
255 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

An Advanced Cost-Aware Mapping Algorithm Based on Frog

Leaping and Tabu Search for Two-Dimensional

Network-On-Chip

Azin Hatefi1,2, Elham Yaghoubi1,2*

1Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran, elhamyaghoubi@iau.ac.ir
2Big Data Research Center, Na.C., Islamic Azad University, Najafabad, Iran, azinhatefi@iau.ac.ir

Abstract

One of the main challenges in two-dimensional Network on Chip (NoC) architectures is mapping application graphs onto tile-

based architectures. Without appropriate mapping algorithms, the system's performance can be significantly degraded. Various

mapping algorithms have been proposed for NoC. However, most of these methods have not been able to address the main

challenges in mapping algorithms, particularly the communication cost. To this end, a mapping algorithm named FTMA (Frog

leaping and Tabu Search Mapping Algorithm) for two-dimensional mesh topology-on-chip base is proposed which utilizes the

combination of frog leaping mapping algorithm and Tabu search for mapping operation. Using these two algorithms in the

proposed method provides several advantages for the mapping algorithm. These advantages include finding the best mapping

with minimum communication cost, utilizing smart memory to reduce extra costs, and being suitable for most application

graphs. The algorithm is also appropriate for graphs with a large number of nodes and provides a final solution. Simulation

results show that the proposed mapping algorithm reduces communication costs. The reduction percentages are 12.62, 7.45,

15.34, 11.60, 15.18, 13.805, 17.68, 15.64 and 13.66 compared to the ISFLA, IAM, ELIXIR, PSMAP, ACO, NMAP, LMAP,

and BMA methods, respectively.

Keywords: network on two-dimensional chip, application graph, Tabu search algorithm, frog leaping algorithm

Article history: Received 2025/10/08; Revised 2025/11/02; Accepted 2025/11/13, Article Type: Research paper

© 2025 IAUCTB-IJSEE Science. All rights reserved,

https://doi.org/10.82234/IJSEE.2025.1220346

1. Introduction

Currently, two-dimensional network on chip

(2D-NoC) is introduced as a high-performance

communication structure for processing systems

[1,2]. One of the most important topics in this area

is the mapping of application graphs onto chips. The

goal of this mapping is to minimize communication

costs as much as possible. The lower the

communication costs, the higher the system's

performance increases [3,4].

 On the other hand, the process of mapping

graphs onto 2D chips is considered an interesting

and dynamic challenge, attracting significant

attention from researchers in this field. Various

algorithms have been proposed for application graph

mapping onto chips, which can be broadly

categorized into two main types: dynamic (online)

and static (offline) methods [5,6]. In the dynamic

mapping method, the mapping is performed during

runtime, leading to increased energy consumption,

computational overhead, and time delays [7,8].

Additionally, implementing this type of mapping is

challenging. Therefore, static mapping is considered

the optimal solution. Given the increasing

complexity of processing systems, there is a

growing need for the design of efficient networks for

data transmission and resource management [9,10].

Since NoC is a key technology in parallel processing

and multi-core systems, examining the challenges

and solutions related to mapping can lead to a better

understanding of the needs of advanced

architectures and offer new approaches to improving

the performance of complex systems. Furthermore,

achieving optimal designs at large scales requires

this topic to be discussed and explored [11,12].

pp. 255:268

https://doi.org/10.82234/IJSEE.2025.1220346

256 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

In static mapping, the allocation of

components and communication paths in the

network design is determined beforehand and

remains fixed throughout the execution of the

system. This approach can significantly impact

reducing communication delay, optimizing energy

consumption, and making better use of hardware

resources such as bandwidth and power

consumption. It also enables the design of scalable

and more efficient systems by optimizing the

distribution of processing loads and

communications between cores. Therefore, this

method can lead to algorithms that enhance the

performance of NoC-based systems and address the

challenges of complex processing systems [13,14].

Numerous algorithms have been proposed to

address these challenges. These algorithms can

improve network efficiency by effectively allocating

communication resources such as bandwidth and

memory capacity. Additionally, many of these

algorithms target the reduction of communication

delay, and by optimally distributing processing

loads, they can decrease the data transfer time

between cores. Reducing energy consumption is

another significant benefit of these algorithms.

Mapping algorithms, by selecting optimal paths and

appropriately distributing processing loads, reduce

the system's power consumption. Thus, using these

algorithms can lead to system stability and overall

performance improvement.

Despite the advantages of these algorithms,

they also face certain drawbacks. One of the main

issues is high computational complexity, which can

increase execution time and computational costs,

especially in systems with a large number of nodes

(up to thousands of application nodes), where

precise mapping requires substantial resources.

Many of these algorithms have limited scalability

and do not perform well in large-scale systems.

Additionally, these algorithms are often dependent

on specific topologies or hardware features, which

makes them ineffective in diverse environments or

with changing hardware configurations. Some

algorithms also fail to optimize multiple objectives

(such as delay, energy, and bandwidth)

simultaneously and focus on just one specific goal.

Moreover, in some algorithms, the reduction of

processing load and optimal use of resources is not

well-executed, leading to instability or decreased

system performance [15,16].

This paper focuses on the challenge of the

increasing number of mapping states as the number

of application graph nodes grows, and we aim to

propose an algorithm to address it.

In recent years, many authors have worked on

the challenge of increasing mapping states as the

number of application graph nodes increases.

However, most of these methods have not been able

to effectively reduce communication costs.

Therefore, in this paper, a mapping algorithm called

FTMA is introduced, which can significantly reduce

communication costs in this network by effectively

utilizing frog-leaping algorithms and Tabu search

[17,18].

The results show that this algorithm achieves

significant improvement compared to the previously

proposed algorithms.

The structure of this paper is organized as

follows. In the section 2, the basic concepts are

introduced, which include the concept of application

graph, mapping on chip network, frog mapping, and

Tabu search mapping. In the section 3, previous

works on mapping algorithms for network-on-chip

architectures are reviewed. In the section 4, the

problem statement is described. In the section 5, the

FTMA mapping algorithm is introduced. In the

section 6, the simulation results are presented and

compared with the latest similar methods in the

field. Finally, the conclusion is provided in the

section 7.

2. Basic Concepts

In this section, the key concepts used in this

article will be examined, and explanations will be

provided regarding them.

A) The concept of usage graph

Each application consists of different

components, and the connections between these

components can be represented as a graph, known as

the application graph. In this graph, the nodes

represent the various components of the application,

while the edges show the connections between them.

Fig. 1 illustrates an example of an application graph.

According to the figure, the graph contains four

nodes labelled Memory, ARM CPU, DISPLAY, and

FFT. Each of these nodes represents a part of the

application, and the numbers on the edges indicate

the bandwidth between each pair of nodes.

In fig. 2, four examples of common and well-

known application graphs used in this paper for NoC

mapping are shown. As observed in the figure, each

application graph consists of several different nodes.

Additionally, some of these graphs are directed,

while others have bidirectional edges. As a result,

they have different structures and can effectively

represent the performance of the algorithm.

B) Mapping Concept in Network on chip

Each node in the application graph represents

a part of the application and performs tasks that can

be executed by the tiles in the NoC. The allocation

of tasks to tiles is determined by the proposed

algorithm, as shown in fig. 3, which provides an

example of the mapping of application graph nodes

257 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

onto the chip. As seen in the figure, the functions of

the ARM CPU, DISPLAY, memory, and FFT are

performed by tiles 2, 3, and 4, respectively.

According to the figure, each application graph is

represented as a graph G=G(V,E), where V refers to

the nodes of the application graph and E represents

the edges between them. Additionally, any

connected graph is represented as G=G(T,P), where

each vertex T refers to a tile, and each directed edge

Pi,j represents a path from tile ti to tile tj [19,20].

Each node in the application graph is mapped

to a node in the on-chip network. Any algorithm

used for this mapping results in the generation of

multiple mappings, each of which can be considered

as a potential solution to the problem. Among these

solutions, the mapping with the lowest communi-

cation cost is selected as the final mapping. The

communication cost of a mapping is measured by

(1). Based on this equation, considering the weights

of the edges between the nodes in the application

graph and the distances between the source and

destination nodes, the connection cost for each pair

of source and destination nodes is calculated.

Finally, by summing all the connection costs

between the source-destination pairs, the total

communication cost is determined [21]. Since

determining the optimal mapping from the available

mappings requires evaluating all possible mapping

configurations, this problem is NP-hard. Therefore,

an algorithm needs to be proposed that can solve this

problem within a reasonable amount of time.

𝐶𝑜𝑚𝑚𝐶𝑜𝑠𝑡 =∑𝑉𝑙(𝑑𝑘) × 𝑑𝑖𝑠𝑡(𝑠𝑜𝑢𝑟𝑐𝑒(𝑑𝑘), 𝑑𝑒𝑠𝑡(𝑑𝑘))

|𝐸|

𝑘=1

(1)

MEMORY

FFT

ARM CPU DISPLAY

200

600

600

200200

Fig. 1. An example of an application graph

5 19

10

11

12

24

7 3

8 6

0.5 190

60

40

40

60
0

250
500

173

Fig. 2. An example of the usage graph [22], a) MPEG4

graph, b) MWD graph, c) 263enc mp3dec graph, d) 263enc

mp3dec graph

where dist(source(d), dest(d)) is the distance (hop

number) between a source and a destination. Vl (d)

is the weight of the edge between the source and the

destination. This weight is multiplied by the distance

between the source and the destination.

C) Frog Leaping Algorithm

The frog leaping algorithm is a nature-inspired

optimization algorithm based on the behavior of frog

groups. In this algorithm, each frog represents a

solution to a problem [23]. The frog leaping

Algorithm starts with an initial population of

possible solutions, which essentially represent

subsets of virtual machines and are divided into

several groups. Some frogs have characteristics that

can be influenced by the features of the entire group.

This algorithm includes local search, which is

similar to the particle swarm optimization (PSO)

algorithm, where frogs improve their positions

towards food sources, share information among each

other, and then compare this information with the

local search [24,25]. As a hybrid algorithm, the frog

leaping algorithm is capable of solving many

complex, nonlinear, and multimodal problems

[26,27].

D) Tabu Search Algorithm

The Tabusearch algorithm is a meta-heuristic

optimization algorithm. The general structure of this

algorithm involves starting with an initial solution to

achieve an optimal solution for a given problem. The

algorithm then selects the best neighboring solution

from the current solution’s neighbors. If this

solution is not in the Tabu list, the algorithm moves

to the neighbour’s solution. Otherwise, the

algorithm checks a criterion called the "aspiration

criterion". According to this criterion, if the

neighboring solution is the best solution found so

far, the algorithm will move forward even if the

solution is in the Tabu list.

MEMORY

FFT

ARM CPU DISPLAY

200

600

600
200200

Mapping Algorithm

Application task graph

RR

R R

1
2

3
4

NOC Platform
Fig. 3. An example of graph mapping on chip - based tiles

258 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

After moving to the neighbouring solution, the

Tabu list is updated. This means that the previous

move is added to the Tabu list to prevent repetition

and avoid getting stuck in a local optimum. The

Tabulist is essentially a tool used in the algorithm to

avoid revisiting the same solutions [28,29]. After a

certain period, moves previously placed on the tabu

list are removed. The duration for which a move

stays in the Tabulist is determined by a parameter

known as tabu time. The movement from the current

solution to the neighboring solution continues until

a termination condition is met. Different termination

criteria may be used for the algorithm, such as a limit

on the number of moves to neighboring solutions.

The advantage of this approach is that it uses

intelligent memory to prevent the generation of

repetitive solutions [30,31].

3. Previous Studies

As shown in fig. 4, there are two types of

mapping algorithms: dynamic and static [32]. In the

dynamic mapping method, the mapping occurs

during execution, resulting in higher energy

consumption, increased computational overhead,

and longer mean time delay. Additionally,

implementing this type of mapping can be

challenging. Static mapping methods are divided

into two categories: accurate mapping and search-

based mapping. Additionally, accurate mapping

algorithms are capable of finding the optimal

solution, but when the number of nodes is high, this

method performs poorly. As a result, the execution

time increases exponentially. On the other hand,

search algorithms are divided into two categories:

deterministic search algorithms and heuristic

algorithms, which can be optimized between these

two sets of iterative search algorithms. In this paper,

we use this method to map the graph nodes of NoC

tiles. One of the key challenges in the domain of

NoC is the mapping process, which has garnered

significant attention from researchers. Since

mapping algorithms directly affect the cost of the

network, selecting the appropriate algorithm is

crucial. The goal of this study is to introduce a low-

cost mapping algorithm for NoC. Additionally, this

paper will review some of the previously proposed

mapping algorithms used to embed graph nodes onto

the chip area.

Fig. 4. Types of methods in order to map the application

graph on 2 D chip

In [33], a mapping algorithm called NMAP is

introduced. The method of this algorithm is as

follows: first, a node of the application graph with

the highest communication need is identified. Then,

this node is mapped to the center of the network on

the chip. Afterward, its neighbors, which have the

most interactions with it, are identified and mapped

in its vicinity. Finally, the Dijkstra algorithm is

applied to find the shortest path. The advantage of

this method is that it reduces communication costs.

However, it cannot achieve the optimal

communication cost for all application graphs.

In [34], a mapping algorithm called Tabu

Search is introduced. In this method, a random

mapping is generated, which is then stored in

memory along with its associated communication

cost. Two tiles are then randomly selected from the

last mapping stored in memory, and tasks within

these tiles are swapped. If a new mapping is

generated and it has not been stored before, it is

stored in memory with its corresponding

communication cost. The algorithm continues

iterating until the termination condition is met. The

mapping with the lowest communication cost is

selected as the final mapping. The advantage of this

method is the use of memory to avoid repetitive

mappings, but it is only suitable for application

graphs with a small number of nodes.

In [35], a mapping algorithm called Elixir is

presented. In this method, first, a set of mappings

with low communication costs is generated using a

tree search. Based on the obtained mappings, the

mapping with the highest energy consumption and

the lowest delay is selected as the final mapping. In

addition to communication cost, energy

consumption and delay are also considered as

criteria. However, this method can result in multiple

possible solutions.

In [36], a mapping algorithm called Ant

Colony Optimization (ACO) is introduced. This

method uses the ant colony algorithm for mapping

tasks. Initially, several random mappings are

generated. Then, the mapping with the lowest

communication cost is selected. Other mappings

attempt to adjust their layout to approach this

mapping. In this way, the optimal mapping is found.

The advantage of this method is that it reduces

communication costs, but it performs well only for

a limited number of application graphs.

In [37], a mapping algorithm called the frog

leaping algorithm is introduced. In this method,

several mappings are generated randomly, and then

the mappings are sorted in ascending order based on

their communication cost. In the next step, the sorted

mappings are classified. Additionally, in the frog

leaping algorithm, each cluster is followed by the

worst mapping. If the communication cost of a new

mapping is lower than that of the worst mapping, the

259 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

new mapping replaces the worst one. Then, the

clusters are recalculated based on communication

costs. If the cost of the new mapping is higher than

the worst mapping, the original worst mapping is

retained. This process continues to find the optimal

mapping. The advantage of this method is that it

works well for application graphs with a large

number of nodes. However, the best mappings are

placed in the first cluster, leading to an unfair

distribution.

In [38], a mapping algorithm called PSMAP is

introduced. In this method, several random

mappings are generated, and the total

communication cost of all mappings is calculated.

The mapping with the lowest communication cost is

selected as the best and stored in memory. The

algorithm repeats these steps until the termination

condition is reached. The advantage of this method

is that it reduces communication costs, but it is not

suitable for graphs with a large number of nodes.

In [39], a mapping algorithm called BMAP

(Binomial Mapping) is presented. This algorithm

consists of three stages: rank computation,

integration, and kernel collector update. The main

advantage of this algorithm is that it can reduce

communication costs for many graphs, but it has

high complexity and adds extra load to the system in

order to achieve optimal mapping.

In [40], a static mapping algorithm called the

improved shuffled frog leaping algorithm (ISFLA)

for 2D mesh topology in network-on-chip is

proposed. In this method, several random mappings

are generated for the application graph, and the

communication cost of all mappings is calculated.

The mappings are then arranged in ascending order

based on their communication cost. Additionally,

the first and last members of each cluster are

improved until the termination condition of the

algorithm is met. The advantage of this method is

that it reduces communication costs, but the method

expands the search space, making it unsuitable for

application graphs with a large number of nodes.

Furthermore, the best mappings are placed in the last

cluster, resulting in an unfair distribution.

In [41], a weed-based mapping algorithm is

introduced. In this method, several solutions are

randomly generated for the application graph. The

total communication cost of all solutions is then

calculated. Based on the merit of each solution, one

or more neighboring solutions are constructed by

manipulating two positions in the layout. The

communication cost of the new layout is calculated.

If the number of solutions exceeds a predefined

limit, solutions with higher communication costs are

discarded. This process is repeated several times to

reach an optimal solution. The advantage of this

method is that it reduces communication costs, but

it can lead to multiple solutions.Table 1 summarizes

the recent proposed mapping algorithms, highlight-

ing their advantages, disadvantages, and differences

from the mapping algorithm proposed in this study.

4. Problem Statement

One of the key topics in the domain of NoC is

the selection of a suitable mapping algorithm.

Choosing the right mapping algorithm can

significantly enhance the performance of the

network-on-chip. Various mapping algorithms have

been proposed for 2D chip networks; however, most

of them suffer from one or more of the following

issues:

− Some methods provide optimal results only for

a limited set of application graphs

− Some methods are only suitable for graphs with

a very small number of nodes

− Some methods incur high communication costs,

leading to increased network overload

− Some methods yield multiple final solutions

Therefore, it is necessary to propose an

algorithm that:

− Is applicable to all types of graphs

− Has low communication cost

Given these issues, mapping algorithms need

to be optimized and precise to reduce communi-

cation costs. Therefore, in Section 5, a mapping

algorithm will be introduced that addresses the

aforementioned problems.

5. FTMA Mapping Algorithm

In this paper, a static mapping algorithm based

on an innovative search algorithm is proposed for

embedding application graph nodes into NoC tiles.

The proposed mapping algorithm is designed for a

mesh topology NoC and demonstrates lower

communication costs compared to the latest works

in the field. The reason for selecting mesh topology

for this study is its advantages, including simple

implementation, smaller space requirements

compared to other topologies, high scalability, and

greater path diversity. These benefits have led to the

widespread use of mesh topology over other

topologies in most studies.

Additionally, the proposed method uses the

XY routing algorithm to compute the number of

steps from the source node to the destination, as this

algorithm offers easy implementation and is free

from issues like deadlocks and lovelocks. The

proposed mapping algorithm combines the

advantages of frog leaping and Tabu search

algorithms. It begins by receiving the application

graph as input. Next, several mappings are randomly

generated for the input application graph. In the

following step, the mapping with the least

communication cost is stored as the best local

260 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

mapping in memory, while the other mappings are

discarded. The proposed algorithm then enters

several classes, each of which is generated based on

a specific pattern and stored in memory. These

classes are repeated until a mapping is found whose

cost is lower than that of the local mapping. At this

point, the new mapping is stored as the best local

mapping, and the existing mappings are discarded.

The algorithm then repeats the steps until the

final condition is met. Fig. 5 illustrates the proposed

mapping algorithm, which is discussed in section 5-

A.

A) The Details of the Proposed Method

In this section, the details of the mapping

algorithm, as shown in Fig. 5 in the previous section,

are explained in full. Based on the data and

information presented in that figure, the various

steps of the algorithm and the methods used are

examined. The aim of these explanations is to clarify

how the components are mapped, introduce the

techniques employed, and predict the outcomes of

this process. Ultimately, this section helps provide a

better understanding of the algorithm's functionality

and its applications, offering a clear picture of how

it is executed.

Table.1.
Recent proposed mapping algorithms

Ref. Difference fromFTMA Disadvantages Advantages Recommended method Algorithm

[33]

Optimal results have been

used for most graph

algorithms

Just for a limited number

of application graph we

have optimal results.

Decrease the

communication

cost

Considering the communication

requirement of graph nodes, the

mapping function is used.

NMAP

[34]

It is suitable for the

application graphs with a

large number of nodes

It is only suitable for

applications graph with

low number of nodes

Not producing

repetitive

graphs

First, the algorithm generates a

random mapping, and then the

tasks of two tiles use the last map

stored in memory randomly.

Tabu-

Search

[35] Has a final answer
Has several final

answers.

Consider two

measures of

consumption

energy and

delay

In addition, we use a mapping

tree search tree.
Elixir

[36]

Optimal results have been

used for most graph

algorithms

Only for a limited

number of application

graph we have optimal

results.

Decrease the

communication

cost

There is a mapping procedure

based on the ant colony

optimization algorithm.

ACO

[37] Fair mapping of mappings
Unfair classification of

mappings

Improving the

communication

cost

First, a number of mappings are

produced randomly. Then the

mappings are classified according

to a specific pattern. In the end, a

mapping is generated randomly

for each category and if its cost is

lower than the cost of the worst

mappings in the category, then it

is replaced

Frog-

Leaping

[38]

It is suitable for application

graphs with a large number

of nodes

It is only suitable for

applications graph with

low number of nodes

It is suitable

for the

application

graphs with a

large number

of nodes

As long as the algorithm

terminates, a number of mappings

are generated by accident and the

mapping which has the lowest

link cost is selected as the best

mapping and stored in memory.

PSMAP

[39]
The simplicity of the

algorithm

High complexity, high

overhead

Decrease the

communication

cost

Through three steps, the

algorithm performs the mapping

and update of the core of the

mapping function.

BMAP

[40]

It is suitable for application

graphs of nodes with a large

number of nodes

It is only suitable for the

application graphs with a

small number of nodes

Decrease the

communication

cost

By improving the frogmapping

algorithm, we perform a mapping

function.

ISFLA

[41]
The fair classification of

mappings is a final solution.

Unequal classification of

mappings

Decrease the

communication

cost

By using a weed algorithm, it

performs a mapping function.

IAM

261 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

In order to clearly illustrate the adaptive

behavior of the proposed FTMA algorithm, the

process in this section is represented in a state-

oriented manner. Accordingly, each “Box” in the

flowchart refers to a distinct decision stage rather

than a fixed sequential step. Depending on the

communication cost evaluation at each stage, the

control flow may return to a previous box or move

forward, which is consistent with the dynamic

search mechanism of hybrid Tabu and frog-leaping

metaheuristics. Furthermore, following the

conventions used in shuffled frog-leaping literature,

the terms “class” and “cluster” are used with the

same meaning to denote groups of mappings that are

processed in parallel during the exploration phase.

a) Inputs of FTMA mapping algorithm: In the

proposed method, the required inputs for mapping

the application graph onto NoC tiles are provided.

These inputs include the application graph, mesh

topology size, number of classes, number of

members in each cluster, number of iterations, and

the cost function. The following provides a more

detailed explanation of each input for the mapping

algorithm.

• Mesh Topology Size: In the proposed algorithm,

the mesh topology size is directly determined based

on the number of nodes in the application graph. For

example, if the input application graph has 9 nodes,

a 3 × 3 mesh topology with 9 nodes is chosen. This

choice significantly affects the node allocation and

the design of the network structure, directly

influencing the system's performance.

• Number of Classes and Members in Each Cluster:

Similar to the frog leaping algorithm, the generated

mappings in this method are classified into clusters.

The number of nodes and the number of mappings

in each cluster must be provided as input to the

simulator. These inputs help the algorithm perform

more efficient classification and search, improving

the overall optimization process and ensuring better

results.

• Number of Iterations: One termination condition of

the proposed mapping algorithm is based on a fixed

number of iterations. The algorithm is executed for

a certain number of iterations, with each iteration

bringing the algorithm closer to an optimal solution.

The number of iterations is given as input,

effectively controlling the execution time of the

algorithm and ensuring it converges within the

desired range.

• Cost Function: Another termination condition is

when the cost function of the best mapping

generated during the algorithm execution becomes

lower than the initial cost function. This cost

function could represent communication costs or

other performance metrics that are continuously

updated throughout the process. When the cost

reaches an acceptable level, the algorithm

terminates. The cost function is introduced as

another input to the algorithm, helping to optimize

the mapping process and ensuring efficient results.

These inputs effectively guide the mapping

process, ensuring that the algorithm can produce the

best possible results in the shortest time.

b) Generating random mapping and calculation

of communication cost: In this method, a number of

mappings are randomly generated based on the

number of classes and members of each cluster. For

example, if there are 5 classes and each cluster have

6 members, the algorithm will randomly generate 30

mappings (30=6×5). Then, the communication cost

for all 30 mappings is calculated. Afterward, these

mappings are randomly distributed among the

classes, with each class containing 6 mappings. As

seen in the proposed method for solving the unfair

distribution problem in the frog-leaping mapping

algorithm, the mappings are randomly assigned to

the clusters [Sections 1 to 3, Box 1 (Fig. 5)]. It is also

important to note that the random mapping refers to

the random assignment of the application graph

nodes to network-on-chip tiles, without considering

the communication cost or any other parameters. In

this method, a set of numbers is randomly generated

based on the number of nodes in the application

graph. These numbers are then mapped to the

processing elements of the network-on-chip. For

instance, if the application graph has 9 nodes, the

method will randomly generate 9 numbers between

1 and 9. These numbers are then mapped to the

processing elements of the network-on-chip (Fig. 6).

c) Arrangement of mappings based on the

communication cost: In this step, the generated

mappings are sorted in ascending order according to

communication cost. Mappings located at the top of

the cluster have lower communication costs

compared to those located lower down. The

communication cost depends on factors such as the

distance between components, the number of

connections, and the resources required to establish

these connections. The main goal is to minimize

communication costs in order to optimize the

establishment of connections. This cost is calculated

using (1).

d) Best local mapping determination: In

Section 5-1-3, the mappings within each cluster are

arranged so that the best mappings in terms of

communication cost are placed at the top of the stack

in each cluster. Then, in the next step, a global

search is performed to find the best mapping among

the clusters. Through this process, only the first

member of each cluster, which has the lowest

communication cost, is compared with the mapping

that has the highest communication cost among the

clusters, and the mapping with the lowest cost is

selected and stored as the best local mapping (see

Box 5).

262 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

e) End condition for the FTMA mapping

algorithm: As stated in Section 5-A, the FTMA

mapping algorithm terminates in two modes:

• First mode: The algorithm is repeated for a

specified number of iterations.

• Second mode: The communication cost

generated during the execution of the algorithm is

less than the total communication cost (Section 6-5).

If either of these two conditions is satisfied, the

mapping with the most complex communication

cost stored in memory is selected as the final

mapping, and then the algorithm terminates.

f) The way of performing box 2 in the FTMA

Mapping algorithm: In the FTMA mapping

algorithm, after determining the best local mapping,

if the termination condition is not satisfied (Section

6), the algorithm enters Box 2. In this phase, the

tasks related to the last mapping stored in memory

are carried out together. During this process, a new

mapping is developed. Then, two modes may arise:

Fig. 5. flowchart of the FTMA Mapping Algorithm

Fig. 6. An example of how to create a random mapping in

the FTMA mapping algorithm

• First mode: If the new mapping does not exist

in memory, the algorithm adds the mapping to

memory.

• Second mode: If the mapping is already

stored in memory, the algorithm switches to Box 3.

Box 3 is responsible for reviewing and selecting the

final mapping from the mappings stored in memory

and completes the optimization process. This part of

the algorithm is explained in the next section.

g) The way box 3 performs in the FTMA

Mapping algorithm: As shown in Section 5-6-1, in

two control modes, the algorithm is directed to Box

3. In this box, the data of the last stored mapping is

263 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

combined with the tasks of the first nodes and the

results of the simulation function. In this process, a

new mapping is generated. Then, the remaining

steps of the FTMA mapping algorithm are

implemented in the same dialog box.

h) The performance of Box 4 in the FTMA

Mapping Algorithm: In Box 4, the tasks of the first

node are combined with the intermediate (central)

nodes in the memory of the last stored mapping. In

this process, a new mapping is generated. Then, the

remaining steps of the FTMA mapping algorithm in

Box 4 are implemented in the same manner as in

Boxes 3 and 2.

i) The performance way of Box 5 in the FTMA

Mapping Algorithm: In Box 5, the last mapping

stored in memory is applied alternately. In this

process, a new mapping is obtained. Then, the

remaining five FTMA mapping algorithms are

performed in the same way as in Boxes 4, 3, and 2.

j) The performance of box 6 in the FTMA

Mapping Algorithm: In Box 6 - Figure 5, a mapping

is generated randomly. Then, the remaining six

FTMA mapping algorithms are executed in the same

manner as those in Boxes 5, 4, 3, and 2.

k) Calculating the communication cost of the

generated mapping and the best mappings

In Section 7, the communication cost of all

existing mappings in memory is calculated. Then,

the communication cost of the lowest local mapping

is compared with that of the best local mapping:

• First case: If the communication cost of the

least application graph is lower than the cost

obtained from the best local mapping, the algorithm

control is transferred to Section 3 of Box 1 in Figure

5, and the algorithm steps are repeated.

• Second case: If the communication cost of the

least application graph is not lower than the cost of

the best local mapping, the algorithm control is

transferred to Box 2 in Fig. 5, and the algorithm

steps are repeated.

In this way, the steps of the FTMA mapping

algorithm continue until the end condition of the

algorithm is met.

B) An example of the performance of the

FTMA mapping algorithm

To better understand the FTMA mapping

algorithm in this section, an example is provided. It

is assumed that the input application graph is the one

shown in Figure 7, which contains nine nodes in the

form of this graph. Thus, the mesh topology size is

initialized as 3 × 3. In this example, the number of

classes, the number of members in each cluster, the

number of iterations, and the total communication

cost are set to 2, 3, 4, and 5, respectively.

In the first step of the FTMA mapping

algorithm, since the number of nodes is 2 and the

number of members in each cluster is 3, 6 (6 = 3 ×

2) mappings are generated randomly. The total cost

of all these six mappings is then calculated, as shown

in Figure 8.

After that, as shown in Figure 9, these

mappings are randomly placed into the clusters,

ensuring that each cluster contains three mappings.

In the second step, the FTMA mapping algorithm is

applied as shown in Figure 10. In each cluster, a

local search is conducted, and the existing mappings

are arranged in ascending order based on their

communication cost. In the third stage, the FTMA

mapping algorithm performs a global search

between the two classes, and the first mapping from

each cluster (mappings 4 and 2) are compared.

t0

t1

t3

t8

t2

t7t6t5

t4

Fig. 7. An example of the input application graph in the

FTMA mapping algorithm

Fig. 8. An example of random mapping algorithm

generating. (a): mapping no.1 with communication cost=12, (b):

mapping no.2 with communication cost=9, (c): mapping no.3
with communication cost=24, (d): mapping no.4 with

communication cost=8, (e): mapping no.5 with communication

cost=14, (f): mapping no.6 with communication cost=26

264 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

Fig. 9. An example of a mapping class in the FTMA mapping

algorithm. First category contains figures (a), (b) and (c). second
category contains figures (d), (e) and (f). (a): mapping no.6 with

communication cost=26, (b): mapping no.4 with communication

cost=8, (c): mapping no.3 with communication cost=24, (d):
mapping no.5 with communication cost=14, (e): mapping no.2

with communication cost=9, (f): mapping no.1 with

communication cost=12

Fig. 10. An example of the mapping algorithm in the FTMA
mapping algorithm. First category contains figures (a), (b) and

(c). second category contains figures (d), (e) and (f). (a): mapping

no.4 with communication cost=8, (b): mapping no.3 with
communication cost=24, (c): mapping no.6 with communication

cost=26, (d): mapping no.2 with communication cost=9, (e):

mapping no.1 with communication cost=12, (f): mapping no.5

with communication cost=14

The mapping with the lowest communication

cost (mapping 4) is then selected as the best local

mapping and stored in memory. In the fourth stage,

the algorithm checks the termination condition, and

since it is not met, the algorithm proceeds to Box 2.

In the fifth stage, the tasks of the last mapping

stored in memory (mapping 4) are alternately

swapped (even & odd) with each other, as shown in

Figure 11. Since this mapping does not already exist

in memory, it is then added to memory. Finally, the

control of the algorithm is transferred to box 3.

In the sixth step, in the last mapping stored in

memory (shown in Figure 11), the tasks of the first

nodes are swapped with the tasks of the last

manipulated nodes, as shown in Figure 12. Since

this mapping does not already exist in memory, it is

added to memory. Additionally, because the

communication cost of this mapping is lower than

the global communication cost (5), the algorithm's

termination condition is met. In this case, the

mapping with the lowest communication cost (the

mappings from Figure 12) is selected as the final

mapping, and the algorithm terminates.

In this section, the details of the proposed

mapping algorithm are presented with an example to

better illustrate the FTMA mapping algorithm. To

demonstrate the superior performance of the

proposed method compared to other methods, the

simulation results of the FTMA mapping algorithm

and its comparison with the latest similar methods

will be presented in the next section.

Fig. 11. An example of creating a mapping via Box 2 in the

FTMA Mapping Algorithm. (a): Swapping even and odd
elements, (b): The mapping created through class 1 with the cost

of 36

Fig. 12. An example of generating a mapping through class 2

in the FTMA mapping algorithm with cost of 3

6. Simulation Results

To evaluate the communication cost of the

proposed mapping algorithm, MATLAB software

265 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

has been used. To investigate the communication

cost, four well-known application graphs—MPEG4,

263, mp3dec, and 263 vehicles—were utilized. The

reason for using different application graphs is to

demonstrate that the proposed method performs well

for application graphs with varying numbers of

nodes. Figure 3 shows the application graph used to

simulate the proposed method. Additionally, based

on the number of nodes, the mesh topology sizes are

set to 3×3 and 4×4. It should be noted that if the

number of nodes in the graph is less than the number

of nodes in the mesh topology, zeros are placed in

the empty mesh topology nodes. Furthermore, the

number of classes and the number of members in

each cluster for the MWD, 263, mp3dec, and 263

vehicles graphs are considered as 5 and 2, 2 and 4,

and 4 and 4, respectively.

Another point is that to ensure consistent

simulations, the proposed method is implemented on

a system with the same specifications. The basic

features of the system are: a dual-core i5 CPU @ 2.4

GHz with 4 GB of RAM.

Fig. 13 presents the evaluation results of the

proposed method in this paper compared to recent

works. Each of the plots in this figure shows the

evaluation results for one of the application graphs.

As seen in the figure, the mapping generated by the

proposed algorithm has a lower communication cost

compared to other algorithms. This improvement is

the result of using the Tabu and Frog Leaping

algorithms to find the optimal mapping among the

available mappings for the network.

This result is also observed in Figure 13(b). In

this figure, the communication cost of the mapping

created by the proposed algorithm is 1086, while the

best communication cost among previous works

belongs to PSMA with a communication cost of

1120. As shown in the figure, the use of a

combination of Tabu and Frog Leaping optimization

algorithms leads to a significant reduction in the

communication cost of the network mapping.

The evaluation results of the FTMA algorithm

on the 263encmp3enc graph are shown in Figure

13(c). These results demonstrate the improvement in

the communication cost of the network mapping by

the proposed method compared to other algorithms.

The communication cost of the mapping by the

FTMA algorithm on this graph is 189.31, while for

other algorithms, this value is higher. In this figure,

the communication costs of the NMAP, PSMA,

LMAP, and BMA algorithms are close to each other

and significantly higher than FTMA. Although the

ISFLA and IAM algorithms have lower

communication costs than other algorithms, their

communication costs are still higher than FTMA.

These results indicate that the Tabu and Frog

Leaping algorithms have played an important role in

finding the best network mapping with the lowest

cost. Fig. 13(d) shows the evaluation results based

on communication cost for the 263decmp3enc

graph. This plot illustrates that the use of the

proposed algorithm for network-on-chip mapping

results in a reduction in communication cost. In this

case, the performance of the algorithm shows a

significant improvement compared to other

algorithms. In order to gain a better understanding

of the performance of the proposed algorithm in this

paper, we next discuss and examine the average

improvement in communication cost compared to

other algorithms. Table 2 shows the percentage

improvement in the communication cost of the

FTMA mapping algorithm of the proposed method

compared to the latest methods in this area. The table

clearly illustrates how the proposed method

performs better in reducing communication costs

compared to other methods.

Fig. 13. Comparison of the communication cost between the
proposed method and the latest similar methods, a) MPEG4

graph, b) MWD graph, c) 263encmp3enc graph, d)

263decmp3enc graph

266 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

According to the data, it is evident that the

proposed method incurs lower communication costs

than the alternatives. This indicates that the

proposed method is more effective in reducing

communication overhead, which in turn reduces the

overall system load and enhances its overall

performance. The last row of Table 2 shows the

average improvement in communication cost of the

proposed algorithm compared to other algorithms.

As seen in this row, on average, the proposed

algorithm achieves a 13.66% reduction in

communication cost compared to the other

algorithms, indicating the effective role of the Tabu

and Frog Leaping algorithms in searching for the

best mapping among the available mappings for the

network-on-chip mapping problem. In general, the

results presented in this table show that the proposed

method outperforms other methods in terms of

reducing communication costs and can have a

positive impact on real-world applications and

complex systems. Fig. 14 illustrates the changes in

communication costs for the proposed method and

three other methods, based on the number of nodes

in the application graph. In this figure, the Y-axis on

the left side represents the communication cost for

the MPEG4 application graph, one of the common

graphs used in this study, particularly in multimedia

and video processing applications. On the right side

of the Y-axis, the communication cost for the

263dec mp3de application graph is shown. As

shown in the figure, the proposed method maintains

an acceptable communication cost even as the

number of nodes in the application graph increases.

This is particularly important, as in complex systems

that require extensive communication between

nodes, keeping communication costs low directly

impacts performance and processing speed.

In other words, an increase in the number of

nodes should not result in a disproportionate

increase in communication costs, and the proposed

method effectively mitigates this issue. These results

demonstrate the advantage of the proposed method

in optimizing communication costs across different

types of graphs and its impact on improving the

performance of complex systems under various

conditions.

Fig. 14. Chart of increasing of the number of nodes and

communication costs

Reducing communication costs is especially

important for complex systems that require

extensive processing and communication.

Specifically, this improvement can lead to faster

processing times and greater system efficiency. By

employing the proposed method, not only are

communication costs minimized, but system

performance is also significantly improved, making

it a suitable choice for practical applications and

systems with specific needs. The reason for this is

that the FTMA algorithm is a combination of two

swarm optimization algorithms: The Tabu search

algorithm and the frog leaping algorithm. The Frog

Leaping algorithm is capable of finding mappings

with the minimum communication cost for

application graphs with a small number of nodes. On

the other hand, the Tabu Search algorithm, using its

intelligent memory, can identify the best mapping

with the lowest communication cost. Therefore, due

to the combination of these two algorithms in the

proposed method, its associated communication cost

has been significantly improved compared to other

methods.

Table.2.
Improvement in the communication cost of the FTMA mapping algorithm to other mapping algorithms.

Average of

improvement

percentage

263dec mp3dec 263enc mp3dec MWD MPEG4 Task Graph

Method

12.62% 8.61% 17.097% 12.35% 12.43% ISFLA [39]

7.45% 9.45% 6.71% - 6.19% IAM [42]

15.34% - - - 15.34% ELIXIR [35]

11.60% 11.92% 17.84% 3.036% 13.61% PSMAP [37]

15.18% - - - 15.18% ACO [36]

13.805% 13.02% 17.84% 8.28% 16.08% NMAP [34]

15.64% 9.58% 17.53% - 19.82% BMA [38]

13.66% Average

267 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

7. Conclusion

In this paper, a mapping algorithm based on the

Frog Leaping Algorithm and Tabu Search is

proposed, aimed at reducing communication costs

compared to recent similar methods in this field. The

proposed mapping algorithm uses a two-

dimensional mesh topology-on-chip method,

offering advantages such as high performance for

application graphs with a large number of nodes by

limiting the state space. This method utilizes smart

memory to prevent repetitive costs and can find the

best mapping in the shortest possible time.

Compared to the latest methods in this area, the

proposed method was able to reduce communication

costs by 7.45%, 15.34%, 15.18%, 13.805%,

17.68%, 17.68%, and 15.64% for ISFLA, IAM,

ELIXIR, PSMAP, ACO, NMAP, LMAP, and BMA,

respectively. For future work, it is recommended to

apply the proposed mapping algorithm for the

mapping of application graphs onto on-chip tiles.

Additionally, the proposed method is currently

applicable only to two-dimensional network-on-

chip systems, but it can be improved in the future to

support three-dimensional network-on-chip

systems. Furthermore, while the proposed mapping

algorithm is designed for mesh topology, it could be

extended in the future to work with other types of

topologies as well.

References

[1] A. Cakin, S. Dilek, S. Tosun, "Energy-aware application
mapping methods for mesh-based hybrid wireless network-
on-chips", The Journal of Supercomputing, vol. 80, pp.
15582–15612, July 2024, doi: 10.1007/s11227-024-06062-
4.

[2] M. Wang, K.C.M. Lee, B.M.F. Chung, S.V. Bogaraju, H.C.
Ng, J.S.J. Wong, "Low-latency in situ image analytics with
FPGA-based quantized convolutional neural network",
IEEE Trans. on Neural Networks and Learning Systems,
vol. 33, no. 7, pp. 2853-2866, July 2022, doi: 10.1109/TNN-
LS.2020.3046452.

[3] S. Shafaghi, R. Sabbaghi-Nadooshan, "Optimal path
diagnosis by genetic algorithm for NoCs", International
Journal of Smart Electrical Engineering, vol. 1, no. 2, pp.
131-136, June 2012, dor: 20.1001.1.22519246.2012-
.01.02.8.6.

[4] C. Xu, Y. Liu. P. Li, Y. Yang, "Unified multi-objective
mapping for network-on-chip using genetic-based hyper-
heuristic algorithms", IET Computers and Digital
Techniques, vol. 12, no. 4, pp. 158-166, March 2018, doi:
10.1049/iet-cdt.2017.0156.

[5] C. Marcon, E. Moreno, N. Calazons, F. Moraes,
"Comparison of network-on-chip mapping algorithms
targeting low energy consumption", IET Computers &
Digital Techniques, vol. 2, no. 6, pp. 471-482, Nov. 2008,
doi: 10.1049/iet-cdt:20070111.

[6] P. Sharma, S. Biswas, P. Mitra, "Energy efficient heuristic
application mapping for 2-D mesh-based network-on-chip",
Microprocessors and Microsystems, vol. 64, no. 9, pp. 88-
100, Feb. 2019, doi: 10.1016/j.micpro.2018.10.008.

[7] M.Z. Dageleh, M.A. Jamali, "V-CastNet3D: A novel
clustering-based mapping in 3-D Network on chip", Nano
Communication Networks, vol. 18, no. 5, pp. 51-61, Dec.
2018, doi: 10.1016/j.nancom.2017.11.002.

[8] N. Ghorbani, E. Babaei, S. Laali, P. Farhadi, "Per unit
coding for combined economic emission load dispatch
using smart algorithms", International Journal of Smart
Electrical Engineering, vol. 5, no. 1, pp. 11-21, March 2016,
dor: 20.1001.1.22519246.2016.05.01.3.7.

[9] M. Hemmati, E. Yaghoubi, S.M.A. Zanjani, M. Dolatshahi,
"Providing a routing algorithm in network on chip to reduce
energy consumption and increase reliability with fuzzy
neural network and genetic programming", Journal of
Novel Researches on Electrical Power, vol. 10, no. 2, pp.
43-51, June 2021, dor: 20.1001.1.23222468.1400.10.2.5.2.

[10] M.R. Hemmati, S.M.A. Zanjani, E. Yaghoubi, "A new
model for enhancing efficiency in on-chip optical networks
based on adaptive routing algorithm", Journal of Southern
Communication Engineering, vol. 13, no. 51, pp. 13-22,
June 2024, doi: 10.30495/jce.2023.1992434.1216.

[11] A. Liu, X. Zhang, Z. Liu, Y. Li, X. Peng, X. Li, Y. Qin, C.
Hu, Y. Qiu, H. Jiang, Y. Wang, Y. Li, J. Tang, J. Liu, H.
Guo, T. Deng, S. Peng, H. Tian, T.L. Ren, "The roadmap of
2D materials and devices toward chips. nano-micro let",
vol. 16, Article Number: 119, Feb. 2024, doi:
10.1007/s40820-023-01273-5.

[12] N. Taherkhani, R. Akbar, F. Safaei, M. Moudi, "A
congestion-aware routing algorithm for mesh-based
platform networks-on-chip", Microelectronics Journal, vol.
114, Article Number: 105145, Aug. 2021, doi:
10.1016/j.mejo.2021.105145.

[13] P.K. Sahu, S. Chattopadhyay, "A survey on application
mapping strategies for Network-on-Chip design", Journal
of Systems Architecture, vol. 59, no. 1, pp. 60-76, Jan.
2013, doi: 10.1016/j.sysarc.2012.10.004.

[14] [2024-277] S.P. Kaur, M. Ghose, A. Pathak, R. Patole, "A
survey on mapping and scheduling techniques for 3D
Network-on-chip", Journal of Systems Architecture, vol.
147, Article Number: 103064, Feb. 2024, doi:
10.1016/j.sysarc.2024.103064.

[15] S.M.A. Zanjani, G. Shahgholian, A. Fathollahi, S.M.H.
Zanjani, "Coordination design of power system stabilizer
and FACTS controllers using nature-inspired
metaheuristics optimization algorithms– A brief review",
International Journal of Smart Electrical Engineering, vol.
13, no. 1, pp. 89-106, Dec. 2024, doi:
10.30495/ijsee.2023.1992877.1278.

[16] M. A. Honarvar, G. Shahgholian, H. Mahmoodian, S.
Yaghoubi, A. Mosavi and A. Fathollahi, "Reviewing power
system stabilizer (PSS) parameters optimization using
evolutionary meta-heuristic algorithms for power system
stability", Proceeding of the IEEE/SISY, pp. 481-486, Pula,
Croatia, Sept. 2023, doi:
10.1109/SISY60376.2023.10417875.

[17] Y. Asadi, "A comprehensive study and holistic review of
empowering network-on-chip application mapping through
machine learning techniques", Discover Electronics, vol. 1,
Article Number: 22, Oct. 2024, doi: 10.1007/s44291-024-
00027-w.

[18] R. Phosung, K. Areerak, K. Areerak, "Design and
optimization of control system for more electric aircraft
power systems using adaptive tabu search algorithm based
on state-variables-averaging model", IEEE Access, vol. 12,
pp. 76579-76588, May 2024, doi:
10.1109/ACCESS.2024.3406855.

[19] S. Saleem, F. Hussain, W. Amin, R. Ahmed, Y.B. Zikria, F.
Ishmanov, "A survey on dynamic application mapping
approaches for real-time network-on-chip-based
platforms", IEEE Access, vol. 11, pp. 122694-122721, Nov.
2023, doi: 10.1109/ACCESS.2023.3329233.

https://dorl.net/dor/20.1001.1.22519246.2012.01.02.8.6
https://dorl.net/dor/20.1001.1.22519246.2012.01.02.8.6
https://www.sciencedirect.com/science/journal/01419331
https://doi.org/10.1016/j.micpro.2018.10.008
https://www.sciencedirect.com/science/journal/18787789
https://www.sciencedirect.com/science/journal/18787789
https://dorl.net/dor/20.1001.1.22519246.2016.05.01.3.7
https://doi.org/10.1007/s40820-023-01273-5
https://doi.org/10.1007/s40820-023-01273-5

268 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025 ISSN: 2251-9246

EISSN: 2345-6221

[20] M. El-Azazy, A.I. Osman, M. Nasr, Y. Ibrahim, N. Al-

Hashimi, K. Al-Saad, M.A. Al-Ghouti, M.F. Shibl, A.H. Al-
Muhtaseb, D.W. Rooney, A.S. El-Shafie, "The interface of
machine learning and carbon quantum dots: From
coordinated innovative synthesis to practical application in
water control and electrochemistry", Coordination
Chemistry Reviews, vol. 517, Article Number: 215976,
April 2024, doi: 10.1016/j.ccr.2024.215976.

[21] W. Amin, F. Hussain, S. Anjum, S. Saleem, N.K. Baloch,
Y.B. Zikria, H. Yu, "Efficient application mapping
approach based on grey wolf optimization for network on
chip", Journal of Network and Computer Applications, vol.
219, Article Number: 103729, Oct. 2023, doi:
10.1016/j.jnca.2023.103729.

[22] J. Hu, R. Marculescu, "Energy and performance aware
mapping for regular NOC architectures", IEEE Trans. on
computer Aided Design of Integrated Circuit and Systems,
vol. 24, no. 4, pp. 551-562, 2005, doi:
10.1109/TCAD.2005.844106.

[23] Z. Tang, Y. Wu, J. Wang, T. Ma, "IoT service composition
based on improved shuffled frog leaping algorithm",
Heliyon, vol. 10, no. 7, Article Number: e28087, April
2024, doi: 10.1016/j.heliyon.2024.e28087.

[24] G. Shahgholian, S. Fazeli-Nejad, M. Moazzami, M.
Mahdavian, M. Azadeh, M. Janghorbani, S. Farazpey,
"Power system oscillations damping by optimal coordinated
design between PSS and STATCOM using PSO and ABC
algorithms", Proceeding of the IEEE/ECTI-CON, Chiang
Mai, Thailand, pp. 1-6, July 2016, doi:
10.1109/ECTICon.2016.7561458.

[25] G. Shahgholian, M. Mahdavian, M. Noorani-Kalteh, M.R.
Janghorbani, "Design of a new IPFC-based damping
neurocontrol for enhancing stability of a power system
using particle swarm optimization", International Journal of
Smart Electrical Engineering, vol. 3, no. 2, pp. 73-78, April
2014, dor: 20.1001.1.22519246.2014.03.02.2.4.

[26] H.P. Hsu, C.N. Wang, "A hybrid approach combining
improved shuffled frog-leaping algorithm with dynamic
programming for disassembly process planning", IEEE
Access, vol. 9, pp. 57743-57756, 2021, doi:
10.1109/ACCESS.2021.3072831.

[27] X. Guo, C. Fan, M. Zhou, S. Liu, J. Wang, S. Qin, "Human–
robot collaborative disassembly line balancing problem
with stochastic operation time and a solution via multi-
objective shuffled frog leaping algorithm", IEEE Trans. on
Automation Science and Engineering, vol. 21, no. 3, pp.
4448-4459, July 2024, doi: 10.1109/TASE.2023.3296733.

[28] A.K. Sangaiah, R. Khanduzi, "Tabu search with simulated
annealing for solving a location–protection–disruption in
hub network", Applied Soft Computing, vol. 114, Article
Number: 108056, Jan. 2022, doi:
10.1016/j.asoc.2021.108056.

[29] M.A. Abido, Y.L. Abdel-Magid, "Eigenvalue assignments
in multimachine power systems using tabu search
algorithm", Computers & Electrical Engineering, vol. 28,
no. 6, pp. 527-545, Nov. 2002, doi: 10.1016/S0045-
7906(01)00005-2.

[30] R. Phosung, K. Areerak, K. Areerak, "Design and
optimization of control system for more electric aircraft
power systems using adaptive tabu search algorithm based
on state-variables-averaging model", IEEE Access, vol. 12,
pp. 76579-76588, May 2024, doi:
10.1109/ACCESS.2024.3406855.

[31] H. Lotfi, "A new hybrid algorithm for multi-objective
distribution feeder reconfiguration considering reliability",
International Journal of Smart Electrical Engineering, vol.
8, no. 3, pp. 83-92, Sept. 2019, dor:
20.1001.1.22519246.2019.08.03.1.0.

[32] J.P. Matos-Carvalho, F. Moutinho, A.B. Salvado, T.
Carrasqueira, R. Campos-Rebelo, D. Pedro, L.M. Campos,

J.M. Fonseca, A. Mora, "Static and dynamic algorithms for
terrain classification in UAV aerial imagery", Remote
Sensing, vol. 11, no. 21, Article Number: 2501, Oct. 2019,
doi: 10.3390/rs11212501.

[33] [21] S. Murali, G. De Micheli, "Bandwidth-constrained
mapping of cores onto NoC architectures", Proceeding of
the IEEE/TATE, pp. 896-901, Paris, France, France, Feb.
2004, doi: 10.1109/DATE.2004.1269002

[34] [22] C. Marcon, E. Moreno, N. Calazons, F. Moraes,
"Comparison of network-on-chip mapping algorithms
targeting low energy consumption", IET Computers and
Digital Techniques, nol. 2, no. 6, pp. 471-482, Nov. 2008,
doi: 10.1049/iet-cdt:20070111.

[35] [24] M. Rashedi, A. Khademzadeh, A. Reza, "Elixir: A new
band width constrained mapping for Networks-on-chip",
IEICE Electronics Express, vol. 7, no. 2, pp. 73-79, Jan.
2010, doi: 10.1587/elex.7.73.

[36] Y. Xie. Y. Liu, "A research on NOC mapping with quantum
ant colony algorithm", Proceeding of the IEEE/WiSPNET,
pp. 874-877, Chennai, India, March 2017, doi:
10.1109/WiSPNET.2017.8299886.

[37] P. Kaur, S.H. Mehta, "Resource provisioning and work flow
scheduling in clouds using augmented shuffled frog leaping
algorithm", Journal of Parallel and Distributed Computing,
vol. 101, no. 4, pp. 41-50, March 2017, doi:
10.1016/j.jpdc.2016.11.003.

[38] P. Sahu, P. Venkatesh, S. Gollapalli, S. Chattopadhyay,
"Application mapping onto mesh structured network-on-
chip using particle swarm optimization", Proceeding of the
IEEE/ISVLSI, pp. 335-336, Chennai, India, July 2011, doi:
10.1109/ISVLSI.2011.21.

[39] M. Keley, A. Khademzadeh, M. Hosseinzadeh, "Efficient
mapping algorithm on mesh-based NoCs in terms of
cellular learning automata", International Arab Journal of
Information Technology, vol. 16, no. 2, pp. 312-322, March
2019.

[40] B. Broumand, E. Yaghoubi, B. Barekatain, "An enhanced
cost-aware mapping algorithm based on improved shuffled
frog leaping in network on chip", The Journal of
Supercomputing, vol. 77, pp. 498-522, Jan. 2021, doi:
10.1007/s11227-020-03271-5.

[41] P.M. Kalahroudi, E. Yaghoubi, B. Barekatain, "IAM: an
improved mapping on a 2-Dnetwork on chip to reduce
communicationcost and energy consumption", Photonic
Network Communications, vol. 41, pp. 78-99, Feb. 2021,
doi: 10.1007/s11107-020-00911-x, 2020.

[42] T. Maqsood, K. Bilal, S. Madani, "Congestion-aware core
mapping for Network-on-Chip based systems using
betweenness centrality", Future Generation Computer
Systems, vol. 82, no. 5, pp. 459-471, May 2018, doi:
10.1016/j.future.2016.12.031.

https://doi.org/10.1016/j.jnca.2023.103729
https://doi.org/10.1016/j.jnca.2023.103729
https://doi.org/10.1016/j.heliyon.2024.e28087
https://doi.org/10.1109/ACCESS.2021.3072831
https://doi.org/10.1109/ACCESS.2021.3072831
https://doi.org/10.1109/TASE.2023.3296733
https://doi.org/10.1016/j.asoc.2021.108056
https://doi.org/10.1109/ACCESS.2024.3406855
https://doi.org/10.1109/ACCESS.2024.3406855
https://dorl.net/dor/20.1001.1.22519246.2019.08.03.1.0
https://dorl.net/dor/20.1001.1.22519246.2019.08.03.1.0
https://ieeexplore.ieee.org/xpl/conhome/8292786/proceeding
https://www.sciencedirect.com/science/journal/07437315
https://ieeexplore.ieee.org/xpl/conhome/5992458/proceeding
https://doi.org/10.1007/s11227-020-03271-5
https://doi.org/10.1007/s11227-020-03271-5
https://doi.org/10.1007/s11107-020-00911-x
https://www.sciencedirect.com/science/journal/0167739X
https://www.sciencedirect.com/science/journal/0167739X

