
generalizability due to limited interpretability
[11].

Hybrid  Metaheuristic-ANN  Liquefaction
Optimization:

Samui (2025) introduced a metaheuristic-
optimized ANN for liquefaction probability
estimation, showing improved predictive
performance but again noting complexity and
limited transparency for engineering use [2].

State-of-the-Art Reviews:

Jas and Dodagoudar (2023) summarized ML-
based liquefaction studies from 1994-2021
and identified critical ongoing challenges
including dataset diversity, generalization
across geographic regions, and the need for
interpretable probabilistic decision
frameworks [1].

3. Methodology

In this study, a comprehensive database was
compiled  from  geotechnical  studies
conducted in northern regions of the country.
A sample field log of drilled boreholes from
the projects above is presented in Figure. The
native companies in various cities of
Mazandaran and Gilan provinces performed
the geotechnical studies, including Amol,
Babol, Sari, Chalus, Astaneh Ashrafieh,
Anzali, and Astara.

CPT data containing geotechnical input
variables and binary liquefaction labels were
preprocessed and divided into training and
testing subsets. Both XGBoost and
LightGBM were applied as supervised
classification models. The evaluation included
confusion matrices and ROC curves to ensure
both threshold-dependent and threshold-
independent performance assessment.
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Figure 1. Distribution of geotechnical input features.
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This figure illustrates the distribution

characteristics of the primary CPT-based
input variables used in the modeling process.
The histogram provides insight into the
variability and spread of the soil mechanical
parameters across recorded field conditions.
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skewness, outliers, and the presence of natural
stratification effects in granular soils.
Understanding  the underlying data
distribution assists in confirming whether the
dataset is appropriate for training machine
learning classifiers and whether normalization
or scaling may be required.
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Figure 2. Alternative histogram representation



This complementary histogram representation
reinforces the statistical interpretation of the
CPT dataset by offering an alternative view of
the parameter frequency distribution. The
presence of overlapping density patterns
suggests heterogeneity in soil behavior under
seismic loading. This observation supports the
rationale for selecting non-linear ensemble
learning  algorithms ~ (XGBoost  and
LightGBM), which can effectively handle
complex feature interactions.

This figure demonstrates the imbalance
between samples classified as liquefied and
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non-liquefied. Typically, field datasets
contain fewer confirmed liquefaction cases
relative to non-liquefaction records. This
imbalance introduces classification bias risks,
where a model may favor the majority class.
Recognizing this distribution is essential
because it justifies the use of metrics beyond
accuracy (e.g., Recall, Precision, F1-score,
and AUC) and underscores the importance of
comparing  classifier  robustness  under
imbalanced conditions.
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Figure 3. Class distribution of liquefied vs non-liquefied samples

4, Comparison with Empirical
CPT Models

CPT Empirical Models:

e Examples: Seed & Idriss (1971)[12],
Youd et al. (2001)[13].

e« Based on empirical relationships
between CPT  parameters and
liquefaction probability

e Fast and simple but limited
generalizability

e Cannot learn from new data

Advantages of XGBoost and LightGBM over
empirical models:

1. Ability to learn complex nonlinear
relationships between CPT parameters
and liquefaction potential

2. Higher prediction accuracy typically
90-95% vs. lower accuracy in
empirical models

3. Feature importance analysis — identify
which CPT parameters contribute
most

4. Flexibility models can be adapted to
different datasets or regions easily

XGBoost and LightGBM provide a data-
driven, machine learning framework that is
precise, generalizable, and suitable for large
and complex datasets, while traditional



empirical CPT models are limited to fixed
relationships.

5. XGBoost (Extreme Gradient
Boosting)

Description:

XGBoost is an enhanced gradient boosting
algorithm widely used for classification and
regression problems.

Its main mechanism:
1. Builds decision trees sequentially.

2. Each new tree attempts to correct the
errors (residuals) of previous models.

3. Utilizes an objective function and
gradients to optimize the final model.

Key features of XGBoost:
e Regularization to prevent overfitting
e Automatic handling of missing values

o Parallel  processing for  faster
computation

o Weighted quantile sketch for large
datasets

Applications in geotechnical engineering:
o Soil liquefaction prediction

e Shear strength and pore pressure
estimation

Main formula:

Obj 6=X%y Ly, $ )+ Zk=1"x(f,) @

Where:

e L(v.¥#;)= loss function (e.g., MSE,
log-loss)

e Equation 2: regularization term

Q(f ) =Tt+: Allwl)? @

e (fi )= the k-th decision tree[14]

6. LightGBM (Light Gradient
Boosting Machine)

Description:

LightGBM s a faster and lighter version of
XGBoost, developed by Microsoft.

Features:

e Uses Histogram-based Decision Tree
Learning — reduces memory and
increases speed

e Employs Leaf-wise tree growth
instead of level-wise — higher
accuracy but needs overfitting control

e Supports large and sparse datasets

o Faster training, especially for big
datasets

Applications in geotechnical engineering:

Similar to XGBoost, used for liquefaction
prediction and soil behavior modeling.

Formula:

e The general objective is the same:
minimize loss + regularization

e« Main differences are in Leaf-wise
growth and Histogram-based splitting

7. Comparison Between XGBoost
and LightGBM Models

Both XGBoost and LightGBM belong to the
family of Gradient Boosting Decision Tree
(GBDT) algorithms.

They are ensemble learning techniques that
build a series of decision trees sequentially,
where each tree aims to correct the residual
errors of the previous ones.



Although they share the same conceptual
foundation, their internal mechanisms differ
significantly, resulting in variations in
computational efficiency, accuracy, and
suitability for different datasets.

7.1 Tree Growth Strategy

» XGBoost uses a level-wise tree growth
strategy, meaning that all leaves at a given
depth are expanded simultaneously.

This ensures a balanced tree structure but
increases computational cost.

* LightGBM, on the other hand, adopts a
leaf-wise tree growth strategy, where the
algorithm expands the leaf with the largest
loss reduction.

This approach generally improves accuracy
and reduces training time but can lead to
overfitting when the dataset is small.

The split gain in LightGBM can be
mathematically expressed as:

G; . G2 (GL+GR]2) ®3)
Ho+4 H.+A H+Hz+4) |

1
split Gain = E(

where:

G and H represent the first and second
derivatives (gradient and Hessian) of the loss
function,

and 4, ¥ are regularization parameters
controlling model complexity.

7.2 Speed and Memory Efficiency

LightGBM is significantly faster and more
memory-efficient than XGBoost due to its
optimized techniques, including:

* Histogram-based algorithm — discretizes
continuous features into bins.

+ Gradient-based One-Side Sampling
(GOSS) keeps instances with larger
gradients for faster convergence.

» Exclusive Feature Bundling (EFB)
combines mutually exclusive features to
reduce dimensionality.

These optimizations make LightGBM 5-10
times faster than XGBoost on large-scale
datasets such as CPT-based or seismic data.

7.3 Model Accuracy and Stability

» XGBoost tends to perform more robustly
on small or noisy datasets, providing
stable and consistent predictions.

» LightGBM excels on large and high-
dimensional datasets, often achieving
similar or higher accuracy with shorter
training times.

7.4 Regularization and Hyperparameter
Control

XGBoost provides more explicit
regularization parameters (e.g., lambda and
alpha for L2 and L1 penalties), offering finer
control over model complexity.

LightGBM introduces additional parameters
related to its sampling and bundling strategies
(GOSS and EFB), which are particularly
effective in  handling high-dimensional
features.

7.5 Application to CPT-Based Liquefaction
Assessment

In liquefaction potential evaluation, XGBoost
provides stable and interpretable performance,
while LightGBM offers superior efficiency
and scalability, especially when dealing with
large, high-dimensional CPT datasets.
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8. Model Validation

The ROC curve evaluates the threshold-
independent classification performance of the
XGBoost model. An AUC value of 0.93
indicates  strong  discriminatory  ability
between liquefied and non-liquefied soil
states. The curve’s steep rise demonstrates
that the model effectively identifies positive
cases (liquefaction) at relatively low false
alarm rates. This confirms that the gradient-
boosting framework effectively captures non-
linear feature relationships intrinsic to soil
behavior under seismic excitation.
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Figure 4. ROC curve for the XGBoost model (AUC
=0.93)

The LightGBM ROC curve shows an
improved classification performance
compared to XGBoost, with an AUC of 0.96.
This  higher score indicates superior
sensitivity and generalization capability. The
smoother curvature and near-top alignment of
the ROC  curve  signify  reduced
misclassification risk. The result suggests that
LightGBM’s leaf-wise tree growth and
histogram-based splitting provide
computational and predictive advantages in
modeling complex geotechnical response
data.
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Figure 5. ROC curve for the LightGBM model
(AUC =0.96)

This  comparative =~ ROC  visualization
highlights the performance gap between
LightGBM and XGBoost. The LightGBM
curve remains consistently above the
XGBoost curve across varying classification
thresholds, confirming stronger robustness.
This figure provides visual evidence
supporting the selection of LightGBM as the
preferred predictive algorithm for liquefaction
susceptibility screening (figure 6).
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Figure 6. Comparative ROC curves for both models

The confusion matrix summarizes the
threshold-dependent performance of the
XGBoost classifier. While the model
correctly identifies the majority of non-
liquefied cases, a portion of liquefied samples
may be misclassified, which is consistent with
the class imbalance observed earlier. This
observation reinforces the importance of
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evaluating Recall (sensitivity), particularly for
liquefaction-positive cases where
misclassification could lead to severe
engineering consequences (figure 7).
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Figure 7. Confusion Matrix for XGBoost
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The LightGBM confusion matrix
demonstrates improved classification of
liquefied cases compared to XGBoost. The
reduction in false negatives indicates better
sensitivity and more reliable identification of
high-risk soil conditions. This performance
advantage is particularly important in seismic
design, where underprediction of liquefaction
hazard poses significant safety risks (figure
8).
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Figure 8. Confusion Matrix for LightGBM.

True label

9. Results and Discussion

The LightGBM  model outperformed
XGBoost in terms of AUC and exhibited
stronger classification capability. However,
XGBoost still demonstrated competitive
generalization  performance. The class
distribution analysis indicates that imbalanced
data conditions influenced classification
sensitivity, reflecting the real-world nature of
liquefaction events.

The performance evaluation of the XGBoost
and LightGBM models was conducted using
multiple statistical indicators to ensure a
comprehensive and unbiased assessment of
liquefaction susceptibility. The ROC curves
(Figures 4-6) demonstrate that both models
possess notable discriminatory capabilities;
however, the LightGBM model shows a
consistently higher AUC value (0.96)
compared to XGBoost (0.93). This
improvement suggests that LightGBM is
better able to capture the nonlinear
interactions among CPT-based geotechnical
parameters such as cone tip resistance, lateral
stress, and soil gradation effects.

The class distribution analysis (Figure 3)
reveals a natural imbalance in the dataset,
where non-liquefied cases dominate over
liqguefied observations. This imbalance
reflects real-world seismic field records;
however, it also introduces classification
sensitivity challenges, particularly when
identifying liquefied cases. Thus, accuracy
alone cannot provide a sufficient measure of
model reliability. Instead, the interpretation
must consider Recall and F1-score, which
quantify the model’s effectiveness in
detecting high-risk soil conditions.

The confusion matrices for both models
(Figures 7 and 8) further clarify this
distinction. XGBoost correctly identifies the
majority of non-liquefied samples but exhibits
a higher rate of false negatives than
LightGBM. Misclassification of liquefied
samples represents a critical engineering
concern, as failing to detect liquefaction may
lead to unsafe design decisions in
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geotechnical practice. In contrast, the
LightGBM model significantly reduces false
negatives, indicating superior sensitivity and a
more reliable risk screening capability.

Additionally, the histogram-based feature
representation (Figures 1 and 2) and the
comparative ROC visualization (Figure 6)
support the conclusion that LightGBM
benefits from histogram-based decision tree
growth and leaf-wise splitting, enabling more
efficient learning on imbalanced geotechnical
datasets. The improvement in classification
robustness suggests that LightGBM can better
generalize unseen field data, mitigating the
risk of model overfitting that sometimes
affects tree-based ensemble algorithms in
geotechnical applications.

Overall, the experimental results confirm that
while both models are effective, LightGBM
provides a more dependable and stable
framework for liquefaction identification,
especially under conditions where accurate
detection of positive liquefaction cases is
critical.

10.Conclusion

This study presents a comparative evaluation
of XGBoost and LightGBM machine learning
models for the prediction of seismic soil
liquefaction using CPT-based geotechnical
parameters. Both models exhibited strong
classification performance, demonstrating that
gradient boosting architectures are capable of
effectively modeling the complex nonlinear
relationships associated with liquefaction
processes. However, the LightGBM model
consistently outperformed XGBoost in terms
of ROC-AUC performance, sensitivity toward
detecting liquefied cases, and overall
predictive robustness.

The superior performance of LightGBM can
be attributed to its leaf-wise tree growth
strategy and histogram-based feature selection
optimization, which provide enhanced
learning efficiency and greater adaptability to
imbalanced datasets. These findings suggest

10

that LightGBM is particularly suitable for
engineering applications where reliable
liquefaction screening is essential, such as
seismic hazard zonation, rapid site evaluation,
and risk-informed foundation design.

Future work may include expanding the
dataset with additional CPT case histories,
applying feature importance analysis to
identify dominant controlling parameters, and
integrating LightGBM within  GIS-based
liquefaction susceptibility mapping
frameworks to support large-scale
engineering decision making.

In conclusion, LightGBM stands as a robust,
accurate, and practically applicable model for
liquefaction assessment using CPT data,
offering a dependable predictive tool for
geotechnical seismic design.

Both machine learning models are effective
for liquefaction prediction using CPT data.
LightGBM demonstrated superior overall
performance and can be recommended as a
primary predictive model in engineering
applications.
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