ریزپلاستیکها بهعنوان حاملان میکروبهای پاتوژن در اکوسیستمهای ساحلی: مطالعه مروری

سیده زهرا سیدپور - محمد کمالی

گروه میکروبیولوژی،واحد لاهیجان،دانشگاه آزاد اسلامی،لاهیجان،ایران.

چکیده

ریزپلاستیکها (MPs) با ابعادی کمتر از ۵ میلیمتر اخیراً در مناطق ساحلی ایران بهوفور مشاهده شدهاند و نگرانیهای جدی زیستمحیطی و بهداشتی را به دنبال داشتهاند. بررسیهای میدانی حاکی از وجود این ذرات در رسوبات ساحلی، آبهای سطحی و موجودات دریایی است؛ برای مثال، در سواحل استان هرمزگان غلظتهایی بیش از ۳۰۰۰ ذره در هر مترمربع ثبت شده است. بیشتر این ذرات شامل فیبرها و قطعات پلی اتیلن، پلی پروپیلن، پلی استایرن و پلی اتیلن ترفتالات هستند که توانایی بالایی در جذب و انتقال آلایندههای شیمیایی و میکروبی از خود نشان میدهند. یکی از پیامدهای مهم ریزپلاستیکها در اکوسیستمهای ساحلی، شکل گیری جوامع میکروبی خاص تحت عنوان پلاستی سفر است که بر سطح این قطعات پلاستیکی تجمع می یابند. این جوامع که شامل ميكروارگانيسههايي از گروههاي Alphaproteobacteria ،Gammaproteobacteria و Bacteroidetes هستند، تفاوتهایی بارز با میکروبهای محیطی دارند. برخی از گونههای موجود در این جوامع قادر به حمل پاتوژنها و ژنهای مقاومت آنتیبیوتیکی هستند. اگرچه درباره محیطهای ساحلی ایران دادههای مستقیم محدودی وجود دارد، اما باتوجه به تراکم بالای ريز پلاستيکها و يافتههاي مطالعات جهاني، روشن است که اين ذرات ميتوانند بهعنوان حاملان آلايندهها و عوامل بيماريزا عمل کرده و انتقال آنها را در زنجیره غذایی ساحلی تسهیل کنند. این بررسی نشاندهنده وجود شکافهای تحقیقاتی عمده در ایران است، بهویژه در زمینههای مرتبط با آنالیز جامع میکروبی سطح و عمق، شناسایی ژنهای مقاومت و مدل سازی انتقال میکروبی. طراحی پژوهشهای آینده با یک رویکرد میانرشتهای، شامل تخصصهایی چون مهندسی محیط زیست، میکروبیولوژی، اکولوژی ساحلی و سلامت عمومی، گامی اساسی برای درک بهتر اثرات زیستمحیطی و بهداشتی ریزپلاستیکها خواهد بود. در نهایت، تقویت پایش مداوم و تدوین استانداردهای ملی برای مدیریت آلودگیهای میکروبی ناشی از ریزپلاستیکها، اقدامی ضروری برای حفاظت از اکوسیستمهای ساحلی و سلامت انسان محسوب میشود.

كلمات كليدي

ریز پلاستیکها ،آلودگی میکروبی، آبهای ساحلی ایران، باکتریهای پاتوژن ، اکوسیستمهای دریایی

Microplastics as carriers of pathogenic microbes coastal ecosystems: A review study

Seyedeh Zahra Seyedpour - Mohammad Kamali

Department of Microbiology, La.C., Islamic Azad University, Lahijan, Iran

Abstract

Microplastics (MPs) measuring less than 5 mm have been increasingly detected in the coastal regions of Iran, prompting significant concerns regarding environmental integrity and public health. Field investigations reveal their existence in coastal sediments, surface waters, and marine life; for example, reports indicate densities surpassing 3,000 particles per square meter along Hormozgan Province's shoreline. The majority of these particles consist of fibers and fragments from polyethylene, polypropylene, polystyrene, and polyethylene terephthalate, showing a considerable ability to absorb and transport chemical and microbial contaminants. A significant outcome of MPs in coastal ecosystems is the emergence of specialized microbial communities, known as the "plastisphere," which settle on the surface of these plastic particles. These communities, comprising microorganisms from Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes, present notable differences from the surrounding environmental microbiota. Some of these microbes have the potential to harbor pathogens and antibiotic resistance genes (ARGs). While direct evidence from Iran's coastal zones is sparse, the high concentration of MPs, along with global research findings, suggests that these particles may act as conduits for pollutants and pathogens, facilitating their movement through coastal food systems. This review emphasizes significant research deficiencies within Iran, especially regarding thorough microbial evaluations at surface and subsurface levels, identification of resistance genes, and modeling of microbial transfer. Future studies adopting an interdisciplinary framework that merges environmental engineering, microbiology, coastal ecology, and public health are vital for a deeper understanding of the environmental and health implications of microplastics. Ultimately, enhancing ongoing monitoring and establishing national guidelines for managing microbial contamination associated with microplastics are essential measures to safeguard coastal ecosystems and public health.

Keywords

Microplastics; Microbial contamination; Iranian coastal waters; Pathogenic bacteria; Marine ecosystems

References

Khanjani, M. H., Mohammadi, A., & Jiroft, J. ACCEPTED AUTHOR VERSION OF THE MANUSCRIPT: Microplastic pollution in aquatic ecosystems: A comprehensive review of impacts on aquatic animals.

Jaafarzadeh Haghighi Fard, N., & Jahedi, F. (2025). Microplastic contamination and accumulation in municipal solid waste: A global review of sources, pathways, and impacts. *Environmental Health Engineering And Management Journal*, 12, 1-16.

Azizollahi Aliabadi, M., Hosseini Doust, S. R., Masoumi, N., & Miyanabadi, M. (2024). Microplastic-Microorganism Interaction in Marine Ecosystems. *Journal of Marine Medicine*, 6(2), 132-144.

Niknejad, H., Hoseinvandtabar, S., Panahandeh, M., Gholami-Borujeni, F., Janipoor, R., Sarvestani, R. A., ... & Rafiee, M. (2024). Quantitative microbial risk assessment of gastrointestinal illness due to recreational exposure to E. coli and enterococci on the southern coasts of the Caspian Sea. *Heliyon*, 10(9).

Azizollahi Aliabadi, M., Hosseini Doust, S. R., & Miyanabadi, M. (2022). The Effects of Microplastic Pollution on Aquatic Microorganisms: A review of the sources, fate, and effects. *Biotechnological Journal of Environmental Microbiology*, *I*(1), 15-22.

Rahimibashar, M. R. (2024). Microplastics in Water, Sediments and Benthic Macroinvertebrates of an Urban Wetland. *Biotechnological Journal of Environmental Microbiology*, *3*(10), -. https://doi.org/10.71886/bioem.2024.1218694.