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Abstract 

This paper investigates a single-server queueing system in which customers arrive in batches at a constant rate. 

Each customer undergoes a mandatory first-stage service, followed by an optional second-stage service. The server 

is subject to breakdowns that can occur at any point during either service stage. A phased repair mechanism, 

consisting of both essential and optional repairs, is incorporated into the model. Upon completion of the essential 

repair, the server proceeds to the second repair phase with probability 𝑞1. Likewise, after the (𝑗 − 1)𝑡ℎ phase 
(𝑗 = 2,3, . . 𝑘), it enters the 𝑗𝑡ℎ phase with probability 𝑞𝑗−1; otherwise, it leaves the repair system to resume service. 

In this manner, the server may undergo up to k repair phases, including the initial essential phase. Further, it is 

assumed that customers are impatient in nature may balk from the system if server is not available on their arrival. 

To analyze the system’s steady-state behavior, the study utilizes probabilistic reasoning alongside the 

supplementary variable technique. Key performance metrics are derived using the generating function method, and 

their validity is demonstrated through numerical examples. 

. 
 

Keywords - Bulk, Phase repair, Balking, N-policy, Phase service  

 

INTRODUCTION 

Stochastic queueing models, developed under a variety of assumptions, are extensively employed in domains such as cloud 

computing, logistics, automated warehousing, and data networks to analyze system behavior and evaluate performance 

measures. A major challenge in these systems is the unpredictable failure of service units-such as overloaded servers in cloud 

platforms, malfunctioning robots in warehouses, or faulty routers in communication networks—that can disrupt operations and 

impede the flow of tasks or data. In practice, continuous service availability cannot be guaranteed, as breakdowns frequently 

arise from hardware malfunctions, software errors, or environmental factors. Recovery is further complicated when repair 

personnel or replacement components are not immediately accessible, resulting in prolonged downtime and diminished 

efficiency. 

     Classical queueing models generally assume that once a server enters the repair state, restoration is completed in a single 

uninterrupted phase. However, real-world repair processes are often more complex, requiring multiple optional phases, where 

subsequent stages are undertaken depending on the server’s condition or operational requirements. For instance, in industrial 

maintenance, an initial diagnostic and basic repair may be followed, if necessary, by component replacement, calibration, or 

system testing, constituting an additional repair phase. Incorporating such multi-phase repair structures into queueing models 
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provides a more realistic framework for analyzing system dynamics, particularly in environments where the complexity and 

variability of repair tasks significantly affect overall performance. 

     In both service-oriented and industrial queueing environments, customer impatience, typically characterized by behaviors 

such as reneging or balking, plays a critical role in determining key system performance measures, including average queue 

length, customer waiting time, and overall system throughput. Neglecting such behavior may lead to overly optimistic and 

unrealistic assessments of service quality, resource utilization, and system efficiency. For instance, in a telecommunications 

call center, callers who are subjected to prolonged delays often abandon the call before being served, thereby contributing to 

service loss, reduced revenue, and diminished customer satisfaction. To more accurately capture system dynamics, it is essential 

to incorporate customer impatience while developing queueing models. Incorporating such mechanisms allows for a more 

comprehensive evaluation of the complex trade-offs among staffing levels, service capacity, and customer retention.       

Consequently, the inclusion of impatience as a fundamental modeling parameter is essential for producing analytically robust 

and practically relevant insights in the design, analysis, and optimization of modern service systems. 

REVIEW OF LITERATURE   

In contemporary communication and information processing systems, service interruptions constitute a critical operational 

challenge, often resulting in significant economic losses and reduced customer satisfaction. To address these issues, a 

substantial body of research has focused on the development of queueing models that explicitly account for service interruptions 

arising from server failures under diverse operating assumptions. 

     Early contributions in this area include the works of Sengupta [1], Takine and Sengupta [2], Madan [3], Ke [4], Pearn et al. 

[5], Ke and Lin [6], Ke [7], Kumar and Arumuganathan [8], and Jain and Agarwal [9]. Building upon these foundations, 

Choudhury and Tadj [10] analyzed a bulk queueing model with an unreliable server operating under an N-policy, where 

customers arrive in batches of random size, service is delivered in two sequential phases, and server vacations follow a Bernoulli 

schedule. Wu and Lian [11] extended this line of research by studying a single-arrival queueing system with both positive and 

negative arrivals, priority queues, and a retrial mechanism under a Bernoulli vacation schedule, where negative arrivals induce 

server breakdowns. Singh et al. [12] introduced a bulk-service retrial model with server unreliability, incorporating Bernoulli-

type vacation policies and multiple optional services supplementing the essential service. Rajadurai et al. [13] considered a 

retrial queue with negative arrivals and working vacations, wherein the server initiates a working vacation with probability p 

when idle, though the vacation may be interrupted by the arrival of a negative customer. 

     Further developments include the work of Ayyappan and Karpagam [14], who examined an unreliable N-policy-based 

queueing system with standby service, customer loss, and feedback, where multiple Bernoulli-type vacations are permitted and 

a standby server is activated during failures of the main server. Ayyappan et al. [15] studied a bulk-service model with two-

phase service and standby redundancy, where the standby server is deployed during repair following startup failures. Kumar 

and Jain [16] applied the matrix-geometric method to analyze an unreliable Markovian queueing model with two-stage service 

and a hybrid vacation policy. Li and Liu [17] also employed the matrix-geometric approach to study a general system with 

multi-phase service and working vacations under Bernoulli interruptions. Bharathi and Nandhini [18] used the supplementary 

variable technique to investigate an unreliable queueing system with compulsory and optional services, where the server takes 

a vacation with probability p once the orbit becomes empty. Most recently, Ayyappan and Gurulakshmi [19] provided a 

comprehensive analysis of a Markovian arrival system with multiple vacation types, N-policy-based interruptions, optional 

service phases, breakdown–repair mechanisms, setup delays, and customer discouragement. In a related study, Kumar [20] 

examined an unreliable model with delayed repair and a single vacation policy, in which the server delivers service through 

multiple optional phases. 

     The impatient behavior of customers represents a critical factor influencing the performance of queueing systems. 

Recognizing its significance, numerous researchers have incorporated customer impatience into the formulation of queueing 

models under varying operational assumptions. Notable early contributions in this domain include the works of Wang and Ke 

[21], Jain et al. [22], Movaghar [23], Xiong and Altiok [24], Chakravarthy [25], and Arrar et al. [26]. In related work, Singh et 

al. [27] examined a finite-capacity Markovian queueing system with impatient customers operating under two randomly 

changing environments, each characterized by distinct service rates. Extending this line of research, Yang and Wu [28] analyzed 

a finite-capacity Markovian queue with impatient customers, introducing the concept of working breakdowns, whereby the 

server may fail and undergo repair during the service of a customer at a relatively low rate. Morozov et al. [29] employed the 

matrix-analytic method to study a multiclass retrial queue with impatient customers, where arriving customers either join a 

corresponding orbit or balk from the system. More recently, Bharathi and Nandhini [30] investigated a single-server model 
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with a modified Bernoulli vacation schedule and customer balking, under the assumption that the server provides two categories 

of service: essential and non-essential. 

 

PRACTICAL JUSTIFICATION OF MODEL 

In a cloud-based data processing environment, user jobs arrive according to a renewal process and are stored in a common 

buffer until the scheduler initiates service under an N-policy. Each job undergoes a multiphase service structure: an essential 

computation phase involving tasks such as data ingestion, preprocessing, and distributed execution, followed by the user's 

discretion, with a probabilistic optional phase that may include aggregation, visualization, or report generation. 

     The computing facility is assumed to be unreliable, and failures may occur during any service phase. To address such 

interruptions, the repair mechanism is designed as a multistage process: initially, a rapid soft-recovery attempt (e.g., restart of 

the virtual machine or container) is performed; if unsuccessful, an optional migration phase is invoked to reallocate the task to 

a different host; and, if instability persists, a more comprehensive repair stage (such as image rebuilding or hardware 

reassignment) is executed before service resumes from the point of interruption. 

     The activation of the server is governed by the N-policy: service commences only when the number of queued jobs reaches 

the threshold N, thereby reducing overhead associated with frequent activation. However, this control mechanism introduces 

additional waiting time, during which customers exhibit impatience. Each job is characterized by a finite patience time, often 

modelled as a random variable, and any job whose waiting time exceeds its patience threshold abandons the system prior to 

service initiation. 

     This integrated framework thus captures the interaction between batch activation (via N-policy), multiphase service with 

optional stages, multistage repair under unreliability, and customer impatience, making it well-suited for the performance 

evaluation of modern cloud computing platforms.  

     The wide applicability of phase-type service and repair mechanisms, together with bulk arrivals and impatient customer 

behavior, motivates the present study of a queueing model with balking, which incorporates bulk arrivals, an optional service 

component in addition to the essential one, a multi-phase repair process, and a control mechanism governed by the N-policy. 

The remainder of this paper is organized as follows. Section 2 presents a detailed description of the model along with the 

definitions of various terms employed. In Section 3, the governing equations of the system are formulated. Section 4 is devoted 

to the mathematical analysis of the model based on these equations. In Section 5, key performance indices are derived. Finally, 

Section 6 provides numerical illustrations and sensitivity analysis to highlight the applicability and robustness of the proposed 

model. 

MODEL DESCRIPTION  

In many industrial scenarios, the main objective of any manufacturing/ production process is to produce quality products with 

low cost and minimum time. To produce optimal results in various congestion situations, including the field of digital 

communication systems, manufacturing/production systems, etc., where the service may be rendered in two phases.  In the 

present investigation, we assume that there is a provision to go for the immediate repair on an unpredictable breakdown of the 

server, and the repair may be done in different phases. The repair may be delayed due to the unavailability of the repairman or 

any other reasons, but it may affect the smooth functioning of the system. The flow of customers during repairs may be 

influenced by the server status. Keeping in view the above-mentioned situation, we consider a queueing system under 

𝑁 −policy wherein the customers join the system according to a Poisson process in batches of random size 𝑋 with 𝑎𝑗 =

𝑃(𝑋 = 𝑗), first and second factorial moment 𝐸(𝑋) and 𝐸(𝑋(2)) respectively. The customer joins the system with Poisson 

arrival rate 𝜆. The customer may not join the queue with probability 𝜀 ̅ = (1 − 𝜀) if the server is busy or under repair. There is 

a provision of two stages of services. First one is regular service 𝐴1, follows general probability law with distribution function 

𝒜1(𝑢), Laplace transform 𝒜1
∗(𝑠) and finite moments 𝒶1

(𝑗)
, 𝑗 = 1,2 respectively, while the second stage service 𝒜2 is optional, 

having general probability law with distribution function 𝒜2(𝑢), Laplace transform 𝒜2
∗(𝑠) and finite moments 𝒶2

(𝑗)
, 𝑗 = 1,2 

respectively.  After availing of the regular service, the arrived units may join the optional service with probability p p or leave 

the system with probability 1 − 𝑝. It is assumed that the breakdowns of the server may occur during the first stage regular 

service or second stage optional service with rates 𝓈1 and 𝓈2 respectively. It is assumed that as the failure occurs, it immediately 

joins the repair facility. The failed server joins the repair station, wherein k phases of repair are available, in which the first 

phase of repair is essential, while the remaining are optional. When the essential repair of a server is completed, the server may 
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join the repair system for the second phase of repair with probability 𝑞1. Similarly, after completing the second phase of optional 

repair, the repairman immediately starts the subsequent third phase of repair with probability 𝑞2; otherwise, the server may 

leave the repair system and start to provide the service. On a similar pattern, the server may require a maximum of 𝑘 phases of 

repair, including the first phase essential repair, with probabilities 𝑞𝑗−1(𝑗 = 2,3, . . 𝑘) for moving from(𝑗 − 1)𝑡ℎ phase to 𝑗𝑡ℎ 

phase of repair. The random variable ℛ𝑗
(𝑖)

 denotes the 𝑗𝑡ℎ phase repair time of the server with distribution function 𝒢𝑖,𝑗(𝑦),    

Laplace transform 𝒢𝑖,𝑗
∗ (𝑠) and finite moments ℊ𝑖𝑗

(𝑡), 𝑡 = 1,2, respectively, when its  fails in 
thi phase of service. 

     To analyze the present non-Markovian model, we introduce supplementary variables corresponding to elapsed service time, 

elapsed delay time, and elapsed repair time. Let 𝒩𝓆(𝑡) denote the number of units in the system, including one being in service. 

Let 𝓌𝑖(𝑡) denote the elapsed service time of the customer for 𝑖𝑡ℎ(𝑖 = 1,2) the phase of service at time t , and 𝜓𝑖,𝑗(𝑡), 𝑗 =

1,2, . . , 𝑘 denote the elapsed  repair time of the server when a server breakdown occurs in 𝑖𝑡ℎ(𝑖 = 1,2) phase of service at time 

𝑡. 

 
FIGURE 1 

 SYSTEMATIC REPRESENTATION OF MODEL 

 

     To define the server’s state, we introduce the random variables 𝜓(𝑡) defined as  

𝜓(𝑡) =

{
 
 

 
 

  

0,       if the server is idle at time 𝑡.                                                                                                    
1,       if the server is offering first phase service at time 𝑡.    
2,       if the server is offering second optional phase service at time 𝑡.  

2 + 𝑗,       if the server is under jth repair when it failed essential service at time 𝑡.                         
2 + 𝑘 + 𝑗,if the server is under jth phase of repair when it failed in optional service at time 𝑡.   

 

     For analysis purposes, we consider the bivariate Markov process,{𝒩𝓆(𝑡), (𝑡)} Xt, where 𝒳(𝑡) takes values 

0,𝓌1(𝑡),𝓌2(𝑡), 𝜓1,1(𝑡), 𝜓1,2(𝑡), . . . , 𝜓1,𝑘(𝑡), 𝜓2,1(𝑡), 𝜓2,2(𝑡), … , 𝜓2,𝑘(𝑡); if 

𝜁(𝑡) = 0,1,2, … ,2 + 𝑘, 2 + 𝑘 + 1,… ,2 + 2𝑘 respectively.   

     The limiting probabilities for system states are defined as 

𝐼𝑛
(0) = 𝑙𝑖𝑚

𝑡→∞
Pr.{𝒩𝓆(𝑡) = 0,𝒳(𝑡) = 0} for  𝑛 = 0,1, … , 𝑁 − 1   

𝑊𝑛
(𝑖)(𝑢)𝑑𝑢 = 𝑙𝑖𝑚

𝑡→∞
Pr.{𝒩𝓆(𝑡) = 𝑛,𝒳(𝑡) = 𝓌𝑖(𝑡); 𝑢 < 𝓌𝑖(𝑡) ≤ 𝑢 + 𝑑𝑢}; 𝑛 ≥ 1, 𝑢 > 0, 𝑖 = 1,2.                                                                                     

𝐿𝑗,𝑛
(𝑖) (𝑢, 𝑣)𝑑𝑣 = 𝑙𝑖𝑚

𝑡→∞
Pr.{𝒩𝓆(𝑡) = 𝑛,𝒳(𝑡) = 𝜓𝑖,𝑗(𝑡); 𝑣 < 𝜓𝑖,𝑗(𝑡) ≤ 𝑣 + 𝑑𝑣 ∕𝓌𝑖(𝑡) = 𝑢};  

                                                                        𝑛 ≥ 1, (𝑢, 𝑣) > 0, 𝑖 ∈ {1,2}, 𝑗 = 1,2, … , 𝑘. 
     Also, we assume that 
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𝒜𝑖(0) = 0,𝒜𝑖(∞) = 1, 𝒢𝑖,𝑗(0) = 0, 𝒢𝑖,𝑗(∞) = 1; 𝑖 = 1,2. We further assume that 𝒜𝑖(𝑢) is continuous at 𝑢 = 0, 𝒢𝑖,𝑗(𝑣) are 

continuous at 𝑣 = 0.  

     The hazard rate functions for )2,1( =ii th
phase service, delay time while failed during 

thi  phase service, and 

)1( kjj th  phase repair times are defined as follows 

𝜑𝑖(𝑢)𝑑𝑢 =
𝑑𝒜𝑖(𝑢)

[1 − 𝒜𝑖(𝑢)]
; 𝑖 = 1,2. 

                                                                  

𝜍𝑖,𝑗(𝑣)𝑑𝑣 =
𝑑𝒢𝑖,𝑗(𝑣)

[1 − 𝒢𝑖,𝑗(𝑦)]
; 𝑖 = 1,2 and  𝑗 = 1,2, … , 𝑘. 

                                                     

     Further, we define the following probability generating functions  

𝑊(𝑖)(𝑢, 𝑧) = ∑ 𝑧𝑛𝑊𝑛
(𝑖)(𝑢)∞

𝑛=1 ;   𝑊(𝑖)(0, 𝑧) = ∑ 𝑧𝑛𝑊𝑛
(𝑖)(0)∞

𝑛=1                                   

𝐿𝑗
(𝑖)(𝑢, 𝑣, 𝑧) = ∑ 𝑧𝑛𝐿𝑗,𝑛

(𝑖) (𝑢, 𝑣)∞
𝑛=1  ;𝐿𝑗

(𝑖)(𝑢, 0, 𝑧) = ∑ 𝑧𝑛𝐿𝑗,𝑛
(𝑖) (𝑢, 0)∞

𝑛=1  Here 𝑗 = 1,2, … , 𝑘.                 

𝐼𝑁
(0)(𝑧) = ∑ 𝑧𝑛𝐼𝑛

(0)

𝑁−1

𝑛=0

 

     Let us further define 𝜎𝑛(𝑛 = 0,1,2, … , 𝑁 − 1) as the probability that a batch of customers finds at least n one customer in 

the system during the idle period. Thus 𝜎𝑛 satisfies the following recursive relation. 

𝜎0 = 1, 𝜎𝑛 = ∑ 𝑐𝑘𝜎𝑛−𝑘
𝑛
𝑘=1 . 1 ≤ 𝑛 ≤ 𝑁 − 1          (1) 

GOVERNING EQUATIONS 

In this section, we construct the Kolmogorov steady state equations governing the system states (cf. Cox, 1955; Choudhury et 

al., 2009) by using the probability reasoning as follows: 

𝑑

𝑑𝑢
𝑊𝑛

(𝑖)(𝑢) + [𝜆𝜀 + 𝛽𝑖 + 𝜑𝑖(𝑢)]𝑊𝑛
(𝑖)(𝑢) = ∑𝜆𝜀𝑎𝑡

𝑛

𝑡=1

𝑊𝑛−𝑡
(𝑖) (𝑥) + ∫ 𝜍𝑖,𝑘(𝑣)𝐿𝑘,𝑛

(𝑖) (𝑢, 𝑣)𝑑𝑣
∞

0

  

  +∑ 𝑞̅𝑗 ∫ 𝜍𝑖,𝑗(𝑣)𝐿𝑗,𝑛
(𝑖) (𝑢, 𝑣)𝑑𝑣

∞

0
𝑘−1
𝑗=1 , 𝑖 = 1,2.          (2) 

𝑑

𝑑𝑣
𝐿𝑗,𝑛
(𝑖) (𝑢, 𝑣) + [𝜆𝜀 + 𝜍𝑖,𝑗(𝑣)]𝐿𝑗,𝑛

(𝑖) (𝑢, 𝑣) = ∑𝜆𝜀𝑎𝑡

𝑛

𝑡=1

𝐿𝑗,𝑛−𝑡
(𝑖) (𝑢, 𝑣), 1 ≤ 𝑗 ≤ 𝑘 and 𝑖 = 1,2.                                                     (3) 

𝜆𝐼0
(0) = ∫ 𝜑2(𝑢)

∞

0
𝑊1

(2)(𝑢)𝑑𝑢 + 𝑝̅ ∫ 𝜑1(𝑢)
∞

0
𝑊1

(1)(𝑢)𝑑𝑢        (4)  

 𝜆𝐼𝑛
(0) =  𝜆 ∑ 𝑎𝑗𝐼𝑛−𝑗

(0)  ,   𝑛 = 0,1,2, … , 𝑁 − 1𝑛
𝑗=1         (5) 

      Equations (2) through (5) are to be solved subject to the boundary conditions specified at the following point u= 0: 

𝑊𝑛
(1)(0) = ∫ 𝜑2(𝑢)

∞

0
𝑊𝑛+1

(2) (𝑢)𝑑𝑢 + 𝑝̅ ∫ 𝜑1(𝑢)
∞

0
𝑊𝑛+1

(1) (𝑢)𝑑𝑢,     1 ≤ 𝑛 ≤ 𝑁 − 1      (6) 

𝑊𝑛
(1)(0) = ∫ 𝜑2(𝑢)

∞

0
𝑊𝑛+1

(2) (𝑢)𝑑𝑢 + 𝑝̅ ∫ 𝜑1(𝑢)
∞

0
𝑊𝑛+1

(1) (𝑢)𝑑𝑢 + 𝜆∑ 𝑎𝑛−𝑗𝐼𝑗
(0), 𝑛 ≥ 𝑁𝑛

𝑗=1     (7) 

𝑊𝑛
(2)(0) = 𝑝 ∫ 𝜑1(𝑢)

∞

0
𝑊𝑛

(1)(𝑢)𝑑𝑢,     𝑛 ≥ 1         (8) 

And the boundary condition at 𝑣 = 0 for fixed value of u (for 2,1=i ), we have  

𝐿1,𝑛
(𝑖) (𝑢, 0) = 𝛽𝑖𝑊𝑛

(𝑖)(𝑢), 𝑢 > 0, 𝑛 ≥ 1          (9) 

𝐿𝑗,𝑛
(𝑖) (𝑢, 0) = 𝑞𝑗−1 ∫ 𝜍𝑖,𝑗−1(𝑣)𝐿𝑗−1,𝑛

(𝑖)∞

0
(𝑢, 𝑣)𝑑𝑣,     2 ≤ 𝑗 ≤ 𝑘, 𝑛 ≥ 1       (10)                                                         

     The normalizing condition is 

∑ 𝐼𝑛
(0)𝑁−1

𝑛=0 + ∑ ∑ {∫ 𝑊𝑛
(𝑖)(𝑢)𝑑𝑢

∞

0
+ ∫ ∫ ∑ 𝐿𝑗,𝑛

(𝑖) (𝑢, 𝑣)𝑑𝑢𝑑𝑣𝑘
𝑗=1

∞

0

∞

0
}∞

𝑛=1
2
𝑖=1 = 1     (11) 

ANALYSIS 

     To simplify the analysis and avoid unnecessary complexity, we introduce the following additional notations, which will be 

used throughout the subsequent discussion. 
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∫ 𝑒−𝑠𝑥(1 − 𝑀(𝑥))𝑑𝑥 =
1−𝑀∗(𝑠)

𝑠

∞

0
, where )(* sM is LST of ).(xM   𝐶(𝑧) = 𝜆(1 − 𝑎(𝑧)),  

𝛿𝑖(𝑧) = 𝜀𝐶(𝑧) + 𝛽𝑖[1 − {𝒢𝑖,1
∗ (𝜀𝐶(𝑧)) +∑∏𝑞𝑗𝒢𝑖,𝑗

∗ (𝜀𝐶(𝑧))

𝑡−1

𝑗=1

𝑘

𝑡=2

(𝒢𝑖,𝑡
∗ (𝜀𝐶(𝑧)) − 1)}]; 𝑖 = 1,2. 

𝔥𝑖
(1) = 𝜆𝜀𝐸(𝑋)[1 + 𝛽𝑖(ℊ𝑖1

(1) + ∑ (∏ 𝑞𝑡
𝑡−1
𝑗=1 )ℊ𝑖𝑡

(1)𝑘
𝑡=2 ]; 𝑖 = 1,2  

 

𝔥𝑖
(2)
= 𝜆𝜀𝐸(𝑋(2)) + 𝛽𝑖 [2(𝜆𝜀𝐸(𝑋))

2∑(∏𝑞𝑡

𝑡−1

𝑗=1

)ℊ𝑖𝑗
(1)ℊ𝑖𝑡

(1)

𝑘

𝑡=2

 

          +[𝜆𝜀𝐸(𝑋(2))ℊ𝑖1
(1) + (𝜆𝜀𝐸(𝑋))2ℊ𝑖1

(2)] +∑(∏𝑞𝑡

𝑡−1

𝑗=1

) [𝜆𝜀𝐸(𝑋(2))ℊ𝑖𝑡
(1) + (𝜆𝜀𝐸(𝑋))2ℊ𝑖𝑡

(2)]

𝑘

𝑡=2

] 

 

𝜌1 =
 𝒶1
(1)𝔥1

(1) + 𝑝 𝒶2
(1)𝔥2

(1)

𝜀
 

 𝜌2 =  𝒶1
(1)𝔥1

(1) + 𝑝 𝒶2
(1)𝔥2

(1) = 𝜀𝜌1 and 𝜌 =
𝜌1

1−𝜌2+𝜌1
 

     Solving the equations (3) in the usual manner, we have 

𝐿𝑗
(𝑖)(𝑢, 𝑣, 𝑧) = 𝐿𝑗

(𝑖)(𝑢, 0, 𝑧) 𝑒𝑥𝑝{ − 𝜀𝐶(𝑧)𝑣}[1 − 𝒢𝑖,𝑗(𝑣)];   𝑖 = 1,2; 1 ≤ 𝑗 ≤ 𝑘      (12) 

     From equations (9) and (10), we have 

𝐿1
(𝑖)(𝑢, 0, 𝑧) = 𝛽𝑖𝑊

(𝑖)(𝑢, 𝑧)          (13) 

𝐿𝑗
(𝑖)(𝑢, 0, 𝑧) = ∫ 𝜍𝑖,𝑗−1(𝑣)𝐿𝑗−1

(𝑖)∞

0
(𝑢, 𝑣, 𝑧)𝑑𝑣, 2 ≤ 𝑗 ≤ 𝑘        (14) 

     From equations (12) and (13), we obtain  

𝐿𝑗
(𝑖)(𝑢, 0, 𝑧) = 𝑞𝑗−1𝐿𝑗−1

(𝑖) (𝑢, 0, 𝑧)𝒢𝑖,𝑗−1
∗ (𝜀𝐶(𝑧)), 2 ≤ 𝑗 ≤ 𝑘       (15) 

     On simplification, we have  

𝐿𝑗
(𝑖)(𝑢, 0, 𝑧) = 𝐿1

(𝑖)(𝑢, 0, 𝑧)∏ 𝑞𝑡𝒢𝑖,𝑡
∗ (𝜀𝐶(𝑧))

𝑗−1
𝑡=1 , 2 ≤ 𝑗 ≤ 𝑘        (16) 

    Solving equations (2) and using (12) and (13), we get 

𝑊(𝑖)(𝑢, 𝑧) = 𝑊(𝑖)(0, 𝑧)[1 −𝒜𝑖(𝑢)] 𝑒𝑥𝑝{ − 𝛿𝑖(𝑧)𝑢}         (17) 

     By multiplying equations (6) and (7) by appropriate powers of z, summing over all possible values of the variable, and 

simplifying, we obtain 

𝑧𝑊(1)(0, 𝑧) = −𝑧𝐶(𝑧)𝐼𝑁
(0)(𝑧) + 𝑝̅𝑊(1)(0, 𝑧)𝒜1

∗(𝛿1(𝑧)) +𝑊
(2)(0, 𝑧)𝒜1

∗(𝛿2(𝑧))    (18) 

     Similarly, from equation (8), we get  

 𝑊(2)(0, 𝑧) = 𝑝𝑊(1)(0, 𝑧)𝒜1
∗(𝛿1(𝑧))          (19) 

     Using equations (18) and (19), we get 

     From equations (12)-(17), we get 

𝑊(1)(0, 𝑧) =
𝑧𝐶(𝑧)𝐼𝑁

(0)(𝑧)

[(𝑝̅ + 𝑝𝒜2
∗(𝛿2(𝑧))𝒜1

∗(𝛿1(𝑧)) − 𝑧]
                 (20) 
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𝐿1
(𝑖)(𝑢, 𝑣, 𝑧) = 𝛽𝑖𝑊

(𝑖)(0, 𝑧)[1 −𝒜𝑖(𝑢)] 𝑒𝑥𝑝{ − 𝛿𝑖(𝑧)𝑢}[1 − 𝒢𝑖,𝑗(𝑣)] 𝑒𝑥𝑝{ − 𝜀𝐶(𝑧)𝑣}          (21) 

𝐿𝑗
(𝑖)(𝑢, 𝑣, 𝑧) = 𝛽𝑖𝑊

(𝑖)(0, 𝑧)[1 − 𝒜𝑖(𝑢)] 𝑒𝑥𝑝{ − 𝛿𝑖(𝑧)𝑢}∏ 𝑞𝑡𝒢𝑖,𝑡
∗ (𝜀𝐶(𝑧))

𝑗−1
𝑡=1 𝑒𝑥𝑝{ − 𝜀𝐶(𝑧)𝑣}[1 − 𝒢𝑖,𝑗(𝑣)], i=1,2 and j=2, 

3,…k.              (22) 

Theorem 1: The joint distribution of the queue length and server state is characterized by the following probability generating 

functions. 

𝐼𝑁
(0)(𝑧) =

(1−𝜌)∑ 𝜎𝑛𝑧
𝑛𝑁−1

𝑛=0

∑ 𝜎𝑛
𝑁−1
𝑛=0

           (23)                                                                                     

𝑊(1)(𝑢, 𝑧) =
(1−𝜌)∑ 𝜎𝑛𝑧

𝑛+1𝑁−1
𝑛=0 𝐶(𝑧)[1−𝒜1(𝑢)]𝑒

−𝛿1(𝑧)𝑢

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗ (𝛿2(𝑧))𝒜1
∗ (𝛿1(𝑧))−𝑧]

         (24)                      

𝑊(2)(𝑢, 𝑧) = 𝑝
(1−𝜌) ∑ 𝜎𝑛𝑧

𝑛+1𝑁−1
𝑛=0 𝐶(𝑧)𝒜1

∗(𝛿1(𝑧))[1−𝒜2(𝑢)]𝑒
−𝛿2(𝑧)𝑢

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗ (𝛿2(𝑧))𝒜1
∗ (𝛿1(𝑧))−𝑧]

       (25)   

𝐿1
(1)(𝑢, 𝑣, 𝑧) =

𝛽1(1−𝜌) ∑ 𝜎𝑛𝑧
𝑛+1𝑁−1

𝑛=0 𝐶(𝑧)[1−𝒜1(𝑢)]𝑒
−𝛿1(𝑧)𝑢[1−𝒢1,1(𝑣)]𝑒

−𝜀𝐶(𝑧)𝑣

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗ (𝛿2(𝑧))𝒜1
∗ (𝛿1(𝑧))−𝑧]

       (26) 

𝐿𝑗
(1)(𝑢, 𝑣, 𝑧) =

𝛽1(1−𝜌)∑ 𝜎𝑛𝑧
𝑛+1𝑁−1

𝑛=0 𝐶(𝑧)[1−𝒜1(𝑢)]𝑒
−𝛿1(𝑧)𝑢∏ 𝑞𝑡𝒢1,𝑡

∗ (𝜀𝐶(𝑧))
𝑗−1
𝑡=1 𝑒−𝜀𝐶(𝑧)𝑣 [1−𝒢1,𝑗(𝑣)]

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗ (𝛿2(𝑧))𝒜1
∗ (𝛿1(𝑧))−𝑧]

     (27) 

𝐿1
(2)(𝑢, 𝑣, 𝑧) =

𝛽2𝑝(1−𝜌)∑ 𝜎𝑛𝑧
𝑛+1𝑁−1

𝑛=0 𝐶(𝑧)𝒜1
∗ (𝛿1(𝑧))[1−𝒜2(𝑢)]𝑒

−𝛿2(𝑧)𝑢[1−𝒢2,1(𝑣)]𝑒
−𝜀𝐶(𝑧)𝑣

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗ (𝛿2(𝑧))𝒜1
∗ (𝛿1(𝑧))−𝑧]

      (28) 

𝐿𝑗
(2)(𝑢, 𝑣, 𝑧) =

𝛽2𝑝(1−𝜌)∑ 𝜎𝑛𝑧
𝑛+1𝑁−1

𝑛=0 𝐶(𝑧)𝒜1
∗(𝛿1(𝑧))[1−𝒜2(𝑢)]𝑒

−𝛿2(𝑧)𝑢

∏ 𝑞𝑡𝒢2,𝑡
∗ (𝜀𝐶(𝑧))

𝑗−1
𝑡=1 𝑒−𝜀𝐶(𝑧)𝑣 [1−𝒢2,𝑗(𝑣)]

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗(𝛿2(𝑧))𝒜1
∗(𝛿1(𝑧))−𝑧]

       (29) 

2 ≤ 𝑗 ≤ 𝑘                          

Proof:  

          For proof see appendix 1. 

Theorem 2: The queue size distribution at different server states is described by the following marginal probability generating 

functions 

𝑊(1)(𝑧) =
(1−𝜌)∑ 𝜎𝑛𝑧

𝑛+1𝑁−1
𝑛=0 𝐶(𝑧)[1−𝒜1

∗ (𝛿1(𝑧))]

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗ (𝛿2(𝑧))𝒜1
∗ (𝛿1(𝑧))−𝑧]𝛿1(𝑧)

        (30) 

𝑊(2)(𝑧) = 𝑝
(1−𝜌) ∑ 𝜎𝑛𝑧

𝑛+1𝑁−1
𝑛=0 𝐶(𝑧)𝒜1

∗(𝛿1(𝑧))[1−𝒜2
∗(𝛿2(𝑧))]

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗(𝛿2(𝑧))𝒜1
∗(𝛿1(𝑧))−𝑧]𝛿2(𝑧)

       (31) 

𝐿1
(1)(𝑧) =

𝛽1(1−𝜌)∑ 𝜎𝑛𝑧
𝑛+1𝑁−1

𝑛=0 [1−𝒜1
∗ (𝛿1(𝑧))][1−𝒢1,1

∗ (𝜀𝐶(𝑧))]

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗ (𝛿2(𝑧))𝒜1
∗ (𝛿1(𝑧))−𝑧]𝜀𝛿1(𝑧)

        (32) 

𝐿𝑗
(1)(𝑧) =

𝛽1(1−𝜌)∑ 𝜎𝑛𝑧
𝑛+1𝑁−1

𝑛=0 [1−𝒜1
∗(𝛿1(𝑧))]∏ 𝑞𝑡𝒢1,𝑡

∗ (𝜀𝐶(𝑧))
𝑗−1
𝑡=1  [1−𝒢1,𝑗

∗ (𝜀𝐶(𝑧))]

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗(𝛿2(𝑧))𝒜1
∗(𝛿1(𝑧))−𝑧]𝜀𝛿1(𝑧)

       (33) 

𝐿1
(2)(𝑧) =

𝛽2𝑝(1−𝜌)∑ 𝜎𝑛𝑧
𝑛+1𝑁−1

𝑛=0 𝒜1
∗ (𝛿1(𝑧))[1−𝒜2

∗(𝛿2(𝑧))][1−𝒢2,1
∗ (𝜀𝐶(𝑧))]

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗ (𝛿2(𝑧))𝒜1
∗ (𝛿1(𝑧))−𝑧]𝜀𝛿2(𝑧)

      (34) 

𝐿𝑗
(2)(𝑧) =

𝛽2𝑝(1−𝜌) ∑ 𝜎𝑛𝑧
𝑛+1𝑁−1

𝑛=0 𝒜1
∗(𝛿1(𝑧))[1−𝒜2

∗ (𝛿2(𝑧))]∏ 𝑞𝑡𝒢2,𝑡
∗ (𝜀𝐶(𝑧))

𝑗−1
𝑡=1 [1−𝒢2,𝑗

∗ (𝜀𝐶(𝑧))]

∑ 𝜎𝑛
𝑁−1
𝑛=0 [(𝑝̅+𝑝𝒜2

∗(𝛿2(𝑧))𝒜1
∗(𝛿1(𝑧))−𝑧]𝜀𝛿2(𝑧)

      (35) 

                                                                                                                            2 ≤ 𝑗 ≤ 𝑘                          

Proof: Integrating equations (24)-(25) with respect to x  and equations (26)-(29) with respect to x, y , we get required result.  

Theorem 3: Under the stability condition, the probability generating function of the stationary queue length at departure epochs 

is given by 

𝜍(𝑧) =
(1−𝜀𝜌1) ∑ 𝜎𝑛𝑧

𝑛𝑁−1
𝑛=0 𝐶(𝑧){𝑝̅+𝑝𝒜2

∗ (𝛿2(𝑧))}𝒜1
∗(𝛿1(𝑧))

𝜆𝐸(𝑋)∑ 𝜎𝑛
𝑁−1
𝑛=0 [{𝑝̅+𝑝𝒜2

∗(𝛿2(𝑧))}𝒜1
∗ (𝛿1(𝑧))−𝑧]

        (36)   

Proof: Appendix 2. 
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PERFORMANCE MEASURES  

This section is devoted to the analysis of key performance indicators of the queueing system, achieved by evaluating the 

probability generating functions of the queue length under suitably chosen parameter configurations.  

 (a) Long Run Probabilities of the Server States 

      We derive the expressions for the long run probabilities of the server states by taking limiting values when 𝑧 → 1of the 

marginal probability generating function established in Theorem 3. 

(i) The probability that the server being busy in rendering the 𝑖𝑡ℎ(𝑖 = 1,2) phase of service is 

     given by 

        𝑃(𝑊1) = 𝑙𝑖𝑚
𝑧→1

𝑊(1)(𝑧) =
𝜆 𝒶1

(1)
𝐸(𝑋)

1+ 𝜌1(1−𝜀)
                (37) 

(ii) The probability that the server being busy in rendering the second optional phase of service is given by 

       𝑃(𝑊2) = 𝑙𝑖𝑚
𝑧→1

𝑊(2)(𝑧) =
𝑝𝜆 𝒶2

(1)
𝐸(𝑋)

1+ 𝜌1(1−𝜀)
                                                                                   (38) 

(iii) The probabilities that the server is under first phase and 𝑗𝑡ℎ(𝑗 = 2, . . . , 𝑘) phase repair 

      when failed during the first essential phase service are given by 

          𝑃(𝐿1
(1)
) = 𝑙𝑖𝑚

𝑧→1
𝐿1
(1)
(𝑧) =

𝛽1𝜆 𝒶1
(1)
𝐸(𝑋)ℊ11

(1)

1+ 𝜌1(1−𝜀)
                                       (39)  

          𝑃(𝐿𝑗
(1)
) = 𝑙𝑖𝑚

𝑧→1
𝐿𝑗
(1)
(𝑧) =

𝛽1𝜆 𝒶1
(1)
[∏ 𝑞𝑡]
𝑗−1
𝑡=1 ℊ1𝑗

(1)
𝐸(𝑋)

1+ 𝜌1(1−𝜀)
; 2 ≤ 𝑗 ≤ 𝑘            (40)                                         

(iv) The probabilities that the server is under under the first phase and 𝑗𝑡ℎ(𝑗 = 2, . . . , 𝑘) phase when failed during the optional 

phase service are given by  

𝑃(𝐿1
(2)
) = 𝑙𝑖𝑚

𝑧→1
𝐿1
(2)
(𝑧) =

𝑝𝛽2𝜆 𝒶2
(1)
𝐸(𝑋)ℊ21

(1)

1+ 𝜌1(1−𝜀)
                                                                         (41)   

𝑃(𝐿𝑗
(2)
) = 𝑙𝑖𝑚

𝑧→1
𝐿𝑗
(2)
(𝑧) =

𝑝𝛽2𝜆 𝒶2
(1)
[∏ 𝑞𝑡]
𝑗−1
𝑡=1 ℊ2𝑗

(1)
𝐸(𝑋)

1+ 𝜌1(1−𝜀)
; 2 ≤ 𝑗 ≤ 𝑘                                                              (42)  

The probability that the server is idle is given by  

𝑃(𝐼) = 1 − ∑ (𝑃(𝑊𝑖) + ∑ 𝑃(𝐿𝑗
(𝑖)
)𝑘

𝑗=1 )2
𝑖=1 = 1 − 𝜌                                                             (43) 

(b) Mean Queue Length 

On differentiating equation (36) and by setting𝑧 = 1, the expressions for the mean queue length at the departure epoch (𝐿𝑞) 

can be obtained as follows: 

𝐿𝑞 = (1 − 𝜀𝜌1)
𝐷′(1)𝑁′′(1)−𝐷′′(1)𝑁′(1)

2(𝐷′(1))2
                                                                                                  (44) 

where 

𝑁'(1) = −1                   (45) 

𝑁′′(1) = −
𝐸(𝑋(2))

𝐸(𝑋)
− 2 [

∑ 𝑛𝜉𝑛
𝑁−1
𝑛=0

(∑ 𝜉𝑛
𝑁−1
𝑛=0 )

+ 𝜀𝜌1]                                           (46) 

𝐷′(1) = (𝜀𝜌1 − 1)                                (47) 

𝐷′′(1) = 2𝑝𝒶1
(1)
 𝒶2
(1)𝔥1

(1)𝔥2
(1) + 𝒶1

(2)
{𝔥1
(1)}2 + 𝒶1

(1)
𝔥1
(2) + 𝑝𝒶2

(2)
{𝔥2
(1)}2 + 𝑝𝒶2

(1)
𝔥2
(2)

                                      (48) 

Also, the Mean waiting time can be obtained as 

𝐸(𝑊𝑞) =
𝐿𝑞

λ𝑒𝑓𝑓𝐸(𝑋)
                                                                                                                        (49)   

where    

 𝜆𝑒𝑓𝑓 = 𝜆𝐼𝑁
(0)
(1) + 𝜆𝜀 ∑ 𝑊(𝑖)(1)2

𝑖=1 + 𝜆𝜀 ∑ (∑ 𝐿𝑡
(𝑖)
(1)𝑘

𝑡=1 )2
𝑖=1  

 

(d) Reliability Indices 

Let 𝑆𝑎𝑣𝑙(𝑡) be the system be available at the time t . Then the steady state availability 𝑆𝑎𝑣𝑙 , which is the probability that the 

server is either busy with rendering service or in an idle state, is obtained using. 

𝑆𝑎𝑣𝑙 = lim
𝑧→1

{ 𝐼𝑁
(0)
(1) +𝑊(1)(𝑧) +𝑊(2)(𝑧)}                                                                                 
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= 1-
𝜆𝐸(𝑋)𝒶1

(1)
𝛽1(ℊ11

(1) +∑ (∏ 𝑞𝑡
𝑡−1
𝑗=1 )ℊ1𝑡

(1)𝑘
𝑡=2 + 𝜆𝐸(𝑋)𝒶2

(1)
𝑝𝛽2(ℊ21

(1) + ∑ (∏ 𝑞𝑡
𝑡−1
𝑗=1 )ℊ2𝑡

(1)𝑘
𝑡=2

1 + 𝜌1(1 − 𝜀)
 

                  (50) 

     The steady state failure frequency is determined using  

𝑆𝐹𝑓 =
𝜆𝐸(𝑋)[𝛽1𝒶1

(1)
+𝑝𝛽2𝒶2

(1)
]

1+ 𝜌1(1−𝜀)
                                                                                                                                      (51)    

              

NUMERICAL ILLUSTRATION 

Here we are going to give numerical illustration and sensitivity analysis of the present problems. To facilitate numerical results, 

we have assume that service distribution follow exponential distribution and having first two moments 𝒶𝑖
(1)
=

1

𝜇𝑖
, 𝒶𝑖

(2)
=

2

𝜇𝑖
2 ; 𝑖 = 1,2 and further we assume the distribution of batch arrival follow geometric distribution with first two moments 

𝐸(𝑋) =
𝑏

𝑎
, 𝐸(𝑋2) =

𝑏(1+𝑏)

𝑎2
; 𝑏 = 1 − 𝑎. The distribution of repair time is also assumed to be exponential ℊ𝑖𝑗 and has the first 

two moments as ℊ𝑖𝑗
(1)
=

1

ℊ𝑖𝑗
, ℊ𝑖𝑗

(2)
=

2

ℊ𝑖𝑗
2 ; 𝑖 = 1,2; 𝑗 = 1,2, . . . , 𝑘. To develop a computer program, the coding is done in 

MATLAB. Now we display the numerical results in Figures 2-5 and Tables I-IV. 

     For Figures 2-5, we set the default parameters as  

𝐸(𝑋) = 3, 𝜇1 = 𝜇2 = 8,𝑁 = 5, 𝑝 = 0.6, 𝛽 = 2, 𝛽1 = 𝛽, 𝛽2 = 0.8𝛽, 𝑘 = 3 

 

 
TABLE I 

 IMPACT OF ARRIVAL/SERVICE RATE ON MEAN QUEUE LENGTH (𝐿𝑞) AND WAITING TIME (𝑊𝑞)  

 

 

 

 

 

 

 

 

 

 

 μ=7.5 μ=8 μ=8.5 μ=9 

λ 𝐿𝑞 𝑊𝑞 𝐿𝑞 𝑊𝑞 𝐿𝑞 𝑊𝑞 𝐿𝑞 𝑊𝑞 

1.10 27.50 9.66 22.39 7.79 19.09 6.59 16.79 5.75 

1.16 33.00 11.08 25.96 8.63 21.61 7.12 18.69 6.11 

1.22 40.50 13.02 30.55 9.72 24.73 7.80 20.96 6.55 

1.28 51.14 15.79 36.60 11.18 28.64 8.66 23.72 7.11 

1.34 66.99 19.90 44.82 13.17 33.66 9.79 27.11 7.82 

1.40 92.20 26.41 56.42 15.97 40.26 11.28 31.38 8.71 
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TABLE II 

IMPACT OF ARRIVAL AND FAILURE RATE ON MEAN QUEUE LENGTH (𝐿𝑞) AND WAITING TIME (𝑊𝑞) 

 

TABLE III 

 IMPACT OF FAILURE RATE (Β) AND PROBABILITY P ON SERVER AVAILABILITY (𝑆𝑎𝑣𝑙) AND SERVER FAILURE (𝑆𝐹𝑓)  

 

 
TABLE IV 

 IMPACT OF FAILURE RATE (Β) AND BALKING RATE Ε ON SERVER AVAILABILITY (𝑆𝑎𝑣𝑙) AND SERVER FAILURE (𝑆𝐹𝑓) 

 

 p=0.1 p=0.3 p=0.5 p=0.7 

β 𝑆𝑎𝑣𝑙 𝑆𝐹𝑓 𝑆𝑎𝑣𝑙 𝑆𝐹𝑓 𝑆𝑎𝑣𝑙 𝑆𝐹𝑓 𝑆𝑎𝑣𝑙 𝑆𝐹𝑓 

1.75 0.934 0.916 0.920 1.113 0.906 1.302 0.893 1.483 

2.00 0.926 1.030 0.912 1.224 0.898 1.410 0.885 1.589 

2.25 0.917 1.143 0.904 1.334 0.890 1.518 0.878 1.694 

2.50 0.909 1.255 0.896 1.444 0.883 1.625 0.870 1.799 

2.75 0.901 1.368 0.888 1.554 0.875 1.732 0.863 1.904 

3.00 0.893 1.480 0.880 1.663 0.867 1.839 0.855 2.008 

 Β=1.5 Β=2 Β=2.5 Β=3 

Λ 𝐿𝑞 𝑊𝑞 𝐿𝑞 𝑊𝑞 𝐿𝑞 𝑊𝑞 𝐿𝑞 𝑊𝑞 

1.10 25.15 8.80 27.50 9.66 30.22 10.66 33.41 11.84 

1.16 29.71 9.93 33.00 11.08 36.91 12.44 41.63 14.09 

1.22 35.77 11.45 40.50 13.02 46.32 14.96 53.60 17.39 

1.28 44.07 13.55 51.14 15.79 60.19 18.67 72.09 22.46 

1.34 55.92 16.53 66.99 19.90 81.97 24.47 102.99 30.89 

1.40 73.70 21.01 92.20 26.41 119.17 34.31 160.83 46.53 

 ε=0.1 
 

ε =0.3 ε =0.5 ε =0.7 

β 𝑆𝑎𝑣𝑙 𝑆𝐹𝑓 𝑆𝑎𝑣𝑙 𝑆𝐹𝑓 𝑆𝑎𝑣𝑙 𝑆𝐹𝑓 𝑆𝑎𝑣𝑙 𝑆𝐹𝑓 

0.1 0.925 1.037 0.918 1.134 0.910 1.251 0.899 1.395 

0.3 0.919 1.115 0.911 1.231 0.901 1.374 0.888 1.554 

0.5 0.914 1.184 0.905 1.319 0.893 1.487 0.877 1.704 

0.7 0.910 1.246 0.899 1.397 0.885 1.591 0.867 1.847 

0.9 0.906 1.300 0.894 1.468 0.878 1.687 0.857 1.981 
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     The numerical results highlight several important trends in system performance. An increase in the arrival (λ) rate leads to 

a monotonic rise in both the average queue length (𝐿𝑞) and the average waiting time (𝑊𝑞), whereas higher service rates exert 

the opposite effect, reducing both measures. When examining the impact of the parameters λ and β, it is observed that 

increments in either parameter result in higher values of (𝐿𝑞) and (𝑊𝑞). However, the sensitivity to changes in β is more 

pronounced, producing sharper variations compared to those caused by λ. 

     Further, the joint influence of the failure rate (β)and the opting probability (p) for a second service reveals a clear trade-off 

between availability (𝑆𝑎𝑣𝑙) and failure frequency (𝑆𝐹𝑓). Specifically, as either β or p increases, server availability decreases 

while the frequency of failures rises, underscoring the vulnerability of the system under such conditions. A similar deterioration 

is observed when considering the combined effect of the failure rate and the joining (balking) rate (ε), where higher values of 

ε lead to reduced server availability and elevated failure frequency. Overall, these findings emphasize that system congestion 

and unreliability intensify with rising arrival-related and failure-related parameters, while improvements in service rate alleviate 

these pressures. 

 

 

FIGURE 2                                                                                                      FIGURE 3 

𝐿𝑞VS Λ FOR VARIATION IN N                                                  𝐿𝑞 VS Λ FOR VARIATION IN FAILURE RATE Β 

 

                                                  FIGURE.4                                                                                                              FIGURE 5 

                    𝐿𝑞 VS P FOR VARIATION IN FAILURE RATE Β                                               𝐿𝑞 VS P FOR VARIATION IN (K) 
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     The graphical results provide several important insights into the behavior of the system. The average queue length (𝐿𝑞) is 

observed to increase monotonically with the arrival rate (λ), and this growth becomes convex as λ rises, indicating that 

congestion intensifies more sharply at higher arrival intensities. A similar trend emerges when incorporating the effect of the 

failure rate (β); specifically, the curves display greater convexity for higher values of β, suggesting that system congestion is 

more sensitive to increases in λ under elevated failure conditions. 

     Further examination of the relationship between (𝐿𝑞) and the opting probability (p) reveals a highly nonlinear pattern, 

particularly when the failure rate is large. This demonstrates that simultaneous increases in β and p can substantially magnify 

instability in the system. The impact of repair-related parameters is also significant: as the number of repair phases increases, 

the average queue length rises sharply, and this effect becomes more pronounced for larger values of p. 

     Taken together, the graphical analysis highlights that queue length is strongly influenced by arrival intensity, failure-related 

parameters, and repair mechanisms. While higher service thresholds and repair phases provide operational flexibility, they also 

exacerbate congestion when combined with elevated arrival rates, failure probabilities, or opting behavior, underscoring the 

delicate trade-off between system resilience and efficiency. 
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Appendix-1 

Proof of theorem 1: 

Take 1→z  in equations (3.9) ,(3.6) , (3.10) and (3.11) for 2,1=i  we get 

𝑊(1)(0,1) =
𝜆𝐸(𝑋)∑ 𝐼𝑛

(0)𝑁−1
𝑛=0

[1−𝜌]
           (1.1) 

𝑊(1)(𝑢, 1) = 𝑊(1)(0,1)[1 − 𝒜1(𝑢)]         (1.2) 

𝑊(2)(𝑢, 1) = 𝑝𝑊(1)(0,1)[1 −𝒜2(𝑢)]         (1.3) 

𝐿1
(1)(𝑢, 𝑣, 1) = 𝛽1𝑊

(1)(0,1)[1 − 𝒜1(𝑢)][1 − 𝒢1,1(𝑣)]       (1.4) 

𝐿𝑗
(1)(𝑢, 𝑣, 1) = 𝛽1𝑊

(1)(0,1)[1 − 𝒜1(𝑢)](∏ 𝑞𝑡
𝑗−1
𝑡=1 )[1 − 𝒢1,𝑗(𝑣)],   2 ≤ 𝑗 ≤ 𝑘      (1.5) 

𝐿1
(2)(𝑢, 𝑣, 1) = 𝛽2𝑝𝑊

(1)(0,1)[1 − 𝒜2(𝑢)][1 − 𝒢2,1(𝑣)]       (1.6) 

𝐿𝑗
(2)(𝑢, 𝑣, 1) = 𝛽2𝑝𝑊

(1)(0,1)[1 − 𝒜2(𝑢)](∏ 𝑞𝑡
𝑗−1
𝑡=1 )[1 − 𝒢2,𝑗(𝑣)],   2 ≤ 𝑗 ≤ 𝑘     (1.7) 

The  𝐼𝑛
(0), (0 ≤ 𝑛 ≤ 𝑁 − 1) satisfy the following relation 

𝐼𝑛
(0) = 𝐶0𝜎𝑛 , 𝑛 = 0,1, … , 𝑁 − 1          (1.8) 

Where 𝜎𝑛 is given by (1) and 0C  is constant. 

Then 𝐼𝑁
(0)(𝑧) = 𝐶0∑ 𝜎𝑛𝑧

𝑛𝑁−1
𝑛=0                   (1.9) 

Using equations (1.1) - (1.9) in the normalizing condition (11), we have  

𝐶0 = (1 −
𝜌1

1−𝜌2+𝜌1
)

1

∑ 𝜎𝑛
𝑁−1
𝑛=0

    =
(1−𝜌)

∑ 𝜎𝑛
𝑁−1
𝑛=0

         (1.10) 

Using the value of (1.10) in (1.9) we get 

𝐼𝑁
(0)(𝑧) =

(1−𝜌)∑ 𝜎𝑛𝑧
𝑛𝑁−1

𝑛=0

∑ 𝜎𝑛
𝑁−1
𝑛=0

           (1.11) 

where    is the utilization factor. 

Using the equation (1.11) in equations (17), (19)-(22), for 2,1=i  we get the equations (23)- (29). 

 

Appendix-2 

Proof of Theorem 3: 

To obtain the queue size distribution at the departure epoch, on the line of Choudhury and Tadj (2009) and discussed by Wolff 

(1982), we have  

𝜍𝑡 = 𝐶0[𝑝̅ ∫ 𝜑1(𝑢)
∞

0
𝑊𝑡+1

(1)(𝑢)𝑑𝑢 + ∫ 𝜑2(𝑢)
∞

0
𝑊𝑡+1

(2)(𝑢)𝑑𝑢]       (2.1) 

where 𝐶0 is the normalizing constant and {𝜍𝑡; 𝑡 = 0,1,2, … } as the probability that there are t  customers in the queue at a 

departure epoch. 

Multiplying equation (2.1) by 𝑧𝑡 and using 𝜍(𝑧) = ∑ 𝜍∞
𝑡=0 𝑡

𝑧𝑡  and after simplification, 

 We get 

𝜍(𝑧) =
𝐶0𝐼𝑁

(0)(𝑧)𝐶(𝑧){𝑝̅+𝑝𝒜2
∗ (𝛿2(𝑧))}𝒜1

∗(𝛿1(𝑧))

[{𝑝̅+𝑝𝒜2
∗(𝛿2(𝑧))}𝒜1

∗(𝛿1(𝑧))−𝑧]
         (2.2) 

Utilizing the normalizing condition 𝜍(1) = 1, we get 

𝐶0 =
1−𝜀𝜌1

𝜆𝐸(𝑋)∑ 𝜎𝑛
𝑁−1
𝑛=0

            (2.3) 

Putting the value of equation (2.3) in equation (2.2) we get equation (36). 
 


