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Abstract: 
This research conducts an experimental assessment of the high-velocity impact response of three-

dimensional fiber metal laminates (3D FMLs) integrated with a nano-reinforced syntactic foam 

core. Laminates with different nanoclay loadings (0, 3, 5, and 7 wt.%) were fabricated in both 

reinforced and unreinforced forms and subjected to ballistic testing. Impact experiments were 

carried out using a light gas gun system that launched 9 mm steel projectiles at a velocity of 235 

m/s, enabling determination of the ballistic limit velocities. The dynamic behavior and failure 

mechanisms of the laminates were examined through field emission scanning electron 

microscopy (FESEM) to quantify the role of nanoparticle reinforcement on their impact 

resistance. The findings revealed that the addition of 5 wt.% nanoclay yielded an 18.84% 

reduction in residual projectile velocity and a 14.97% improvement in absorbed impact energy 

compared with unreinforced 3D FMLs. Morphological and macroscopic inspections 

demonstrated that nanoclay enhanced fiber–matrix interfacial adhesion, suppressed matrix 

microcracking, and mitigated interlaminar delamination. These effects were attributed to the 

reinforcing action of nanoclay within the polymeric phase. Conversely, nanoclay incorporation 

was observed to reduce adhesion at the aluminum–composite interface, which promoted more 

severe plastic deformation of the aluminum sheets during impact. Additionally, microstructural 

analysis confirmed that nanoclay particles facilitated fiber fibrillation, thereby enhancing the 

energy dissipation capacity of the laminate under high-velocity impact conditions. 
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Fiber Metal Laminates (FMLs) constitute a class of advanced hybrid composite materials, first 

introduced with the development of aluminum–aramid reinforced laminates (ARALL) [1]. While 

ARALL demonstrated superior fatigue resistance and fracture toughness, its application was 

limited by comparatively low compressive strength [2]. Subsequent generations, including carbon 

and glass fiber-reinforced aluminum laminates (CARALL and GLARE), were developed to offer 

enhanced mechanical performance and structural stability [3].These laminates are architected as 

multilayered structures, synergistically combining alternating metallic sheets and fiber-reinforced 

polymer (FRP) plies. This design merges the high specific stiffness and strength-to-weight ratio 

of composites with the ductility, toughness, and impact resistance of metals. Consequently, FMLs 

can withstand diverse loading conditions, including static, creep, and cyclic fatigue loads. A 

primary limitation, however, stems from their brittle polymeric matrices, which render them 

susceptible to impact-induced damage mechanisms such as matrix cracking, delamination, and 

fiber breakage [4]. Compared to monolithic metallic and conventional composite structures, 

FMLs provide superior fire resistance, enhanced fatigue performance, and improved impact 

resistance, all while maintaining a low specific weight [5]. These properties have led to their 

adoption in aerospace applications like fuselage skins and propeller blades [6], in defense for 

armor systems, and in the automotive industry for energy-absorbing structures [7,8]. The 

operational environments in aerospace and defense frequently subject structures to high-velocity 

impact (HVI) events from threats such as bird strike, hail, and runway debris, which can severely 

compromise structural integrity and service life [9]. Extensive empirical and numerical research 

has therefore been dedicated to characterizing the dynamic response of FMLs under ballistic 

impact, consistently demonstrating their superior energy absorption, controlled failure 

mechanisms, and enhanced perforation resistance compared to conventional materials [10–13]. 

This drive for enhanced performance has led to research into material modifications, particularly 

through the incorporation of nanoreinforcements into the polymeric matrix to improve interfacial 

bonding, energy absorption, and damage tolerance [14,15]. For instance, Khurram et al. [17] 

demonstrated that a 2.5 wt.% CNT addition improved adhesion via nano-mechanical interlocks. 

Shahjouei et al. [18] observed that 0.9 wt.% GNPs increased in-plane stiffness, and Haro et al. 

[19] reported that nanofillers improved fiber-matrix adhesion while microfillers reduced void 

content. Nanoclay reinforcements have shown particular promise in enhancing ballistic 

performance. Behari et al. [20] reported that incorporating 3 wt.% modified nanoclay enhanced 

flexural strength and fracture toughness under HVI. Research has detailed key energy dissipation 

mechanisms, including fiber fracture, matrix cracking, and metal plastic deformation [21], and 

has shown that impact response is also influenced by projectile geometry [22,23]. Comparative 

studies, such as those by Heimbs et al. [24], have further evaluated different fiber systems for 

optimal performance. Recent multi-scale reinforcement strategies focus on nanofillers like 

nanoclay due to its high aspect ratio and ability to improve interfacial adhesion [25–27]. Studies 

on nanoclay-reinforced sandwich panels have demonstrated significantly higher kinetic energy 

absorption compared to conventional structures [28–32]. In this study, we investigate the high- 
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velocity impact behavior of three-dimensional fiber metal laminates (3D FMLs) incorporating a 

syntactic foam core reinforced with nanoclay. Experimental ballistic testing was conducted using 

a light-gas gun with steel spherical projectiles at an impact velocity of 235 m/s. The primary 

objective is to quantify the influence of nanoclay concentration on the ballistic limit velocity, 

residual velocity, and energy absorption characteristics, thereby contributing to the development 

of advanced impact-resistant hybrid structures. 

2. Materials and methods 

2. 1. Materials 
This study fabricated a three-dimensional fiber metal laminate (3D FML) comprising two 2024-

T3 aluminum alloy sheets and composite laminates made from twelve layers of woven E-glass 

fiber in an epoxy matrix, all bonded to a syntactic foam core. The epoxy resin was modified with 

Cloisite 5A nanoclay to enhance mechanical properties. To optimize interfacial adhesion, the 

aluminum and glass fibers underwent a chemical surface treatment using NaOH, K₂Cr₂O₇, and 

H₂SO₄ to increase surface roughness and wettability. The core consisted of a syntactic foam made 

with ceramic microballoons (33) 

Table 1  mechanical and Structural properties of ceramic microballoons 

Microballoon  
type 

Outer 
diameter  
(μm)  

True 
density  
(g/cm3) 

Thickness to 
radius  
ratio (%)  

WM 170 0. 7 10 
    

The architectural layout, including the ply stacking sequence and overall geometric design of the 

three-dimensional fiber metal laminate (3D FML) specimens, is detailed in Figures 1 and 2. 
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Fig. 1. Stacking sequence and geometry of the 3D fiber metal 

laminate (3D FML) specimens 
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2.2. Specimens fabrication 

The fabrication process initiated with the production of syntactic foam cores. These consisted of 

an epoxy matrix containing a constant 20 vol% of ceramic microballoons. To study the influence 

of nanoclay, weight fractions of 0%, 3%, 5%, and 7% were added (35,36). The epoxy resin was 

first heated to 75°C for 24 hours to lower its viscosity. The nanoclay was then dispersed via high-

shear mixing at 500 RPM for 30 minutes, followed by 15 minutes of ultrasonication at 60% 

amplitude (36). After degassing to remove microbubbles, the microballoons were manually 

mixed in with a wooden rod to prevent crushing, and the hardener was added. The mixture was 

cast into a mold and cured at room temperature for 48 hours. For the final 3D FML assembly, the 

cured core was cut into panels. These were sandwiched between twelve layers of E-glass fabric 

(six per side) using a hand lay-up technique. A pressing operation was applied after 24 hours of 

curing to enhance core-skin adhesion and optimize the fiber volume fraction. 

2. 4 Impact testing procedure 

High-velocity impact tests were conducted using a gas gun system to propel spherical 316 

stainless steel projectiles (9 mm diameter, 3 g mass) at a target velocity of 235 m/s. The projectiles 

were heat-treated to a hardness of 52 HRC to ensure consistent penetration. The 4-meter-long 

barrel had an internal diameter of 10 mm, with projectile release controlled by a high-speed 

solenoid valve and a pressure vessel rated to 60 bar. The 3D FML specimens were rigidly clamped 

in a fixture, exposing a 100 mm x 100 mm target area. The ballistic limit velocity, defined as the 

minimum velocity for complete perforation, was determined using a standard empirical relation 

(Equation 1) (37,38). 

𝑉𝐵𝐿 = √𝑉𝑖
2 − 𝑉𝑟

2       for  𝑉𝑟 > 0   (1) 

The energy absorption capacity of the 3D FML specimens under high-velocity impact was 

quantified using Equation (2), which calculates the total energy dissipated by the laminate during 

the impact event. 

 𝐸𝑘 =
1

2
𝑚𝑝𝑉𝐵𝐿

2 (2) 

where 𝑚𝑝, Vi، Vo،, Ek, 𝑉𝐵𝐿 and were the impactor mass, initial velocity, residual velocity, 

absorbed energy, and limiting velocity, respectively. (18) 

2. 5 Microstructural Characterization 

3. he fracture morphology of the constituent aluminum and composite core layers was 

characterized via field emission scanning electron microscopy (FESEM) using a VEGA 

TESCAN-LMU system. This analysis also served to evaluate the quality of nanoclay 

dispersion in the epoxy matrix. 
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4. Results  

3. 1. Impact behavior 

The impact test results, detailed in Table 2 and Figures 2–3, demonstrate that nanoclay 

reinforcement significantly enhances the ballistic performance of 3D fiber metal laminates 

(FMLs). The unreinforced specimen (0 wt.% nanoclay) exhibited the highest residual velocity 

(138 m/s), indicating minimal energy absorption. Performance improved with nanoclay addition: 

3 wt.% reduced residual velocity by 7% to 129 m/s, while 5 wt.% yielded an 18.8% reduction to 

112 m/s—the optimal result. This enhancement is attributed to improved stress transfer, matrix 

toughening, and mechanisms like crack deflection and fiber bridging. However, 7 wt.% nanoclay 

increased residual velocity to 121 m/s due to nanoparticle agglomeration, which causes stress 

concentrations and reduces energy dissipation efficiency. Ballistic limit velocity followed a 

similar trend, rising from 190.5 m/s (0 wt.%) to 206.6 m/s (5 wt.%) before declining to 201.7 m/s 

(7 wt.%). Absorbed energy data corroborated these findings, with the 5 wt.% sample showing a 

17.2% increase over the baseline, while the 7 wt.% specimen improved by only 6.05%. The 

results confirm that 5 wt.% nanoclay optimally enhances energy absorption through improved 

interfacial adhesion and nanomechanical interlocks, whereas higher concentrations induce 

agglomeration and matrix embrittlement. These findings underscore the potential of nanoclay-

reinforced FMLs for aerospace and defense applications requiring superior impact resistance. 

Table 2 Results obtained from the high-velocity impact test of 3D FMLs. 

Nanoclay  
content  
(wt. %) 

Residual  
velocity 
 (m/s) 

Limit  
velocity  

(m/s) 

Absorbed  
energy 

 (J) 

Specific  
absorbed  

energy (J/kg) 

0 138 190. 5 97. 1 971 

3 129 196. 2 103. 3 1033 

5 112 206. 6 114. 2 1142 

7 121 201. 7 108. 7 1087 

 

 

 

 

 

 

 

 

 

 

 

 



33 Journal of Mechanical Research and Application (JMRA), Vol. 14 No.4, 1403(2025),28-39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. High-velocity impact absorbed energy results for reinforced and unreinforced FMLs 
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Fig. 2 High-velocity impact results for reinforced and unreinforced FMLs: (a) ballistic limit velocity, (b) residual velocity. 
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3. 2 Microscopic Analysis 

Figure 4 shows nanoclay dispersion in the resin matrix at 0, 3, 5, and 7 wt.%. A uniform 

distribution is observed at 3 wt.% and 5 wt.%, while agglomeration and inhomogeneity become 

evident at the higher 7 wt.% concentration. 

 

 

Figure 5 presents FESEM analysis of the nanoclay-reinforced 3D FML cores. The 0 wt.% sample 

(Fig. 8a) shows poor epoxy-fiber adhesion, indicated by residual resin on the fiber surfaces, which 

weakens load transfer. Incorporation of 3 wt.% nanoclay (Fig. 8b) improves interfacial bonding, 

while 5 wt.% (Fig. 8c) significantly enhances matrix-fiber cohesion. However, at 7 wt.% (Fig. 

8d), severe nanoclay agglomeration occurs, creating stress concentrations that promote crack 

initiation and growth. This agglomeration at higher concentrations detrimentally compromises 

the mechanical properties, underscoring the importance of optimal nanoclay dispersion for 

maximizing laminate performance. 

 

 

 

 

 

 

Fig.4. FESEM analysis of nanoclay distribution in the composite matrix: (a) 0 wt.%, (b) 3 wt.%, (c) 5 

wt.%, and (d) 7 wt.% 

 

a d b c 

20 µm 20 µm 20 µm 20 µm 

Fig. 5. FESEM images of the fracture surface of FMLs containing nanoclay after high-velocity impact: (a) 0 wt.%, (b) 3 wt.%, (c) 5 
wt.%, and (d) 7 wt.% 



35 Journal of Mechanical Research and Application (JMRA), Vol. 14 No.4, 1403(2025),28-39 

 

Research confirms that crack propagation in composites initiates at matrix weak points, such as 

nanoclay agglomerations, where poor resin wetting creates stress concentrations that degrade 

mechanical properties. While 5 wt.% nanoclay can reduce epoxy-glass fiber adhesion (20,37), it 

generally enhances matrix load transfer and restricts crack growth. However, microcracks often 

propagate along fiber-matrix interfaces, leading to fibrillation under high strain. In 3D FMLs, 

aluminum-composite interfacial adhesion is critical. Nanoclay incorporation strengthens this 

bond, shifting failure from the interface into the epoxy matrix itself, thereby improving impact 

resistance. This is evidenced by higher absorbed energy and ballistic limit velocities. The 

mechanism transitions from simple adhesive bonding to enhanced nanocomposite mechanical 

interlocking, which significantly improves load transfer and structural cohesion under dynamic 

loads (37). Optimizing nanoclay content is thus essential for maximizing the ballistic performance 

of 3D FMLs. 

3. 3. Ballistic limit velocity 

Ballistic testing on thirty-six 3D FML panels evaluated failure mechanisms and ballistic limits. 

All specimens exhibited projectile-diameter plugging and core-skin debonding. Nanoclay 

modification reduced crack length but increased microcrack density, enhancing energy 

dissipation—most effectively at 5 wt.%. However, 7 wt.% nanoclay decreased compressive 

strength and perforation resistance due to particle agglomeration and embrittlement. Results 

indicate a critical trade-off between nanoclay-induced toughening and structural integrity loss at 

higher concentrations. 

 

 

 

 

 

 

 

 

 

Figure 7 analyzes post-impact crack propagation in the aluminum layer, demonstrating 

nanoclay's role in altering fracture behavior. The unreinforced (0 wt.%) sample exhibited a 

maximum crack length of 3.09 mm with six radial cracks. Incorporation of 3 wt.% nanoclay 

reduced maximum crack length to 1.72 mm and increased crack count to seven, indicating 

improved stress distribution and interfacial adhesion. Optimal performance occurred at 5 wt.%,  

a b c d 

Fig. 6. FESEM analysis of the projectile impact on the plate: (a) 0 wt.%, (b) 3 wt.%, (c) 5 wt.%, and (d) 7 wt.%. 
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with crack length further reduced to 1.60 mm, demonstrating effective crack suppression and 

enhanced delamination resistance through improved nanoparticle-matrix interaction. This was 

aided by chemical etching of the aluminum surface, which created micro-cavities for resin 

infiltration, forming nanocomposite mechanical interlocks. 

However, at 7 wt.%, agglomeration caused stress concentration, increasing crack length to 1.90 

mm. This confirms that excessive nanoclay content compromises structural homogeneity. The 5 

wt.% concentration produced the most favorable crack network—dense but short—maximizing 

energy dissipation and impact resistance. These findings emphasize that optimizing nanoclay 

dispersion is critical for enhancing FML performance without inducing embrittlement or reducing 

compressive strength. 

 

 

 

 

 

 

 

 

5. Conclusion  

This study systematically evaluated the effect of nanoclay reinforcement on the high-velocity 

impact behavior of three-dimensional fiber metal laminates (3D FMLs). The optimal performance 

was achieved with 5 wt.% nanoclay, which significantly improved ballistic resistance, energy 

absorption, and damage tolerance. At this concentration, residual velocity decreased by 18.84% 

to 112 m/s, ballistic limit velocity increased to 206.6 m/s, and absorbed energy rose by 17.2%, 

indicating enhanced stress transfer and crack deflection. Microstructural analysis via FESEM 

confirmed uniform nanoclay dispersion at 3–5 wt.%, improving resin-fiber adhesion and 

inhibiting crack propagation. Conversely, 7 wt.% nanoclay led to agglomeration, causing stress 

concentration, matrix embrittlement, and reduced performance. Fractography highlighted the role 

of nanoclay in promoting nanomechanical interlocking at the fiber-metal interface, shifting 

failure from adhesive to cohesive modes. In conclusion, nanoclay-reinforced FMLs demonstrate 

superior impact resistance within an optimal concentration range. The 5 wt.% formulation offers 

the best balance of properties, making it highly suitable for aerospace, defense, and automotive  

a b c d 

Fig. 7. FESEM analysis of cracks formed on the plate: (a) 0 wt.%, (b) 3 wt.%, (c) 5 wt.%, and (d) 7 wt.%. 
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applications where lightweighting and impact protection are critical. Future efforts should focus 

on optimizing dispersion techniques to prevent agglomeration and further improve mechanical 

performance. 
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