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Abstract 

Automated inspection systems powered by deep learning are revolutionizing quality control in leather and footwear 

manufacturing by replacing subjective, time-consuming manual methods with objective, high-throughput solutions. 

This review presents a comprehensive analysis of deep learning-driven inspection approaches for defect detection 

in leather and footwear, covering both conventional image processing techniques and state-of-the-art architectures 

such as convolutional neural networks (CNNs), YOLO series models, and vision transformers. Key application 

areas include color prediction and sorting, leather species identification, and defect segmentation/classification, 

with emphasis on integration into real-time industrial workflows. The study examines how the adoption of AI-based 

inspection improves product quality compliance, reduces rejection rates, and enhances manufacturing 

competitiveness. It also highlights the transition toward Industry 4.0-aligned inspection systems and identifies 

current challenges such as dataset scarcity, small-defect detection limitations, and integration with high-speed 

production lines. Finally, the review proposes future research directions for developing adaptive, domain-specific 

deep learning models that support scalable, reliable, and sustainable leather and footwear production. 
 

Keywords – Deep learning, automated inspection, leather defect detection, footwear quality control, computer 

vision, Industry 4.0, species identification, color analysis, AI in manufacturing. 

 

INTRODUCTION 

The global leather and footwear industry is undergoing a technological transformation driven by the need for higher 

productivity, consistent quality, and compliance with stringent international standards. Traditionally, quality inspection in this 

sector has relied heavily on manual visual checks, which are prone to subjectivity, inconsistency, and high labor costs. With 

the rapid advancement of artificial intelligence (AI) and computer vision, deep learning-based automated inspection systems 

are emerging as powerful alternatives, capable of detecting subtle surface defects, verifying species authenticity, and ensuring 

accurate color matching at industrial scale. Across major leather and footwear manufacturing hubs worldwide, the integration 

of AI-driven inspection systems into tanneries and assembly lines is enabling significant improvements in production efficiency 

and quality assurance. These implementations help reduce product rejections due to surface defects and color mismatches, 

improve compliance with stringent regulatory requirements, and enhance traceability through digital quality records. Industry-
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focused initiatives and government-supported modernization programs are further accelerating the adoption of smart 

manufacturing practices, including AI-based inspection, creating opportunities for manufacturers to align with Industry 4.0 

standards. This review consolidates the current state of research on deep learning-driven inspection in leather and footwear 

manufacturing, examines its industrial applications, and discusses its potential to transform quality control practices. It also 

identifies persistent challenges such as dataset scarcity, small-defect detection, and integration with high-speed production 

lines, while outlining future research directions for developing adaptive, domain-specific solutions that can deliver consistent, 

scalable, and sustainable quality inspection. 

  

THEORETICAL BACKGROUND 

Automated inspection in leather and footwear manufacturing refers to the application of computer vision and artificial 

intelligence (AI) to identify, classify, and localize defects on raw hides, finished leather, or footwear components without 

human intervention. In this context, a defect is defined as any irregularity or flaw such as scratches, holes, insect bites, wrinkles, 

stains, or stitch misalignments that may compromise the appearance, durability, or functionality of the product [1], [2]. Key 

concepts in this domain include machine vision, which involves the use of imaging hardware and processing algorithms to 

capture and analyze product surfaces [3]; object detection, which locates and classifies defects using bounding boxes or 

segmentation masks [1], [4]; semantic segmentation, which performs pixel-level classification to accurately define defect 

boundaries for material utilization optimization [2], [5]; real-time inspection, referring to algorithms capable of operating at 

manufacturing line speeds to enable immediate corrective action; and yield optimization, which focuses on maximizing usable 

material by detecting cut-worthy areas while excluding defective zones [1]. 

     Historically, leather and footwear inspection was a manual process, relying on skilled inspectors to visually assess hides 

under controlled lighting conditions. While adaptable, this approach was susceptible to operator fatigue, subjectivity, and 

inconsistent results [1]. The initial wave of automation introduced traditional image processing techniques such as edge 

detection, thresholding, and texture analysis [3], which improved repeatability but struggled with variations in lighting, texture, 

and defect scale. The emergence of machine learning brought feature-based classification approaches such as Gray-Level Co-

occurrence Matrix (GLCM) and Local Binary Pattern (LBP) combined with classifiers like Support Vector Machines (SVM) 

and decision trees [2], [5]. These methods, however, relied heavily on handcrafted features and often lacked robustness for 

diverse industrial scenarios. Over the past decade, deep learning has transformed the field, with Convolutional Neural Networks 

(CNNs) and You Only Look Once (YOLO) models enabling automated learning of hierarchical features from images, 

delivering significant improvements in accuracy and speed [1], [4], [6]. Recent advancements have further integrated 

lightweight architectures, attention mechanisms, and dual-side imaging to enhance performance in real-world manufacturing 

conditions [1], [2], [4]. 

     Automated inspection systems for leather and footwear manufacturing are guided by three fundamental principles: accuracy, 

referring to the capability to detect and classify a wide range of defects with minimal false positives or negatives [1], [4]; speed, 

ensuring that detection algorithms operate in real time to match or exceed production line speeds [1]; and adaptability, the 

ability to maintain consistent performance across varying hide types, textures, and lighting environments [2], [5]. Commonly 

deployed models include YOLOv8 and YOLOv11 for real-time object detection [1], [4]; Mask R-CNN and U-Net for high-

precision segmentation tasks [5]; and lightweight symmetry-based segmentation networks for computational efficiency [2]. 

Standards in this domain are typically internal to individual manufacturing facilities, defining acceptable defect types and 

thresholds based on product category and customer specifications, rather than being regulated by universal ISO standards. 

 

REVIEW METHODOLOGY 

This review adopts a structured approach to identify, analyze, and synthesize relevant literature on deep learning-driven 

automated inspection for defect detection in leather and footwear manufacturing. Academic databases including IEEE Xplore, 

ScienceDirect, SpringerLink, MDPI, and Taylor & Francis were searched using combinations of keywords such as “leather 

defect detection,” “footwear quality control,” “deep learning inspection,” “YOLO,” “vision transformer,” and “computer vision 

manufacturing.” Inclusion criteria were: (i) publications in peer-reviewed journals or reputable conference proceedings between 

2010 and 2025; (ii) focus on automated inspection using computer vision or deep learning; and (iii) relevance to leather, 

footwear, or transferable industrial surface inspection technologies. Studies unrelated to defect detection, purely theoretical 

works without experimental validation, or those lacking sufficient methodological details were excluded. The final selection 

comprised 25 core studies covering applications in color analysis, species identification, defect detection, and 
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segmentation/classification, including cross-domain approaches adaptable to leather manufacturing. Each study was critically 

evaluated for dataset characteristics, algorithmic methodology, accuracy metrics, computational requirements, and industrial 

applicability. 

  

CURRENT STATE OF RESEARCH 

The reviewed studies collectively reveal a steady progression from traditional image processing methods toward sophisticated 

deep learning architectures capable of real-time industrial deployment. While leather-specific research forms the core of this 

review, several advances from adjacent manufacturing sectors—such as metal surface inspection and additive manufacturing—

offer transferable methodologies for addressing persistent challenges in leather and footwear inspection. The following 

subsections outline the major application areas identified in the literature, with an emphasis on the algorithms, datasets, and 

system architectures employed. 

 

I.Computer Vision and Color Analysis for Leather and Footwear Components 

Several studies have focused on applying computer vision to automate color evaluation and matching in leather manufacturing. 

Jawahar et al. developed regression models to predict the final dry color of leather from its wet state, enabling faster and more 

accurate color matching during dyeing [7]. Extending this, the authors proposed a low-cost sensor-based color sorting system 

using K-means clustering in the CIE Lab* space to replace subjective manual assorting of footwear components [8]. 

Additionally, artificial neural networks (ANN) have been explored for tristimulus-based color prediction, outperforming 

traditional Kubelka–Munk models in handling the non-linearities of leather substrates [9]. These approaches reduce human 

subjectivity, improve consistency, and support mass customization in footwear production. 

 

II. Species Identification in Leather Quality Control 

Leather species verification is critical for authenticity, quality assurance, and biodiversity conservation. Jawahar et al. applied 

scanning electron microscopy (SEM) and image processing to extract morphological hair-pore features—such as pore size, 

density, and arrangement for automatic species classification [10]. Varghese et al. advanced this by using portable digital 

microscopes, Otsu’s thresholding, circular Hough transform, and KNN classifiers to achieve 92.5% accuracy in species 

identification [11]. Such methods reduce dependence on expert visual inspection and are essential in traceability systems for 

sustainable leather sourcing. 

 

III. Automated Leather Defect Detection and Classification 

Automated defect detection has been addressed through a variety of deep learning architectures and image analysis techniques. 

Traditional approaches such as wavelet-based feature extraction combined with SVM classifiers [12] and optimization-driven 

segmentation with ensemble classification [13] have demonstrated improvements over manual inspection in both accuracy and 

throughput. More recent work has applied advanced CNN architectures specifically tailored for leather inspection, including a 

two-stage CNN framework integrating AlexNet for feature extraction and U-Net for pixel-level segmentation [14], enabling 

both classification and precise defect localization. Vision Transformer (ViT)-based models [15] have also emerged as a 

promising alternative, offering global attention mechanisms that better capture complex texture patterns found in leather 

surfaces. 

     The YOLO family of object detection networks has played a central role in real-time inspection. While the latest YOLOv8 

and YOLOv11 models have been customized for leather defect detection [1], [4], earlier iterations such as YOLOv3 [16] remain 

relevant in applications requiring a balance between speed and computational resource demands. In addition, semi-supervised 

learning approaches [17] have shown potential in industrial defect segmentation, allowing high-performance models to be 

trained with fewer labeled images — a critical advantage given the dataset scarcity in leather manufacturing. Complementing 

CNN-based methods, the Vision Transformer architecture [18] has been successfully adapted to defect detection tasks, 

leveraging self-attention mechanisms for enhanced feature representation in scenarios where defect patterns are small or 

irregular. 

     Beyond leather-specific applications, defect segmentation methods developed for other industrial materials can inform 

future system designs. For example, cascaded autoencoders [19] and high-precision detection pipelines for metal workpieces 

[20] demonstrate robust performance with minimal annotated data, suggesting their potential adaptation to leather inspection 

environments where defect variability is high and sample sizes are limited. 
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     To provide a consolidated view of the current advancements, Table I summarizes key studies on automated inspection in 

leather and footwear manufacturing. The table highlights the diversity of methods ranging from traditional regression and 

clustering approaches to advanced deep learning architectures such as CNNs, YOLO, and Vision Transformers. Each study is 

compared in terms of dataset characteristics, application domain, performance metrics, strengths, and limitations. This synthesis 

helps identify the progression of inspection technologies, as well as the persistent gaps particularly dataset scarcity, small-

defect detection, and computational demands—that still need to be addressed. 

 

 
TABLE I 

COMPARISON OF DEEP LEARNING APPROACHES FOR LEATHER & FOOTWEAR INSPECTION 

Study / Year Method / Model Dataset / Images Application Accuracy / 

Performance 

Strengths Limitations 

Jawahar et al. 

(2013) [7] 

Regression Models Wet vs. Dry Leather 

Samples 

Color Prediction R² > 0.9 Faster dyeing 

process, reduces 

errors 

Limited 

generalization, 

sensitive to process 

variations 

Jawahar et al. 

(2017) [8] 

K-means in CIE 

Lab* 

Shoe Component 

Images 

Color Sorting >90% sorting 

accuracy 

Low-cost, 

reduces 

subjectivity 

Limited to color, not 

defects 

Varghese et al. 

(2020) [11] 

Digital Microscopy 

+ KNN 

SEM/Microscope 

Images 

Species 

Identification 

92.5% accuracy Portable, high 

precision 

Requires close-up 

imaging 

Liong et al. 

(2019) [14] 

Two-Stage CNN 

(AlexNet + U-Net) 

1000+ Defect 

Images 

Leather Defect 

Classification & 

Segmentation 

~95% Pixel-level 

segmentation 

Data-hungry, 

compute-intensive 

Smith et al. 

(2023) [15] 

Vision 

Transformer (ViT) 

Custom Leather 

Dataset 

Multi-class Defect 

Detection 

>90% Captures complex 

textures 

Requires large dataset, 

high GPU demand 

Banduka et al. 

(2024) [1] 

YOLOv11 (Dual-

Side Imaging) 

Finished Leather 

Industry Images 

Real-time Defect 

Detection 

~97% mAP Real-time, robust Needs well-annotated 

dataset 

Peng et al. 

(2024) [4] 

Improved 

YOLOv8 

Industrial Leather 

Dataset 

Defect Detection mAP 95%+ High speed, 

scalable 

Struggles with tiny 

defects 

Lee et al. 

(2025) [2] 

Lightweight 

Symmetry 

Segmentation 

Small Industrial 

Dataset 

Defect 

Classification 

94%+ Edge deployable, 

efficient 

Lower accuracy for 

rare defects 

Ataç et al. 

(2024) [5] 

Object Detection 

(YOLO, Faster R-

CNN) 

Multi-defect Leather 

Images 

Multi-defect 

Detection 

90–93% Handles multiple 

defect types 

Needs high-quality 

annotation 

Cross-domain 

(Zubayer et al., 

2023) [21] 

YOLOv8 + Dilated 

Conv 

Metal DAM Dataset 

(414 images) 

Crack & Porosity 

Detection 

96% Transferable to 

leather 

Small dataset, 

material-specific 
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     While the studies summarized in Table I focus specifically on leather and footwear applications, it is important to note that 

several methodologies developed in adjacent industries such as steel manufacturing, additive manufacturing, and metal surface 

inspection offer transferable insights for addressing persistent challenges in this domain. Table II presents representative cross-

industry applications, illustrating how defect detection techniques in other materials can inspire future system designs for 

leather and footwear inspection. 

 
 

TABLE II 

 REPRESENTATIVE INDUSTRIAL APPLICATIONS OF DEEP LEARNING-BASED SURFACE INSPECTION 

Industry Product / Process Method Used Description Remark Ref. 

Manufacturing – 

Quality Control 

Surface defect 

detection on industrial 

semi-finished products 

(e.g., surface cracks) 

Segmentation-based 

deep learning 

architecture (custom 

CNN) 

Two-stage network for 

segmentation and decision-

making, designed to work with 

only 25–30 defective samples 

instead of thousands 

Outperforms commercial 

software; practical for industries 

with limited defect samples 

[22] 

Metal Additive 

Manufacturing 

Stainless steel 

metallographic 

inspection 

YOLOv8 with dilated 

convolution 

Detects cracks and gas porosity 

from metallographic images 

(Metal DAM dataset, 414 images) 

Achieved 96% detection 

accuracy in 0.5 h; first use of 

YOLOv8 for this dataset 

[21] 

High-Precision 

Metal AM 

Reflective metal parts 

defect detection 

Enhanced SCK-

YOLOv5 + polarization 

imaging 

Combines polarization imaging, 

multi-scale feature refinement, 

and dual-attention to detect 

micro–nano porosity defects 

Improved precision, recall, and 

mAP50 over baseline YOLOv5; 

first such improvement for 

reflective metals 

[23] 

Multiple 

Industrial 

Sectors 

Review of 

manufacturing defect 

detection 

Survey of deep 

learning, machine 

vision, ultrasonic, 

magnetic, eddy current, 

osmosis testing 

Compares traditional NDT and 

AI-based methods for various 

materials 

Highlights 

strengths/weaknesses; notes 

deep learning’s flexibility but 

need for large datasets 

[24] 

Multiple 

Industrial 

Sectors 

Surface defect 

detection in industrial 

products 

Review of supervised & 

unsupervised object 

detection (e.g., Faster 

R-CNN, YOLO, GAN) 

Summarizes datasets (NEU-DET, 

GC10-DET, Severstal, etc.) and 

evaluation metrics (mAP, 

Precision, Recall) 

Identifies challenges: small 

defect sizes, dataset scarcity, 

irregular shapes 

[25] 

Steel 

Manufacturing 

Surface defect 

detection & 

classification 

Statistical (GLCM, 

LBP), spectral, texture 

segmentation, machine 

learning 

Analyzes detection approaches for 

steel strips; strengths/limitations 

of each 

Notes trade-off between 

detection accuracy, robustness, 

and computational cost 

[26] 

 

 

 

CHALLENGES AND LIMITATIONS 

Although current research demonstrates impressive results in both accuracy and processing speed, several technical and 

operational barriers limit the widespread adoption of these systems in manufacturing environments. A synthesis of findings 

from the reviewed studies reveals five primary challenges—dataset scarcity, small-defect detection, real-time integration, cost 

barriers, and skill gaps—that require targeted research and industry collaboration to overcome. 

Despite significant advances in deep learning-based automated inspection, several challenges hinder large-scale deployment in 

the leather and footwear manufacturing sector. One major obstacle is the scarcity of domain-specific datasets, as defect patterns 

vary significantly with species, tanning methods, and finishing processes. Collaborative dataset creation within industry clusters 

can help address this limitation by pooling resources and building large, annotated defect repositories. Another challenge lies 

in detecting small or low-contrast defects such as fine scratches or shade variations. This can be mitigated by implementing 

multi-angle lighting and high dynamic range (HDR) imaging, which improve the visibility of subtle anomalies. Integration 

with high-speed production lines also presents technical difficulties, as real-time inspection requires rapid image processing 
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without causing bottlenecks. Deploying edge-computing hardware at inspection points can address this by enabling local image 

processing and reducing latency. Cost remains a significant barrier for small and medium enterprises (SMEs), which can be 

reduced through phased deployment, shared infrastructure, or leasing models. Finally, there is a skill gap in deploying and 

maintaining AI-based inspection systems, which can be addressed through targeted training programs to build in-house 

capabilities for AI-driven manufacturing. 

 

FUTURE RESEARCH DIRECTIONS 

To achieve fully automated, Industry 4.0-ready leather and footwear inspection systems, future research should focus on several 

key areas. First, the creation of open, standardized leather defect datasets is essential to support model training and 

benchmarking across different production environments. Advances in deep learning architectures, particularly hybrid 

convolutional neural network (CNN) and transformer-based models, should be explored to better capture the complex textures 

and patterns of leather surfaces. Multi-modal inspection systems that combine RGB imaging with hyperspectral or thermal 

imaging have the potential to detect hidden or subsurface defects, expanding the scope of quality control. Domain adaptation 

and transfer learning techniques can help tailor models to specific manufacturing conditions while reducing the need for large 

training datasets. Additionally, research should prioritize lightweight, edge-deployable models capable of delivering high 

accuracy with minimal computational resources, making them more accessible for small and medium enterprises (SMEs). 

Integrating AI inspection outputs with enterprise resource planning (ERP) and quality management systems (QMS) will enable 

real-time defect tracking, supplier accountability, and predictive analytics for process optimization. Finally, future 

developments should align with sustainability goals, ensuring that AI-driven inspection contributes to reduced waste, optimized 

material usage, and improved resource efficiency. 

 

CONCLUSION 

Deep learning-driven automated inspection systems are reshaping quality control in leather and footwear manufacturing, 

offering objective, consistent, and high-throughput alternatives to manual inspection. This review has consolidated existing 

research in color analysis, species identification, and defect detection, highlighting how AI-based solutions can address 

limitations of traditional methods and enhance manufacturing efficiency. Strategic adoption of these technologies supported 

by collaborative dataset creation, integration of edge-computing hardware, and targeted workforce upskilling can overcome 

barriers such as dataset scarcity, small-defect detection challenges, and high implementation costs for small and medium 

enterprises (SMEs). By aligning technology implementation with sustainable manufacturing goals, the leather and footwear 

industry can significantly improve quality assurance, reduce waste, ensure regulatory compliance, and strengthen 

competitiveness in global markets. As the sector advances toward Industry 4.0, deep learning-enabled inspection systems will 

play a central role in building more resilient, efficient, and environmentally responsible production processes. 
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