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ABSTRACT 
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Article Info: Abstract: 
This study investigates the electrical consumption of households as a microcosm of a 

macro society, with the individual appliances inside each home serving as the 

"electricity consuming units. The goal is to provide an optimal approach for 

addressing the issue of efficient energy usage. To accomplish this objective, it is 

essential to divide the total electrical consumption of the home into its component 

elements, which are the individual signals utilized by every appliance. Likewise, 

estimating the energy consumption of the appliances is a very efficient means of 

foreseeing how much energy each device would consume in the future and, if 

necessary, controlling it. In this research, a Fuzzy Wavelet- and Convolutional 

Network-based method is established as a way of decomposing the signals generated 

by individual home appliances from the overall (composite) signal. In addition, the 

proposed algorithm is employed in conjunction with two well-known and strong 

algorithms in Time-series data analysis, Long-Short Term Memory (LSTM) and 

Multilayer Perceptron (MLP). Hence, the proposed approach is compared to the 

aforementioned two renowned algorithms as well as other techniques from previous 

studies. The proposed neural network is trained using the Stochastic Gradient 

Descent (SGD) optimization approach at each stage, and the Nesterov Accelerated 

Gradient (NAG) optimization method is also investigated. In comparison with 

previous approaches, the findings demonstrate that the algorithm's prediction 

accuracy is greater and its error is noticeably lower. It means that the proposed 

algorithm is a top contender among the existing algorithms for predicting of energy 

consumption in residential buildings.  
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1. Introduction 

For policymakers and allied institutions, modeling and forecasting energy consumption are 

crucial to a country's growth and success. When energy consumption is not taken into 

consideration, a power outage might occur, resulting in loss of life and economic devastation. 

In addition to wasting money, overestimating energy demands might result in unneeded 

features being implemented. Therefore, to minimize expensive errors, it is preferable to 

employ algorithms that forecast energy consumption with greater precision. Moreover, the 

models that can include non-linear energy consumption data in forecasting are preferable [1]. 

Research shows that Artificial Intelligence (AI) approaches are the most widely used 

technique for forecasting energy consumption. As a result, the metaheuristic algorithm 

approach is more alluring and consequential to target audiences, such as energy engineers. 

Since it allows for the option of developing more reliable energy applications, independent of 

time savings. Advantages such as fast calculation, greater affordability, simple 

implementation, and design by operators with minimal technical abilities are added bonuses 

of this technique [2, 3]. Energy is a crucial factor in almost all commercial endeavors. Most 

countries cannot guarantee their own safety without a steady supply of energy. Hence, the 

efficient generation, use, and application of energy sources in the future are of paramount 

importance [4].  

Growing energy needs throughout the world need the creation of intelligent forecasting 

models and algorithms. Allocation of energy resources may be estimated and optimized 

utilizing economic and non-economic variables that can be derived from linear and non-linear 

statistical approaches, mathematics, and simulation models. Intelligent methods, including 

genetic algorithms, fuzzy regression, and neural networks, have been explored due to the 

nonlinear nature of these metrics and energy demand. In addition, nonlinear modeling and 

prediction employ the application of artificial neural networks [1]. While attempting to 

foresee future energy use, it is common practice to look at historical use patterns; these 

patterns in turn have connections to other elements like economy, population, climate, and so 

on. The widespread interest in energy modeling in recent years has focused the attention of 

scientists and engineers on the subject of energy generation and consumption. Several sectors 

of application may benefit greatly from the use of modeling in the process of establishing 

policies and strategies [2]. 

Over 40% of global power consumption and greenhouse gas emissions are attributable to 

buildings, according to recent studies. In truth, growing populations and higher living 

standards are driving forces behind the relentless increase in energy use [5, 6]. To effectively 

control grid loads, data on how much electricity home electrical appliances usage must be 

gathered. The power system stability might be threatened without understanding the energy 

usage of electrical devices in homes. When considering the social and cultural aspects of 

energy use, identifying which appliances consume the most power might assist reduce overall 

electricity consumption, particularly during peak usage times [7]. 

DSM, or "demand side management", is the practice of continuously monitoring and 

controlling electrical energy utilization at the end-user level. This allows planners to more 

effectively control and balance electrical energy generation and consumption [8]. Hart 

established the notion of Non-Intrusive Load Monitoring (NILM) in 1992 as a strategy to 

minimize electrical energy consumption [9]. With the use of a smart meter's waveform 

output, NILM is able to isolate and classify various consumer-side electrical loads. With this, 

it is no longer necessary to install smart meters for each individual part of the network, which 

in turn increases the network's overall cost-effectiveness and simplicity of use [10]. 

In this scenario, as seen in Figure 1, a cumulative meter is used for the upstream network 

rather than using individual meters for each device, and the waveform of each consumer is 
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collected by decomposing the whole waveform [11]. Several researchers have attempted to 

address the NILM problem utilizing different techniques throughout the preceding two 

decades. Despite its outstanding efficiency, the machine learning (ML) approach has 

limitations, thus researchers often strive to eliminate computation errors by integrating it with 

other methods [12]. 

A key application of this study is the extraction of individual electrical device waveforms 

from the overall waveform of a residential building. By isolating and comparing these signals 

with standard waveforms, valuable insights can be gained about each appliance such as 

operational accuracy, energy consumption levels, and potential faults. Addressing any 

identified issues can lead to cost reductions and improved stability of the electrical grid. 

The motivation behind this research is to find a method for identifying the type of electrical 

energy consumers from the aggregate waveform of a residential building. This enables power 

network planners and supervisors to implement macro-level policies for effective control and 

network stability, while also detecting irregular or unauthorized energy usage within the 

electrical grid. 

 
1-1. Theoretical Implications 

 Advancement in Non-Intrusive Load Monitoring (NILM): This research contributes 

to the theoretical foundation of NILM by demonstrating how aggregated electrical 

waveforms can be decomposed to identify individual appliance signatures, enhancing 

our understanding of energy disaggregation techniques. 

 Signal Processing Frameworks: The study supports the development of novel signal 

processing models that interpret overlapping load patterns, reinforcing theories that 

combine time-series analysis, pattern recognition, and machine learning in electrical 

systems. 

 Behavioral Modeling of Energy Consumers: By correlating waveform characteristics 

with appliance usage, the research lays theoretical groundwork for modeling 

consumer behavior through power consumption trends—a step toward smarter, more 

predictive energy analytics. 

 Implications for Smart Grid Theory: Findings underscore the importance of real-time 

data analytics and consumer-level monitoring in maintaining grid reliability and 

stability, aligning with broader theoretical constructs around decentralized energy 

management. 

 

 

Figure 1: Cumulative meter for upstream network  
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1-2. Literature review 

By analyzing residential sector energy consumption records and the load status 

decomposition method, Yin et al. [13] constructed a Gaussian mixture model with time 

information for probability distribution called BH-Factorial Hidden Markov Model (BH-

FHMM), which was then evaluated using the REDD dataset. For a real-time, low-cost 

solution that can address these algorithms' challenges, Nguyen et al. [10] proposed a Non-

Intrusive Appliance Load Monitoring (NIALM) method. This idea utilizes on-chip 

technologies to connect multiple processors simultaneously. By decomposing the complex 

current into independent loads and determining the switching time using a BP neural 

network, Wu and Lo [14] were able to identify individual loads. This strategy was used in 

order to modify load detection. In assisting electric energy supply companies in monitoring 

and analyzing household energy consumption data, Li and Dick [15] analyzed four multiple 

tagging algorithms to distinguish electrical equipment consumption based on a cumulative 

waveform. The comparison of the four algorithms allowed them to determine which one was 

more effective on the household dataset. For independent classifiers, Liu et al. [16] proposed 

a data tagging method and a non-homogeneous design and data framework connected to load 

decomposition. Finally, Independent loads were decomposed out of a larger group of loads 

using a multiple-criterion assessment based on a decision-making method. Using data on the 

equipment's total energy usage, Hu et al. [17] framed the load decomposition problem as an 

optimization problem and solved it using a genetic algorithm employing parallel 

supplemental computations. A multilayer artificial neural network, in addition to the 

previously indicated algorithm, was utilized for machine learning. Wu et al. [18] presented a 

technique for non-intrusive load monitoring that used a high-frequency mode to retrieve 

electrical data. This method is able to decompose loads automatically and in real time. Using 

a convolutional neural network to identify the waveforms after they have been decomposed 

allows for more precise load detection. To detect non-intrusive load, Wu et al. [19] proposed 

a multi-label classification technique using a Random Forest (RF) algorithm. These 

characteristics are sorted and compared based on their relative significance, and the approach 

is robust against load signals with no mixed signals. For the purpose of managing and 

decomposing load consumption from the perspective of end users, Cavdar and Faryad [20] 

proposed a multi-component model based on deep machine learning. The CNN-RNN model 

is used in conjunction with real data from residential buildings to get an estimate of the 

current consumption rate. Using an Artificial Neural Network and Particle Swarm 

Optimization (ANN-PSO) for consumer-side non-intrusive load monitoring (NILM), Lin and 

Hu [21] presented an Internet of Things (IoT)-based energy management system. A home 

system evaluation was used to assess the efficacy of this novel combination. Alotaibi [22] 

presented machine learning and explainable AI to predict heating and cooling loads in 

residential buildings. It uses data from 768 buildings and applies models like Gaussian 

Process Regression and Boosted Trees. The GPR-M3 model showed the highest accuracy in 

both heating and cooling scenarios. Results were validated using performance metrics like 

RMSE and PCC. The model was also tested in Ecotect software for energy simulation. Azim 

et al. [23] presented new artificial neural networks to predict energy use in Tabriz homes 

based on resident behavior. Key influencing factors include number of walls, housing 

direction, family size, and occupation. Regression analysis helped select input variables for 

the ANN model. Seasonal variations were considered in the prediction. The model achieved 

accurate forecasts using real consumption data. Khodadadi et al. [24] presented a hybrid deep 

learning model combining three CNNs and a DNN using a voting mechanism. It was trained 

on the WiDS Datathon dataset for residential energy prediction. The ensemble model 

outperformed traditional ML methods like Random Forest and Linear Regression. Results 
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showed high accuracy and robustness against new data. The approach is scalable for future 

smart building applications. Neshat et al. [25] presented an adaptive ensemble learning 

models (Bagging, Stacking, Voting) with evolutionary hyperparameter tuning. It uses sensor 

data (temperature, humidity, lighting) from a smart building in Belgium. The proposed model 

outperformed 15 other ML models in accuracy and error reduction. It demonstrated strong 

performance in predicting appliance-level energy use. The method supports real-time energy 

management in smart homes. Alam [26] presented a stacked deep learning model combining 

CNN, LSTM, and DNN for energy demand forecasting. It emphasizes feature engineering 

and normalization for improved accuracy. The model was trained on real-world datasets and 

achieved high performance metrics. It supports short- and long-term forecasting for 

residential buildings. The framework aims to aid energy conservation and smart grid 

planning. 

 

2. Methodology and Material 

2-1. Energy Consumption Decomposition 

2-1-1. Why Machine learning and Fuzzy wavelet 

Machine learning algorithms can uncover hidden and nonlinear patterns in energy 

consumption data something traditional methods often miss. These models analyze past 

building behavior under various conditions (temperature, time of day, day of the week, etc.) 

to provide accurate predictions. ML models can be updated and refined with new data, 

meaning they improve over time. Energy consumption is often a time-varying and complex 

signal. Wavelet transforms are highly effective at decomposing these signals into various 

frequency components. Fuzzy logic allows for reliable decisions even with uncertainty or 

measurement errors (like consumption fluctuations). Combining wavelets for feature 

extraction with fuzzy logic for decision-making enhances the model’s accuracy in real-world 

conditions. 

Home appliance energy consumption data may be decomposed by receiving a cumulative 

signal from the building's energy system and then separating that signal into data relevant to 

each appliance. As a mathematical problem, it may be stated as: 

                                                                                                                                                  (1) 

In the preceding equation, the variable       represents the energy used by the device over 

time. The goal is to decompose the overall consumption pattern (denoted by P(t)) of a 

household into its component parts      . Hence, the total energy consumption of all 

machines is determined. Moreover, depending on the power consumption of each device, a 

customized power management scheme may be put into place. 

There are two methods for calculating estimated electrical consumption. I) An average 

consumption estimates for each consumer's (home's) power usage; II) Micro-electricity 

consumption modeling to predict individual users' power usage (each electrical device in the 

house). Decomposing energy in this context might involve two distinct phases: the first 

would involve reestablishing the device's power consumption patterns upon startup. The 

second is how much energy the equipment used on average between the beginning and end of 

the task [27]. 

Datasets, like those of home appliance power usage, that exhibit substantial fluctuation 

over time are, in general, more difficult to analyze and assess in time series. In light of this, it 

stands to reason that sub-time series derived from the signals of the main or total time series 

would exhibit less noticeable variations and be simpler to analyze than the main time series 

itself. Hence, the wavelet approach is used to decompose the ground truth into sub-datasets 

and get it ready for the algorithm's analysis and training phases. Figure 2 depicts the method 
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by which the house's overall signal is converted to the signals used by the various electrical 

devices located inside the home. 

 

 

Figure 2. Converting the house's main signal to the signals used by individual home appliances. 

 

Wavelet basically breaks the primary signals into two subgroups, one containing low 

frequencies and the other with high frequencies. After a series of wavelet transforms, the 

original signal is divided into "partial" and "approximate" sub-parts. The wave's basic 

tendency may be found in the approximate section, while the severe fluctuations can be found 

in the partial part. Daubechies wavelet methodology has been utilized for signal 

decomposition [28]. 

Figure 3 depicts the signal-breaking process. The data is first divided into its constituent 

parts, or "partial signals," or "  ," and "approximate values," or "   " The high-frequency 

and low-frequency wavelets for this part are generated by further decomposing the   wavelet 

into D1-High and D1-Low wavelets. Moreover, wavelet A is decomposed into its constituent 

sub-wavelets,   ,   , and   . Thereafter, the sub-wavelets (labeled   ,   ,   ,       , 

and        ) are entered into the algorithm's convolution layer of a neural network. 
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Figure 3. Sub-signal decomposition refers to the procedure of taking ground truth 

and breaking it down further 

 

2-2. The primary neural networks for estimating: 

In this study, the authors' custom-built estimation network was employed for all estimation-

required components. The layers of this network are what make it a neural network. 

However, convolutional networks are two-dimensional (2D). The 2D nature of each 

convolutional layer is what makes these networks ideal for processing images. Unfortunately, 

two-dimensional convolutional layers cannot be used for time series analysis. For this reason, 

the convolutional network's layers have been designed in a 1-dimensional (1D) structure that 

is well-suited to time-series data. The TensorFlow and Keras libraries include the necessary 

functions for creating 1D convolutional layer.  

Figure 4 depicts the neural network architecture utilized in the final step of the algorithm 

and the estimation of power consumption, as well as in the signal decomposition stage for 

each piece of equipment. The performance of the created network is compared to that of 

various neural networks already present in the academic literature. That is, the wavelet 

decomposes the original signal into smaller signals, and then the data from those signals is 

evaluated using Long-Short Term Memory (LSTM) and Multilayer Perceptron (MLP) 

networks in conjunction with the proposed convolution network algorithm. 

 

Data set or Total 

energy consumption

Signal decomposition 

by neural network

Achieved signals related to 

each home appliance

Applying fuzzy wavelet and breaking 

each equipment signals into sub-signals

Transmitting data into neural network and 

energy consumption estimation of each device

The results and estimated value 

for each home appliance

 

Figure 4. Decomposing a dataset into individual signals for each machine that uses energy. 
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As shown in Table 1, the developed convolutional network algorithm has the following 

structure. 

 
Table 1. The layers of the proposed neural network 

Dense Layers (hidden units = window length, activation= linear ) 

Dense Layers (hidden units = window length*5, activation = ReLU ) 

1D Convolutional Layer (filter num. = 3, filter size = 4, stride = 1, activation = ReLU) 

Dense Layers (hidden units = window length*4, activation = ReLU ) 

Dense Layers (hidden units = window length*4, activation = ReLU ) 

Dense Layers (hidden units = window length*4, activation = ReLU ) 

Dense Layers (hidden units = window length*4, activation = ReLU ) 

1D Convolutional Layer (filter num. = 16, filter size = 4, stride = 1,activation = ReLU) 

1D Convolutional Layer (filter num. = 32, filter size = 4, stride = 1, activation = ReLU) 

1D Convolutional Layer (filter num. = 64, filter size = 4, stride = 1, activation = ReLU) 

SpatialDropout1D(rate, **kwargs) 

1D Convolutional Layer (filter num. = 128, filter size = 4, stride = 1, activation = ReLU) 

1D Convolutional Layer (filter num. = 128, filter size = 4, stride = 1, activation = ReLU) 

SpatialDropout1D(rate, **kwargs) 

1D Convolutional Layer (filter num. = 256, filter size = 4, stride = 1, activation = ReLU) 

1D Convolutional Layer (filter num. = 256, filter size = 4, stride = 1, activation = ReLU) 

1D Convolutional Layer (filter num. = 512, filter size = 4, stride = 1, activation = ReLU) 

1D Convolutional Layer (filter num. = 512, filter size = 4, stride = 1, activation = ReLU) 

1D Convolutional Layer (filter num. = 1024, filter size = 4, stride = 1, activation = ReLU) 

1D Convolutional Layer (filter num. = 1024, filter size = 4, stride = 1, activation = ReLU) 

 

2-3. FWCNN Formulation 

After the individual components of the fuzzy wavelet convolutional neural network 

(FWCNN) technique have been outlined, the underlying mathematical equation may be 

formulated as follows: 

  
     

      
     

             
     

    
      

     
,                                                                                        (2) 

Time-series data computation is described by the equation (2), in which    and    refer to the 

output part of the deep representation, respectively. Weights of    and    also denote the output 

of the fuzzy representation. Then, the nonlinear function modifies the reaction result in the 

reaction layer. As such, the following expression defines the value predicted at period     . 

 ̂   (  
     

)  
   

   
 
     

   
   

 
                                                                                                                                        (3) 

Where   
     

 refers to the combined result of both fuzzy and neural representations. In 

addition, the Hyperbolic Tangent (    ) of the activation function is defined as g.      

ensures that the output values range between    and . That is, close to the normalized input 

values. 

By minimizing the mean squared error between the predicted and actual values, the 

FWCNN model may be trained to predict energy consumption from input series data. 

The reconstruction error can be achieved as follows: 

     ‖    ̂ ‖
 
 

                                                                                                                                                (4) 

In which  ,  ̂  and   describe observed value, predicted value, and all the learnable 

parameters in the FWCNN model, respectively. Before making any predictions, it is essential 

to develop the FWCNN model by establishing initial values for its parameters and then 

adjusting it to perfection. The convergence of the neural network to a desirable minimum 

may be aided by greater preparation. Parameterization of the FWCNN model involves both 
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the FN and CNN. The CNN's weights are initially randomized for convenience, based on the 

uniform distribution principle. 

     
     [ 

 

√      
 

 

√      
]                                                                                                                                (5) 

Where        is the number of          layer nodes on node i in the      layer. From 

the start, each node has an orientation   of  . In both the FN and CNN sections, the number 

of nodes required for the pooling layer is present in the final layer. Weights between layers, 

as well as the mean value µi and variance     of the membership function, are all parameters 

that must be initialized in the FN portion of the FWCNN. The weight between the 

"Fuzzification," layers and "Operation" layers is adjusted to 1. The value of    is set by a 

statistical approach, and σi2 may be calculated from the mean value. Tuning settings for the 

FWCNN model may be adjusted in a task-oriented manner once its components have been 

correctly set up. The FWCNN model is trained using back-propagation and the Adam 

algorithm to ensure that the parameters are properly adjusted. The Adam algorithm excels in 

non-convex maximum optimization and is therefore well-suited to problems involving big 

datasets and high-dimensional spaces. The procedure for updating parameters is outlined 

below: 

The gradient   of the parameters is calculated concerning the equation (6): 

   
     

      ∑
     

  
 
     

   
   

  
 
    

   
   

                                                                                                                                (6) 

Where      refers to the reconstruction error defined in equation 7, and   reflects the FWCNN model's general 

parameter adjustment. The activation function and the neuron's output   
   

 are used to derive the last two 

components in equation (6), the first of which is the back-propagation term. 

Estimates for the first and second moments of orientation may be found in equations (7) and (8), respectively. 

                                                                                                                                                    (7) 

                   
                                                                                                                                    (8) 

In which    and    reflect exponential decline (decay) rates for the first and second instant 

estimates, respectively. Vector      is the first moment, while    represents the second raw 

moment vector. Generally,    and    are defined as having an initial value of 0. 

Also               
With the use of equations (7) and (8), it determines a revised estimate for the elapsed time 

since the first instant and a new estimate for the time since the first moment (second initial 

moment estimate). Updates to the parameters are calculated using equations (9) and (10), 

 ̂          
                                                                                                                                                  (9) 

 ̂          
                                                                                                                                                   (10) 

In equations (8) and (9),    and    represent the first torque vector and the second raw 

torque vector, respectively. Updates to the parameters are calculated using equation 11. 

           ̂   √ ̂    ,                                                                                                                             (11) 

Where parameter values at time       are denoted by     , the learning rate is given by α, 

and the constant of 8-10 is designated by ε. The FWCNN model has the following sets of 

parameters: θ = {W, b, µ, σ}. 

 
2-4. Assessment of algorithms' results 

In most cases, the algorithm's performance may be measured via different metrics. There are 

a variety of functions that may be employed to determine either the algorithm's error or its 

accuracy, with the decision ultimately falling to the algorithm architect and the condition of 

the problem under consideration. Several approaches are explored in this investigation, as 

shown below. The following metrics are used to assess the precision and recall of classified 
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data, as well as the overall accuracy of the neural network's classification [29]. Within the 

realm of information retrieval, the practical criteria of accuracy and recall determine how 

well the documents retrieved by the system meet the user's requirements. The following are 

some definitions of these metrics: 

[Accuracy=Related document number after retrieval / the number of documents retrieved in 

total] 

[Recall=Related document number after retrieval / the number of documents retrieved in total 

in the database] 

 
Table 2. A table for determining the algorithm's accuracy: the confusion matrix 

 
Model-assigned class 

Positive Negative 

Actual class 
Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

According to Table 2, there are some descriptions as follows [24]: 

True Positive (TP): it identifies the correctly classified positive samples. 

True Negative (TN): it identifies the correctly classified negative samples. 

False Positive (FP): it identifies samples that are being falsely classified as positive. 

False Negative (FN): it identifies samples that are being falsely classified as negative. 

[Recall (Sensitivity): The number of system true positive samples/ Total number of true 

positive samples=TP/(TP+FN)] 

[Precision: The number of system true positive samples/ Total number of predicted positive 

samples=TP/(TP+FP)] 

[Accuracy: (TP + TN)/(TP + TN + FP + FN)]. 

 
2-5. The algorithm error calculation 

The algorithm error has been determined in two different ways in this study, and both metrics 

are equivalent in their application. For the sake of facilitating comparisons between the 

proposed algorithm and other studies, both approaches are used. This is due to the fact that 

research papers use different approaches. That is to say, some authors have used one 

approach and others have utilized another one. Both approaches are presented as equations 

(12) and (13). 

     √
∑   ̂     

  
   

 
                                                                                                                                         (12) 

    
 

 
 ∑ | ̂    |

 
                                                                                                                                         (13) 

    
2-6. The utilized dataset 

This dataset is a standard one, and it was taken from reference [27]. Several recent high-

quality studies have utilized this dataset to train and test AI and ML models. Included in this 

dataset are details about the electrical use of five different London homes, each of which has 

been assigned a unique "Household" identifier. Simply put, the household-related data in this 

dataset is organized as Household 1, Household 2, Household 3, Household 4, and Household 

5. This dataset contains records that individually indicate the entire amount of power used by 

a single residence's worth of equipment, including but not limited to TVs, washing machines, 

refrigerators, and more. The data in this dataset was gathered over the course of a year, 
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making it a time-series dataset. A 24-hour time series plot of all available data is shown in 

Figure 5 [27]. 

 

 
Figure 5. Data from the DLAE dataset depicting the overall electrical appliance consumption over 24 

hours [27] 

 

3. Results and discussion 

3-1. The proposed neural network results in signal decomposition 

It is at this stage that the results of the convolutional neural network technique used to 

decompose the appliance data from the whole signal are shown. At this point, what follow is 

the results of processing the data from each appliance through the convolutional neural 

network algorithm, which decomposed the individual appliance signals from the whole. The 

accuracy and error of the algorithm for each electrical appliance are included in the findings. 

Values for Accuracy, Precision, and Recall regarding the signal separation of electrical 

appliances are shown in Table 3. These values are associated with the assessment of the 

convolution network's output in decomposing the produced data as belonging to a certain 

appliance. 

 
Table 3. Error and accuracy in signal decomposition for each electrical device 

MAE Accuracy Recall Precision Device name 

16% 0.97% 0.99% 0.88% Dishwasher 

14% 0.99% 0.96% 1.00% Kettle 

16% 0.86% 0.82% 0.84% Fridge 

5% 0.99% 0.87% 0.96% Microwave 

35% 0.78% 0.99% 0.51% Washing m. 

 
3-2. Training neural networks to estimate energy consumption 

The proposed neural network's training has extensively used the Stochastic Gradient Descent 

(SGD) optimization approach, and the Nesterov Accelerated Gradient (NAG) optimization 

method has been tested as a secondary option for the new algorithm at the end of the process. 

Table 4 lists the outcomes achieved by the proposed method while using both optimization 

techniques. 
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Table 4. Comparing the output of the proposed algorithm using SGD and NAG optimization methods 

Home appliances 
Accuracy Loss MAE 

NAG SGD NAG SGD NAG SGD 

Dishwasher 0.96 0.97 7.6 7.3 9.8 9.4 

Kettle 0.99 1.0 3.9 3.9 5.2 5.3 

Fridge 0.90 0.89 2.9 3.1 12.8 12.0 

Microwave 0.95 0.99 6.6 6.3 11.1 10.11 

Washing m. 0.94 0.97 8.7 8.8 16.9 14.0 

Average 0.948% 0.964% 5.94% 5.88% 11.16% 10.162% 

 

Estimates generated by various algorithms and the proposed technique are graphically 

shown in Figure 6 to 8. In each graph, the black lines indicate the ground truth, while the 

colored lines represent the algorithms' estimates. In fact, the black lines in the figures 

typically represent the test data. Estimates for the test data have been made using the 

proposed algorithm, which has been trained using the training data. The test compares the 

estimated results to the ground truth in order to evaluate the algorithms' performance in a 

future simulation. 

 

 

Figure 6. FWCNN estimation for Fridge Consumption. 
 

 

Figure 7. LSTM estimation for Fridge Consumption. 
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Figure 8. MLP estimation for Fridge Consumption 

 

 3-3. Evaluation of the proposed algorithm compared to existing algorithms 

This section compares the main algorithm described in this thesis to other algorithms used to 

estimate energy consumption in order to establish the effectiveness of the proposed main 

algorithm. Also, a comparison is made with other methodologies using a similar dataset. 

Table 5 illustrates the results of this comparison. 

 
Table 5. Comparison between the proposed algorithm and other algorithms 

Ref. MAE (%) Accuracy (%) dataset Algorithm 

[*] 10.162 96.4 Uk-dale The proposed FWCNN 

[30] 14.86 - Uk-dale CNN 

[30] 11.174 - Uk-dale U-NET 

[31] 15.5670 - Uk-dale ARIMA 

[31] 10.6512 - Uk-dale SVR 

[31] 13.6995 - Uk-dale Persis. 

[31] 10.1582 - Uk-dale Multi-Step Short-Term Hybrid Deep Learning 

[32] - 79.35 Uk-dale SVM 

[32] - 89.58 Uk-dale 
unsupervised data clustering and frequent pattern 

mining analysis 

[33] 17.999 - Uk-dale seq2seq 

[33] 15.472 - Uk-dale seq2point 

[33] 82.79 - Uk-dale Markov model (AFHMM) 

[27] 93.488 - Uk-dale seq2seq(Kelly) 

[34] - 85.84 Uk-dale VDOCNN 

[34] - 85.84 Uk-dale Xception 

[34] - 90.25 Uk-dale Concatenate-DenseNet121 

[35] - 86.49 Uk-dale 
he Neuro-Fuzzy 

Hybridization- 

[36] - 94.00 Uk-dale Autoencoder 

[37] - 95.385 Uk-dale FFNN 

[38] - 98.51 Uk-dale LPH 

[39] - 97.995 Uk-dale CNN–LSTM 
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4. Conclusion  

Table 5 indicates that various algorithms have produced varying outcomes, with CNN-based 

algorithms showing the most improvement in recent years. Nevertheless, the fact that the 

algorithms are not being compared on identical datasets makes the comparisons slightly 

challenging. For instance, the number of samples used in the publication discussed in the 

CNN-LSTM algorithm differs from the number of samples used in this research and other 

papers. The result of the algorithm may be viewed to provide insight into how well it 

performs when classifying relevant data since; in general, all algorithms utilize relatively 

similar datasets. This means that the proposed algorithm is a top contender among the 

existing algorithms. 

 

5. Challenges and future studies 

The absence of a concrete criterion for evaluating the presented algorithms is only one of the 

numerous obstacles in the way of these tests. While it is important to know how many 

samples were used for training and testing an algorithm, in some research studies, this 

information is left vague. Owing to the significance of this factor in comparing algorithms, it 

is almost impossible to identify with precision which algorithm is superior to others. This 

provides a foundation for future research into the means of addressing these difficulties and 

into the means of various combinations to improve this algorithm. Furthermore, improved 

approaches for optimizing the descending gradient may be obtained to increase the 

algorithm's accuracy by incorporating contemporary optimization techniques including SGD 

and NAG. 

Future NILM studies can benefit from integrating IoT data such as temperature, humidity, 

and occupancy sensors to enhance appliance detection accuracy. Employing deep learning 

models like RNNs or transformers can improve time-series analysis of consumption behavior. 

Researchers should focus on distinguishing appliances with similar usage profiles using 

higher-level features such as operational sounds or specific frequency patterns. Real-time 

NILM systems could enable early detection of anomalies and faults. Developing region-

specific algorithms tailored to cultural and climatic energy-use patterns can improve 

adaptability. Lastly, behavioral research should explore how detailed consumption feedback 

affects user habits and energy efficiency. 

NILM research faces several limitations, including difficulty in distinguishing between 

appliances with similar energy signatures such as refrigerators and air conditioners and 

vulnerability to signal and environmental noise, which can reduce algorithm accuracy. 

Scalability is another concern, as models effective in one building type may not perform 

equally well in different settings. The lack of diverse, standardized datasets restricts the 

replicability and comparison of results. Privacy concerns also emerge when collecting 

detailed consumption data, particularly in real-time scenarios. Furthermore, accurately 

separating multiple devices operating simultaneously presents a challenge due to signal 

overlap. Finally, the computational cost and complexity of advanced models, like deep 

learning, may limit their practical deployment in low-resource devices. 
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