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Abstract

Environmental water quality monitoring is a global issue, and many efforts are being made to
manage it properly. Enteroviruses are one of the most significant waterborne viruses. These
viruses pose significant risks to the public health of humans, animals, and aquatic species through
the discharge of sewage, agricultural operations, and runoff from landfills, penetrating into surface
and groundwater. Early, rapid, and effective detection of culturable EVs in aquatic systems is
essential to ensure water hygiene levels and implement appropriate water and wastewater
treatment strategies. Biological monitoring of aquatic environments, despite the lower cost of
measuring bacterial indicators such as fecal coliforms, Enterococci, and Clostridium perfringens,
does not guarantee the absence of enteric viruses due to their resistance to chlorination and tertiary
treatment. Enteroviruses are one of the viral indicators for monitoring of water quality and
wastewater treatment systems, which have not yet been widely and commonly used. In this article,
the practical adequacy of various new methods for the concentration and molecular identification
of Enteroviruses in water and wastewater is assessed by evaluating reputable scientific databases.

Keywords: Waterborne viruses, Enteroviruses, Virus indicators, Biomonitoring, Concentration

methods.
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Introduction

Notwithstanding impressive global progress in
improving access to drinking water, approx.
600 million people globally regularly consume
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untreated water; it leads to many deaths related
to ingesting waterborne pathogens (1-3).
According to the EPA (Environmental Protection
Agency) and RWQC (Recreational Water Quality
Criteria) recommendation, the microbial quality
of freshwater and reused wastewater is evaluated
by surveying fecal indicator bacteria (4,5),
Enterococci and Escherichia coli, and viral

Copyright © 2019, This article is published in Journal of Microbial World as an open-access article distributed under the terms of the
Creative Commons Attribution License. Non-commercial, unrestricted use, distribution, and reproduction of this article is permitted in
any medium, provided the original work is properly cited.
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pathogens not wusually incorporated

into  water quality monitoring schedules

are

(6,7). Adenovirus, enteroviruses, noroviruses,
astroviruses, rotaviruses, and hepatitis A viruses
are mammalian waterborne viruses (8-10).
Human enteroviruses (11) are shed in infected
individuals' feces (up to 10" viruses/g-feces),
and infectious sewage can contaminate waters
reused in agriculture, drinking water, and
recreational water (12-14). EVs are caused
about 30-90 % of waterborne disease (15).
However, they are not routinely monitored in
water samples because of some limitations,
including time-consuming techniques and
the necessity of virus concentrations (16,17).
Enteroviruses can survive up to 130 days in
water and sludge. Even at low doses, their
ingestion is responsible for various syndromes,
including Hand, foot, and mouth diseases
(HfMD) (18), respiratory infections, encephalitis,
aseptic meningitis, paralytic illness (including
AFP), myocarditis, and gastroenteritis (19).
Enterovirus A71 (EV71) is the prevailing
etiologic agents of HFMD disease (20).
Therefore, in case of suspected viral infections
due to water pollution, the surveillance activities
to rapidly and effectively identify enterovirus
infections and determine disease-related
serotypes could enhance public health protection
alongside environmental protection from fecal
contamination (21). Viral detection methods
should be sensitive, fast, resistant to
false-positive results, and inexpensive for
drinking water and sewage (22). Although
there are no effective treatments for enterovirus
infections, nevertheless, their identification can
provide the cause of the outbreak and, more
importantly, the conditions for prevention. In
addition, 1t will and
public health authorities from inappropriate

prevent physicians

treatments and lead to significant savings in the

98

health sector.

A) Enterovirus structure: Enteroviruses belong
to Picornaviridae, a family of non-enveloped
viruses with a positive-stranded RNA genome
(~7.4 KB)(23,24). Enteroviruses consist of a
single open reading frame (25), at each end,
ORF is surrounded by untranslated regions
(UTRs) and encodes a precursor polyprotein.
This polyprotein is then cleaved through two
virus-encoded proteases, 2A (2Apro) and 3C
(3Cpro)(26, 27), to yield four capsid proteins
(VP1-VP4) and seven non-structural proteins
(Figure 1) involved in the virus life cycle
(28,29).
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Fig 1. The genome structure of enteroviruses (30).

B) Global distribution and predominating
genotypes: Enteroviruses are globally distributed
and commonly cause asymptomatic infections.
One of Europe's most significant outbreaks of
enterovirus-related infections emerged in 2003
in Minsk, Belarus. The source of infection was
water contaminated with ECHO 30, 6, and
Coxackie BS viruses. The number of patients
referred to the hospital reached 1300 (31, 32).
The next outbreak occurred in 2014 in Ontario,
Canada, and EV-D68 infection associated with
severe respiratory illness was laboratory
confirmed among 16.9% of persons tested
(33). S'UTR has a high level of conservation
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within the enterovirus genus, so it is primarily
used to recognize all enterovirus genomes from
other viral genera (34). The most increased
variability is devoted to gene coding regions
(especially the VP1sequences) which led to the
subdivision of enteroviruses into different
Species and serotypes (35). Enteroviruses
are classified into five groups: poliovirus,
coxsackievirus, echovirus, human enteroviruses
(4 serotypes A-D and some non-human viruses
(E-L) (Table 1) (36). Serological studies have
identified 70 types of human enterovirus using
their antibodies. Distinct enterovirus types can
exhibit various biological properties related to
virulence, transmissibility, and pathogenesis,
and they cause different diseases. More than
100 human enterovirus types have been

Table 1. Classification and taxonomy of enteroviruses.

described (37,38). Given the nature of
enteroviruses, many others with the capacity to
make human disease will likely be discovered.
Brouwer et al. have analyzed the global prevalence
and genotypic distribution of enteroviruses in
Africa, Asia, and Europe (39). Of the four
types, enterovirus B was the most common all
over. The rate of enterovirus A was exceptionally
high in Asia. At the same time, Enterovirus C
was the predominant species in Africa, and
Enterovirus D was the second enormous
species in Europe (39). Another study showed
that the prevalence of different serotypes of
EV-A varies considerably over time from place
to place in Asia and Europe. Overall, EV-A71,
CVAG6, and CVAL16 are a few of the foremost

prevalent serotypes (40,41).

Species

Serotypes

Coxsackievirus

CVA-2, CVA-3, CVA-4, CVA-5, CVA-6, CVA-7, CVA-8, CVA-10, CVA-12, CVA-14, and

CVA-16.

CVB-1, CVB-2, CVB-3, CVB-4, CVB-5, CVB-6, and CVA-9.
CVA-1, CVA-11, CVA-13, CVA-17, CVA-19, CVA-20, CVA-21, CVA-22, and CVA-24.

Echovirus

E-1, E-2, E-3, E-4, E-5, E-6, E-7, E-9, E-11 to E-21, E-24, E-25, E-26, E-27, E-29, E-30,

E-31, E32, and E-33

> waw >

Human

EV-A71, EV-A76, EV-A89 to EV-A92, EV-A114, EV-A119, EV-A120, EV-A121, SV19,
SV43, SV46, and BabEV-A13.

EV-B69, EV-B73 to EV-B75, EV-B77 to EV-B88, EV-B93, EV-B97, EV-B98, EV-B100,
EV-B101, EV-B106, EV-B107, EV-B110 to EV-B113, and SAS.

EV-C95, EV-C96, EV-C99, EV-C102, EV-C104, EV-C105, EV-C109, EV-C113, EV-C116,

EV-C117, and EV-C118.

EV-D68, EV-D70, EV-D94, EV-D111, and EV-D120

Enterovirus

Non-
human

CR—=«—~IQ OOy O W

EV-El, EV-E2, EV-E3, EV-E4, and EV-E5
EV-F1, EV-F2, EV-F3, EV-F4, EV-F5, EV-F6, and EV-F7.

EV-GI to EV-G20
EV-H.
EV-I1 and EV-I2.

EV-J1, EV-J103, and EV-J108.

EV-K1 and EV-K2
EV-LI.

Rhinovirus

>

RV-Al, RV-AIB, RV-A2, RV-A7 through RV-A13, RV-A15, RV-A16, RV-AIS to RV-A25,
RV-A28 to RV-A34, RV-A36, RV-A38 to RV-A41, RV-A43, RV-A45 to RV-A47, RV-A49 to
RV-A51, RV-A53 to RV-A68, RV-A71, RV-A73 to RV-A78, RV-A80 to RV-A82, RV-ASS,
RV-A88 to RV-A90, RV-A94, RV-A96, and RV-A100 to RV-A108

RV-B3 to RV-B6, RV-B14, RV-B17, RV-B26, RV-B27, RV-B35, RV-B37, RV-B42,
RV-B48, RV-B52, RV-B69, RV-B70, RV-B72, RV-B79, RV-B83, RV-B84, RV-B86, RV-B91
to RV-B93, RV-B97, and RV-B99 to RV-B104

RV-CI to RV-C51, RV-C54, RV-CS55, and RV-C56.

Poliovirus

PV-1, PV-2, and PV-3
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C) Reduction and recovery of enteroviruses
by treatment process:
non-enveloped viruses with unique structures,
making them highly tolerant to residual

Enteroviruses are

chlorine from sewage treatment and other
viral-removal-water treatment strategies, such
as UV irradiation, ozone, chlorine dioxide,
peracetic acid, salinity, and temperature
fluctuations (42). Simhon et al. have enumerated
the enteroviruses in urban sewage effluent
before and after disinfection by UV and chlorine
at five wastewater treatment plants. They have
revealed that the PCR-detected enteroviruses
are still abundant in post-disinfection effluent
(2.1x10* -7.2x10°) gene copies (GC)/L) (43).
Without appropriate disinfection, virus infectivity
can be maintained for up to 60 days. These
attributes significantly facilitate the enteroviruses
survival in the aquatic environment (44).
Therefore, advanced disinfection processes
have been applied to maximize EV removal
from wastewater and drinking water, such as
combinations of ozone and UV radiation,
hydrogen peroxide and ozone, hydrogen peroxide
and UV radiation, titanium dioxide with UV
radiation, and advanced membrane technologies
(ultrafiltration 0.01-0.1 um) (45, 46), However
none of these technologies can completely
eliminate EVs in treated water if water is
supplied from inappropriate sources with high
EV titers. Therefore, EVs are considered
waterborne pathogens, and completely removing
them in wastewater treatment plants (WWTPs)
is difficult.

D)
The dose of enterovirus particles in aquatic
environments is too tiny for direct detection, so
relatively large volumes of sludge samples or
wastewater (<100 mL) and large quantities of
recreational and drinking waters (100-1,000 L)

Enteroviruses concentration methods:

are often required, which must be condensed

100

before any detection procedure (47,48). For this
purpose, one or more in-series viral concentration
methods have been developed. The ability to
recover viral particles during the concentration
process is one of the paramount which affect
the efficiencies of downstream detection
techniques (49). Virus concentration usually
at least two steps. The initial
concentration phase reduces the volume of
water to 100- 500 ml, and the second phase
reaches 2-10 ml (50). Adsorption/Elution,
ultrafiltration (UF) (Dead-end ultrafiltration
(DEUF) and Tangencial flow ultrafiltration
(TFUF)), viral flocculation/precipitation with

involves

organic/inorganic flocculants, ultracentrifugation
(UC), and centrifugal ultrafiltration (CeUF)
are standard viral concentration methods of
water samples (51). Brinkman et al. have
suggested that celite (diatomaceous earth)
concentration followed by nucleic acid
extraction can result in 47-98% recovery of
enteroviruses from wastewater (52). The virus
adsorption/Elution method (VIRADEL) has a
recovery rate of about 60-74%, which acts based
on electrostatic interactions between viruses
and electropositive/electronegative filters and
elution by beef extract ,glycine, and polyethylene
glycol (41). Eluates are then re-concentrated to
reduce the volume sample and increase
the efficiency of the detection methods (53).
Electronegative filters are cost-effective and
widely available with high recoveries for
commonly tested enteroviruses (48). According
to the EPA rules, using IMDS electropositive
filters for concentrating enteric viruses from
water is required (54,55). However, these
filters are not cost-effective for frequent virus
monitoring. Karim et al. evaluated a cheap
electropositive filter, NanoCeram. They have
reported that NanoCeram can trap 84% of the
(100L).

poliovirus of tap water samples
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Likewise, the recovery efficiency of echovirus7,
coxsackievirus B5, and poliovirus was reported
to be 32%, 27%, and 54%, respectively. Finally,
they pointed out that enteroviruses recovery
using NanoCeram is similar to or higher than
the 1 MDS (56). Prata ef al. has shown that the
average efficiency of wviral recovery by
ultracentrifuge is 76% and 69% for recreational
water and wastewater samples, respectively.
The organic flocculation method (skimmed
milk flocculation) included only 38% and 22%
of the viral recovery, respectively. However,
ultracentrifuge also has some difficulties,
including the high cost and minimal sample
volumes (10 mL to 1 L) (57). Hmaied et al.
have compared polyethylene glycol and
ultracentrifugation (110,000xg) concentration
methods for detecting enteroviruses in raw and
treated sewage. Their results showed that the
PEG-based method provided higher genome
copies of enteroviruses (5.9 log,y genome
copies/ 100 ml) from raw sewage samples. In
contrast, the ultracentrifuge method reduced
the number of genomic copies to 4.5 log,
genomic copies/ 100 ml. In this way, they

-

rtridge
Elution with 400 ml of buffer (% 1.5 BE/0.05 M
glycine pH=9)

'

Add PEG/MNadl and shaking

Enter Virus concentration
procedure in current study

stated that the PEG-based method is more
precise for samples with high organic matter
load (58). Hollow-fiber ultrafiltration (HFUF)
as a primary concentration method can also ef-
fectively recovers (80%) poliovirus, echovirus 7,
enterovirus 70, and coxsackievirus B4 from the
large tap and river water volumes (59). In brief-
ly, there are two concentration procedures: Pel-
let and Two-phase. The Pellet process, for the
first time, is recommended by the authors of
this study. To concentrate by this method, the
supernatant was transferred to a sterile flask.
Then from the remainder of sewage, 75 ml was
transferred to 5 sterile centrifuge tubes and it
was centrifuged for 10 min with 5000 rmp at 5°
C and the tubes were kept at 4°C. The Two-
phase process was performed by using the rec-
ommended technique of Hovi in 2001(60). For
destroying the bacteria and fungus 1 ml of
chloroform were added to 4 ml of the Straight,
Pellet and Two-phase samples and were shake
for 20 min whit 200 rpm. The containers of the
tubes were centrifuged in 2000 rpm at 5°C and
supernatant was collected in 1.8 ml sterile
cryotube (Figure 2).

centrifugation 400 ml at 2000 xg for 10 min

isolation 5 mi of Twe layer formation in separater
funnel

Add 2 mi of pellet and shaking

Centrifugation at 1500 xg for 10 min

Centrifugation at 15000 xg for 10 min [ “““m"::"f"“;mmm"“’" —*-— concentrated 5 ml of supematant with 1 ml chioroform

Fig 2. Flowchart depicting enteroviruses concentration in water and sewage: electropositive filter (Left) and
two-phase (Right) methods.
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E) Detection methods for enteroviruses in
water and wastewater: The potential and
capability of virus proliferation in cell culture
indicate the pathogenicity of the virus (61). In
this way, it is necessary to provide methods to
identification virus in water and wastewater to
assess the risks associated with its exposure. In
this regard, this review has investigated the
current methods to evaluate the infectivity of
water-borne enteroviruses.

E.1. Cell culture: The cell-culture-based assay
is deemed a gold standard for virus detection.
The cell cultures are monitored daily for the
appearance of cytopathic effects (CPE) by light
microscopy (62, 63). Plaque assay, Most
Probable Number (MPN), and 50% Tissue
Culture Infectious Dose (TCID50) are used to
quantify CPE-producing infectious
(64). These techniques are also used to identify

viruses

enteric viruses in wastewater; however, the
main challenge of enteroviruses cultivation is
choosing a suitable eukaryotic host cell (65).
Buffalo green monkey (BGM) continuous cell
line is the most sensitive cell line for detecting
enteroviruses in water and wastewater (66).
However, a single cell line could not detect all
enteroviruses, even those of the same genus
(Table 2). As well as not all enteric viruses will
produce plaque. In this way, the high cost
of analysis, time-consuming, susceptibility to
bacterial and fungal contamination, and problems
related to non-cultivable enteric viruses (low
sensitivity) are among the disadvantages of cell
culture-based methods (67).

E.2. Biosensors: Biosensors are transportable
bioanalytical devices with ultra-sensitivity and
ultra-specificity, which for the most part,
comprises an analyte, bio-receptor, signal
transducer, and signal reader to detect
biochemical interplays (75). Based on the
transducers and bioreceptors, biosensors are

Table 2. Recommended cell culture systems for isolation
and detection of waterborne enteroviruses.

Virus Cell Line Origin Ref.
RD Human skeletal muscle (68)
Coxsackievirus MRCS Human fetal lung fibroblast cell ~ (69)
A
Human embryonic kidney 293 70
HEK293A & Y 70
BGM Buffalo Green Monkey (71)
Coxsackievirus Hela Human cervical cancer cell (72)
Human papillomavirus type 18 73
HEp2 pap typ (73)
Enterovirus RD Human skeletal muscle (76;481,
Human fetal lung fibroblast cell ~ (73)
Echovirus MRCS5
BGM Buffalo Green Monkey (71)
Poliovirus Human fetal lung fibroblast cell ~ (73)
MRCS5
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organized into optical, electrochemical, mass-based,
calorimetric, and thermometric (76,77). The
development of biosensors dramatically helps
to detect waterborne viruses and can be
substituted for time-consuming conventional
methods (78). Chauhan et al. developed a
multimodal gold—aptamer nanoconstruct-based
biosensor that detects conserved nucleic acid
sequences amongst 96% of all known enteroviruses
(79). Specific binding of aptamers to enterovirus
RNA leads to converting the purple aggregated
gold nanoparticles into the red disaggregated
structure. It creates a signal transduction pathway
that can be identified by spectroscopic, colorimetric,
or lateral flow assays (80). In addition, the
immunosensor based on thiol-modified gold
nanoelectrodes also enabled the detection of
enteroviruses. This biosensing method immobilizes
specific monoclonal enterovirus antibodies on a
gold electrode. Then the electrical properties of
antibody-virus interaction are analyzed by
electrochemical impedance spectroscopy (EIS)
(81).

F) Enterovirus nucleic acids detection for
aquatic Biomonitoring

F.1. Reverse transcription polymerase chain
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reaction (RT-PCR): The advent of molecular
techniques facilitated the development of
diagnostic tools with intensive sensitivity for
detecting human pathogenic viruses with low
concentration. Reverse transcription polymerase
chain reaction (RT-PCR), multiplex RT-PCR,
microarray, real-time or q-PCR, and gold
nanoparticle-improved immuno-PCR  have
been widely developed to detect EVs (82-85).
These have high specificity, sensitivity, and
throughput; thus, they can detect the virus
quickly and with higher reliability than
traditional laboratory methods.
PCR-based methods are susceptible to inhibition
by environmental water matrices. They are

However,

strongly affected by environmental compounds
such as humic and fulvic acids, heavy metal
ions, and nucleases (86). These compounds can
degrade the viral genome or interfere with
polymerase and reverse transcriptase. Besides,
because of the low concentration of enterovirus
in environmental samples, inhibitors can lead
to false negative results, and the risk of
exposure is underestimated (87). In this way,
removing inhibitors of environmental waters is
one of the necessary steps to detect enteroviruses
(88). Optimizing the sample concentration or
nucleic acid extraction process by adding
genome amplification enhancers (dimethyl
sulfoxide, bovine serum albumin, or DNA
carriers) or using optimized polymerases can
be limited the effects of inhibitors (89,90). As
well as in order to eliminate free viral
nucleic acids and remove their adverse
effects in detecting infectious viruses, various
treatment methods can be done prior to
PCR-based quantification (RT-qPCR and
qPCR) (91-93). Enzymatic treatments, RNase
or DNase coupled with proteinase K treatment,
have been shown to eliminate free nucleic acids
somewhat (94). Another approach is viability
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treatment using intercalating dyes such as
propidium monoazide (PMA)/sodium lauroyl
sarcosinate (93), ethidium monoazide (EMA),
cis-dichlorodiammineplatinum (CDDP), and
platinum chloride (PtCl14) (95). These covalently
bind to nucleic acids preventing PCR amplification
(95,96). Immunomagnetic separation (12) is
also used to purify enterovirus particles from
environmental samples and prevents PCR
inhibition. Magnetic beads (Dynabeads M-280
sheep anti-mouse immunoglobulin G) are coated
with mouse anti-enterovirus monoclonal
antibody in this method (97).

F.2. Isothermal nucleic acid amplification:
Isothermal amplification of nucleic acids
(Recombinase polymerase amplification) is a
rapid and efficient amplification performed
under simple conditions (constant temperature
without thermocycling) (91). Recently, isothermal
amplification methods have been extended to
detect a wide range of viral targets based on
microfluidic chips and capillary platforms.
Recombinase polymerase amplification (38) is
an isothermal amplification method with high
specificity and sensitivity to detect pathogens
and viruses. RPA products can be analyzed
using agarose gel electrophoresis, probe-based
fluorescence monitoring, and lateral flow strips
(98, 99). Recently, Xiaohan Yang et al.
developed an RPA-LFS assay for rapid, specific,
sensitive, and accurate assay detection of EV.
They have shown that EV-RPA-LFS is an ideal
diagnostic tool for detecting EVs, and its
results were entirely consistent with the g-PCR
assay's clinical performance (100).

F.3. Integrated cell culture reverse transcrip-
tase quantitative PCR (ICC-RTqPCR): The
fundamental constraint of molecular-based
approaches is the incapability to assess the
infectivity of detected viral particles (101).
Only the virus propagating in a cellular model
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can indicate this aspect (102), so to overcome
this drawback, an integrated cell culture reverse
transcriptase quantitative PCR (ICC-RTqPCR)
was developed for rapid and specific detection
of both infectious and noninfectious enteroviruses
from sewage, marine water, and surface drinking
water sources (103, 104). EPA developed an
enterovirus detection strategy from reagent-grade
and ground waters known as Method 1615
based on cell Culture and RT-qPCR. The
results showed that, in groundwater samples
the recovery rate of poliovirus is 58% and
111% in reagent-grade water (105). Mayer et
al. developed the target-specific ICC-RTqPCR
technique for simultaneously detecting three
types of enteroviruses (coxsackievirus B6,
poliovirus 1, and echovirus 12) (106). Further
on, Ryu et al. simultaneously detected four
enteroviruses relevant to human health
(coxsackievirus A10, echovirus 30, enterovirus
70, and poliovirus 1) using a developed
ICC-RTqPCR in one test (107).

F.4. Next Generation Sequencing: Since
mutation and frequent genetic recombination
can be the origin of phenotypic and genotypic
diversity in the Enteroviruses genome, whole
genome sequencing can be very contributory
and effective for surveillance, public health
purposes, and basic research such as investigating
the viral diversity in various geographic areas
and populations (108,109). The traditional
Sanger sequencing technique is capable of
identifying the whole genome. However, it
is time-consuming and cannot simultaneously
sequence a mixture of viruses (110). Next
generation sequencing (111) is an optimum
alternative to the previous molecular methods
based on ultra-high throughput, scalability, and
speed. NGS could concomitantly detect the
virus types and subtypes in a complex biological
matrix (112). 454 Pyrosequencing, lon Torrent,
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Illumina/Solexa, MinlON, and ABI/Solid
are various NGS platforms enabled for
high-throughput sequencing of known and new
-emerging viruses and could facilitate the
detection of these viruses in water (42,113).
Analyzing NGS genomic data by bioinformatics
software provides an excellent platform for
biomonitoring known and novel waterborne
viruses in aquatic environments and wastewater
(114). Nevertheless, NGS-based studies mainly
face three significant challenges: the high cost
of sample preparation, contamination, and the
need for a strong and specialized computational
infrastructure to analyze the results. High
output of sequencing reads, assembly of
millions of viral genomic reads, and identification
and interpretation of these assembled genomes
are some of the challenges of NGS data analysis
(115). Joffret et al. have designed a rapid,
sensitive sequencing approach to detect and
genetically categorize all human enteroviruses
(EV-A to -D) in a mixture of sewage concentrates
using [llumina NextSeq HiSeq, and nearly 90%
of the genome was sequenced (109). Bessaud et
al. have developed a set of EV-C-specific
primers for synthesizing RT-PCR products that
cover the whole genome of EV-C, and have
sequenced the RT-PCR products by Illumina
sequencing technology (116). Before that,
Baronti et al. also reported sequencing DNA
amplicons covering the enterovirus A71 whole
genome on an lon Torrent Personal Genomic
Machine System (117). They suggested that
these techniques will serve as valuable tools
for sequencing large panels of EVs during
environmental surveillance.

Conclusion

The World Health Organization (WHO)
emphasizes the quality of water (regardless of
the type of consumption, such as drinking,
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irrigation, or recreation) and the need for clean
water free of various viruses, including enteric
viruses that are easily spread among the society
through the fecal-oral transmission route.
Therefore, to ensure the sanitary safety of
drinking water/wastewater, diagnostic methods,
and analytical techniques must be sensitive,
resistant to false-positive and false-negative
results, and allow full automation. Although
conventional methods are greatly applicable for
the routine detection of viruses in clinical samples,
they have never served alone as a preventive
method to detect viral pathogens in contaminated
resources such as
Considering the mentioned obstacles, there is

aquatic environments.

an urgent need for new alternative methods that
not only have the advantages of conventional
methods and compensate for their deficiencies,
but also are able to identify different serotypes
of viral pathogens in contaminated water, and
be able to identify enteric viruses in amounts
much lower than conventional methods as well.
Thus, due to the global concern for worldwide
public health and waterborne outbreaks, we
will always need to improve and identify the
most effective diagnostic strategies to reduce
health risks and improve water quality. Both
viral and bacterial indicators are important in
assessing water and wastewater quality, but
their applications and meanings are different.
Bacterial indicators (such as total coliforms
and Escherichia coli) have long been used to
assess fecal and sanitary contamination of water.
These bacteria are usually easy to culture and
count, and their presence indicates the possibility
of the presence of enteric pathogens (including
viruses). However, they also have disadvantages:
Different persistence: Indicator bacteria may
have different persistence in water and
than pathogenic

wastewater environments

viruses. Uncertain correlation: the presence of
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indicator bacteria does not necessarily mean the
presence of pathogenic viruses, and vice versa.
Less sensitivity to treatment: some viruses
(such as Noroviruses and Adenoviruses) may
be more resistant to treatment processes than
bacteria. In contrast, viral indicators can provide
more accurate and relevant information,
especially for the assessment of Enteroviruses
in water and wastewater. Enteroviruses are a
large group of viruses that can be transmitted
through water and wastewater and cause
various diseases (including polio, meningitis,
and gastrointestinal diseases). The importance
of viral indicators compared to bacterial indicators
is due to the following reasons, first, direct
relevance which means the use of viral indicators
(such as non-pathogenic animal viruses or
phages) can more directly indicate the presence
of pathogenic viruses. Second, similar behavior
in the environment which means indicator
exhibit
pathogenic enteroviruses in the environment
(such as resistance to purification). Third, more

viruses can similar behavior to

accurate detection, the development of molecular
techniques (such as PCR and gPCR), the detection
and identification of viruses even at low
concentrations has become possible recently.
Suggestions for molecular monitoring of
Enteroviruses in water and wastewater:

A) Use of complementary viral indicators: In
addition to bacterial indicators, viral indicators
(such as somatic phages, RNA phages of the F
genus, or non-pathogenic animal viruses)
should be used as complementary indicators.
These indicators can provide a more comprehensive
view of viral contamination

B) Use of advanced molecular techniques: for
the identification and quantification of
Enteroviruses, molecular methods such as
qPCR should be used. These methods have
high speed, sensitivity, and specificity and also
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allow the detection of non-culturable viruses.
C) Regular and targeted monitoring: regular
and targeted monitoring programs should be
developed to identify enteroviruses at key
points in water and wastewater systems (such
as the inlet and outlet of treatment plants, and
drinking water distribution points).

D) Standardization of methods: sampling, virus
concentration, and RNA/DNA extraction methods
should be standardized so that the results are
comparable and reliable

E) Genomic surveillance: where possible,
next-generation sequencing (NGS) methods
should be used to identify different strains of
Enteroviruses and trace the source of infection.
This will help to better understand the epidemiology
and control the spread of diseases.

F) Data integration: results of viral and bacterial
surveillance should be integrated with
epidemiological data on waterborne diseases to
enable a more comprehensive risk assessment
and more effective preventive measures.
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