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Abstract

Automated inspection systems powered by deep learning are revolutionizing quality control in leather and footwear
manufacturing by replacing subjective, time-consuming manual methods with objective, high-throughput solutions.
This review presents a comprehensive analysis of deep learning-driven inspection approaches for defect detection
in leather and footwear, covering both conventional image processing techniques and state-of-the-art architectures
such as convolutional neural networks (CNNs), YOLO series models, and vision transformers. Key application
areas include color prediction and sorting, leather species identification, and defect segmentation/classification,
with emphasis on integration into real-time industrial workflows. The study examines how the adoption of Al-based
inspection improves product quality compliance, reduces rejection rates, and enhances manufacturing
competitiveness. It also highlights the transition toward Industry 4.0-aligned inspection systems and identifies
current challenges such as dataset scarcity, small-defect detection limitations, and integration with high-speed
production lines. Finally, the review proposes future research directions for developing adaptive, domain-specific
deep learning models that support scalable, reliable, and sustainable leather and footwear production.
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INTRODUCTION

The global leather and footwear industry is undergoing a technological transformation driven by the need for higher
productivity, consistent quality, and compliance with stringent international standards. Traditionally, quality inspection in this
sector has relied heavily on manual visual checks, which are prone to subjectivity, inconsistency, and high labor costs. With
the rapid advancement of artificial intelligence (Al) and computer vision, deep learning-based automated inspection systems
are emerging as powerful alternatives, capable of detecting subtle surface defects, verifying species authenticity, and ensuring
accurate color matching at industrial scale. Across major leather and footwear manufacturing hubs worldwide, the integration
of Al-driven inspection systems into tanneries and assembly lines is enabling significant improvements in production efficiency
and quality assurance. These implementations help reduce product rejections due to surface defects and color mismatches,
improve compliance with stringent regulatory requirements, and enhance traceability through digital quality records. Industry-
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focused initiatives and government-supported modernization programs are further accelerating the adoption of smart
manufacturing practices, including Al-based inspection, creating opportunities for manufacturers to align with Industry 4.0
standards. This review consolidates the current state of research on deep learning-driven inspection in leather and footwear
manufacturing, examines its industrial applications, and discusses its potential to transform quality control practices. It also
identifies persistent challenges such as dataset scarcity, small-defect detection, and integration with high-speed production
lines, while outlining future research directions for developing adaptive, domain-specific solutions that can deliver consistent,
scalable, and sustainable quality inspection.

THEORETICAL BACKGROUND

Automated inspection in leather and footwear manufacturing refers to the application of computer vision and artificial
intelligence (Al) to identify, classify, and localize defects on raw hides, finished leather, or footwear components without
human intervention. In this context, a defect is defined as any irregularity or flaw such as scratches, holes, insect bites, wrinkles,
stains, or stitch misalignments that may compromise the appearance, durability, or functionality of the product [1], [2]. Key
concepts in this domain include machine vision, which involves the use of imaging hardware and processing algorithms to
capture and analyze product surfaces [3]; object detection, which locates and classifies defects using bounding boxes or
segmentation masks [1], [4]; semantic segmentation, which performs pixel-level classification to accurately define defect
boundaries for material utilization optimization [2], [5]; real-time inspection, referring to algorithms capable of operating at
manufacturing line speeds to enable immediate corrective action; and yield optimization, which focuses on maximizing usable
material by detecting cut-worthy areas while excluding defective zones [1].

Historically, leather and footwear inspection was a manual process, relying on skilled inspectors to visually assess hides
under controlled lighting conditions. While adaptable, this approach was susceptible to operator fatigue, subjectivity, and
inconsistent results [1]. The initial wave of automation introduced traditional image processing techniques such as edge
detection, thresholding, and texture analysis [3], which improved repeatability but struggled with variations in lighting, texture,
and defect scale. The emergence of machine learning brought feature-based classification approaches such as Gray-Level Co-
occurrence Matrix (GLCM) and Local Binary Pattern (LBP) combined with classifiers like Support Vector Machines (SVM)
and decision trees [2], [S]. These methods, however, relied heavily on handcrafted features and often lacked robustness for
diverse industrial scenarios. Over the past decade, deep learning has transformed the field, with Convolutional Neural Networks
(CNNs) and You Only Look Once (YOLO) models enabling automated learning of hierarchical features from images,
delivering significant improvements in accuracy and speed [1], [4], [6]. Recent advancements have further integrated
lightweight architectures, attention mechanisms, and dual-side imaging to enhance performance in real-world manufacturing
conditions [1], [2], [4].

Automated inspection systems for leather and footwear manufacturing are guided by three fundamental principles: accuracy,
referring to the capability to detect and classify a wide range of defects with minimal false positives or negatives [1], [4]; speed,
ensuring that detection algorithms operate in real time to match or exceed production line speeds [1]; and adaptability, the
ability to maintain consistent performance across varying hide types, textures, and lighting environments [2], [5]. Commonly
deployed models include YOLOvV8 and YOLOv11 for real-time object detection [1], [4]; Mask R-CNN and U-Net for high-
precision segmentation tasks [5]; and lightweight symmetry-based segmentation networks for computational efficiency [2].
Standards in this domain are typically internal to individual manufacturing facilities, defining acceptable defect types and
thresholds based on product category and customer specifications, rather than being regulated by universal ISO standards.

REVIEW METHODOLOGY

This review adopts a structured approach to identify, analyze, and synthesize relevant literature on deep learning-driven
automated inspection for defect detection in leather and footwear manufacturing. Academic databases including IEEE Xplore,
ScienceDirect, SpringerLink, MDPI, and Taylor & Francis were searched using combinations of keywords such as “leather
defect detection,” “footwear quality control,” “deep learning inspection,” “YOLO,” “vision transformer,” and “computer vision
manufacturing.” Inclusion criteria were: (i) publications in peer-reviewed journals or reputable conference proceedings between
2010 and 2025; (ii) focus on automated inspection using computer vision or deep learning; and (iii) relevance to leather,
footwear, or transferable industrial surface inspection technologies. Studies unrelated to defect detection, purely theoretical
works without experimental validation, or those lacking sufficient methodological details were excluded. The final selection
comprised 25 core studies covering applications in color analysis, species identification, defect detection, and
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segmentation/classification, including cross-domain approaches adaptable to leather manufacturing. Each study was critically
evaluated for dataset characteristics, algorithmic methodology, accuracy metrics, computational requirements, and industrial
applicability.

CURRENT STATE OF RESEARCH

The reviewed studies collectively reveal a steady progression from traditional image processing methods toward sophisticated
deep learning architectures capable of real-time industrial deployment. While leather-specific research forms the core of this
review, several advances from adjacent manufacturing sectors—such as metal surface inspection and additive manufacturing—
offer transferable methodologies for addressing persistent challenges in leather and footwear inspection. The following
subsections outline the major application areas identified in the literature, with an emphasis on the algorithms, datasets, and
system architectures employed.

1. Computer Vision and Color Analysis for Leather and Footwear Components

Several studies have focused on applying computer vision to automate color evaluation and matching in leather manufacturing.
Jawahar et al. developed regression models to predict the final dry color of leather from its wet state, enabling faster and more
accurate color matching during dyeing [7]. Extending this, the authors proposed a low-cost sensor-based color sorting system
using K-means clustering in the CIE Lab* space to replace subjective manual assorting of footwear components [8].
Additionally, artificial neural networks (ANN) have been explored for tristimulus-based color prediction, outperforming
traditional Kubelka—Munk models in handling the non-linearities of leather substrates [9]. These approaches reduce human
subjectivity, improve consistency, and support mass customization in footwear production.

1I. Species Identification in Leather Quality Control

Leather species verification is critical for authenticity, quality assurance, and biodiversity conservation. Jawahar et al. applied
scanning electron microscopy (SEM) and image processing to extract morphological hair-pore features—such as pore size,
density, and arrangement for automatic species classification [10]. Varghese et al. advanced this by using portable digital
microscopes, Otsu’s thresholding, circular Hough transform, and KNN classifiers to achieve 92.5% accuracy in species
identification [11]. Such methods reduce dependence on expert visual inspection and are essential in traceability systems for
sustainable leather sourcing.

11I. Automated Leather Defect Detection and Classification

Automated defect detection has been addressed through a variety of deep learning architectures and image analysis techniques.
Traditional approaches such as wavelet-based feature extraction combined with SVM classifiers [ 12] and optimization-driven
segmentation with ensemble classification [ 13] have demonstrated improvements over manual inspection in both accuracy and
throughput. More recent work has applied advanced CNN architectures specifically tailored for leather inspection, including a
two-stage CNN framework integrating AlexNet for feature extraction and U-Net for pixel-level segmentation [14], enabling
both classification and precise defect localization. Vision Transformer (ViT)-based models [15] have also emerged as a
promising alternative, offering global attention mechanisms that better capture complex texture patterns found in leather
surfaces.

The YOLO family of object detection networks has played a central role in real-time inspection. While the latest YOLOv8
and YOLOv11 models have been customized for leather defect detection [ 1], [4], earlier iterations such as YOLOv3 [16] remain
relevant in applications requiring a balance between speed and computational resource demands. In addition, semi-supervised
learning approaches [17] have shown potential in industrial defect segmentation, allowing high-performance models to be
trained with fewer labeled images — a critical advantage given the dataset scarcity in leather manufacturing. Complementing
CNN-based methods, the Vision Transformer architecture [18] has been successfully adapted to defect detection tasks,
leveraging self-attention mechanisms for enhanced feature representation in scenarios where defect patterns are small or
irregular.

Beyond leather-specific applications, defect segmentation methods developed for other industrial materials can inform
future system designs. For example, cascaded autoencoders [19] and high-precision detection pipelines for metal workpieces
[20] demonstrate robust performance with minimal annotated data, suggesting their potential adaptation to leather inspection
environments where defect variability is high and sample sizes are limited.
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To provide a consolidated view of the current advancements, Table I summarizes key studies on automated inspection in
leather and footwear manufacturing. The table highlights the diversity of methods ranging from traditional regression and
clustering approaches to advanced deep learning architectures such as CNNs, YOLO, and Vision Transformers. Each study is
compared in terms of dataset characteristics, application domain, performance metrics, strengths, and limitations. This synthesis
helps identify the progression of inspection technologies, as well as the persistent gaps particularly dataset scarcity, small-

defect detection, and computational demands—that still need to be addressed.

COMPARISON OF DEEP LEARNING APPROACHES FOR LEATHER & FOOTWEAR INSPECTION

TABLE I

Study / Year Method / Model Dataset / Images Application Accuracy /  Strengths Limitations
Performance

Jawahar et al. Regression Models ~ Wet vs. Dry Leather  Color Prediction R2>09 Faster dyeing  Limited
(2013) [7] Samples process, reduces generalization,

errors sensitive to process

variations

Jawahar et al. K-means in CIE Shoe  Component Color Sorting >90%  sorting  Low-cost, Limited to color, not
(2017) [8] Lab* Images accuracy reduces defects

subjectivity
Varghese et al.  Digital Microscopy ~ SEM/Microscope Species 92.5% accuracy  Portable, high  Requires close-up
(2020) [11] + KNN Images Identification precision imaging
Liong et al. Two-Stage CNN 1000+ Defect Leather Defect ~95% Pixel-level Data-hungry,
(2019) [14] (AlexNet + U-Net)  Images Classification & segmentation compute-intensive

Segmentation
Smith et al. Vision Custom Leather Multi-class Defect >90% Captures complex  Requires large dataset,
(2023) [15] Transformer (ViT)  Dataset Detection textures high GPU demand
Banduka et al. YOLOvIl (Dual- Finished Leather Real-time Defect ~97% mAP Real-time, robust ~ Needs well-annotated
(2024) [1] Side Imaging) Industry Images Detection dataset
Peng et al. Improved Industrial ~ Leather  Defect Detection mAP 95%+ High speed, Struggles with tiny
(2024) [4] YOLOvVS8 Dataset scalable defects
Lee et al. Lightweight Small Industrial ~ Defect 94%+ Edge deployable, Lower accuracy for
(2025) [2] Symmetry Dataset Classification efficient rare defects
Segmentation
Atag et al. Object Detection Multi-defect Leather =~ Multi-defect 90-93% Handles multiple Needs  high-quality
(2024) [5] (YOLO, Faster R- Images Detection defect types annotation
CNN)

Cross-domain YOLOvVS8 + Dilated Metal DAM Dataset Crack & Porosity 96% Transferable to  Small dataset,
(Zubayer et al., Conv (414 images) Detection leather material-specific

2023) [21]
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While the studies summarized in Table I focus specifically on leather and footwear applications, it is important to note that
several methodologies developed in adjacent industries such as steel manufacturing, additive manufacturing, and metal surface
inspection offer transferable insights for addressing persistent challenges in this domain. Table II presents representative cross-
industry applications, illustrating how defect detection techniques in other materials can inspire future system designs for
leather and footwear inspection.

TABLE II
REPRESENTATIVE INDUSTRIAL APPLICATIONS OF DEEP LEARNING-BASED SURFACE INSPECTION

Industry Product / Process Method Used Description Remark Ref.
Manufacturing —  Surface defect Segmentation-based Two-stage network for Outperforms commercial [22]
Quality Control detection on industrial deep learning segmentation and decision- software; practical for industries

semi-finished products  architecture (custom making, designed to work with with limited defect samples
(e.g., surface cracks) CNN) only 25-30 defective samples
instead of thousands
Metal Additive Stainless steel YOLOv8 with dilated Detects cracks and gas porosity Achieved 96% detection [21]
Manufacturing metallographic convolution from metallographic images accuracy in 0.5 h; first use of
inspection (Metal DAM dataset, 414 images)  YOLOWVS for this dataset
High-Precision Reflective metal parts Enhanced SCK- Combines polarization imaging, Improved precision, recall, and [23]
Metal AM defect detection YOLOVS + polarization ~ multi-scale feature refinement, mAP50 over baseline YOLOVS5;
imaging and dual-attention to detect first such improvement for
micro—nano porosity defects reflective metals
Multiple Review of Survey of deep Compares traditional NDT and Highlights [24]
Industrial manufacturing defect learning, machine Al-based methods for various strengths/weaknesses; notes
Sectors detection vision, ultrasonic, materials deep learning’s flexibility but
magnetic, eddy current, need for large datasets
osmosis testing
Multiple Surface defect Review of supervised &  Summarizes datasets (NEU-DET,  Identifies challenges: small [25]
Industrial detection in industrial unsupervised object GC10-DET, Severstal, etc.) and defect sizes, dataset scarcity,
Sectors products detection (e.g., Faster evaluation metrics (mAP, irregular shapes
R-CNN, YOLO, GAN) Precision, Recall)
Steel Surface defect Statistical (GLCM, Analyzes detection approaches for ~ Notes trade-off between [26]
Manufacturing detection & LBP), spectral, texture steel strips; strengths/limitations detection accuracy, robustness,

classification

segmentation, machine
learning

of each

and computational cost

CHALLENGES AND LIMITATIONS

Although current research demonstrates impressive results in both accuracy and processing speed, several technical and
operational barriers limit the widespread adoption of these systems in manufacturing environments. A synthesis of findings
from the reviewed studies reveals five primary challenges—dataset scarcity, small-defect detection, real-time integration, cost
barriers, and skill gaps—that require targeted research and industry collaboration to overcome.
Despite significant advances in deep learning-based automated inspection, several challenges hinder large-scale deployment in
the leather and footwear manufacturing sector. One major obstacle is the scarcity of domain-specific datasets, as defect patterns
vary significantly with species, tanning methods, and finishing processes. Collaborative dataset creation within industry clusters
can help address this limitation by pooling resources and building large, annotated defect repositories. Another challenge lies
in detecting small or low-contrast defects such as fine scratches or shade variations. This can be mitigated by implementing
multi-angle lighting and high dynamic range (HDR) imaging, which improve the visibility of subtle anomalies. Integration
with high-speed production lines also presents technical difficulties, as real-time inspection requires rapid image processing
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without causing bottlenecks. Deploying edge-computing hardware at inspection points can address this by enabling local image
processing and reducing latency. Cost remains a significant barrier for small and medium enterprises (SMEs), which can be
reduced through phased deployment, shared infrastructure, or leasing models. Finally, there is a skill gap in deploying and
maintaining Al-based inspection systems, which can be addressed through targeted training programs to build in-house
capabilities for Al-driven manufacturing.

FUTURE RESEARCH DIRECTIONS

To achieve fully automated, Industry 4.0-ready leather and footwear inspection systems, future research should focus on several
key areas. First, the creation of open, standardized leather defect datasets is essential to support model training and
benchmarking across different production environments. Advances in deep learning architectures, particularly hybrid
convolutional neural network (CNN) and transformer-based models, should be explored to better capture the complex textures
and patterns of leather surfaces. Multi-modal inspection systems that combine RGB imaging with hyperspectral or thermal
imaging have the potential to detect hidden or subsurface defects, expanding the scope of quality control. Domain adaptation
and transfer learning techniques can help tailor models to specific manufacturing conditions while reducing the need for large
training datasets. Additionally, research should prioritize lightweight, edge-deployable models capable of delivering high
accuracy with minimal computational resources, making them more accessible for small and medium enterprises (SMEs).
Integrating Al inspection outputs with enterprise resource planning (ERP) and quality management systems (QMS) will enable
real-time defect tracking, supplier accountability, and predictive analytics for process optimization. Finally, future
developments should align with sustainability goals, ensuring that Al-driven inspection contributes to reduced waste, optimized
material usage, and improved resource efficiency.

CONCLUSION

Deep learning-driven automated inspection systems are reshaping quality control in leather and footwear manufacturing,
offering objective, consistent, and high-throughput alternatives to manual inspection. This review has consolidated existing
research in color analysis, species identification, and defect detection, highlighting how Al-based solutions can address
limitations of traditional methods and enhance manufacturing efficiency. Strategic adoption of these technologies supported
by collaborative dataset creation, integration of edge-computing hardware, and targeted workforce upskilling can overcome
barriers such as dataset scarcity, small-defect detection challenges, and high implementation costs for small and medium
enterprises (SMEs). By aligning technology implementation with sustainable manufacturing goals, the leather and footwear
industry can significantly improve quality assurance, reduce waste, ensure regulatory compliance, and strengthen
competitiveness in global markets. As the sector advances toward Industry 4.0, deep learning-enabled inspection systems will
play a central role in building more resilient, efficient, and environmentally responsible production processes.
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