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Table 1 — Comparison of Portfolio Performance Evaluation Metrics

ol EICYEPRES L3 Sy E95 s G,
OJS.LQ.C ‘;Ll ‘ ‘C”‘ 9 aél.u.:
T bl 4 e ’ oo Gl | s
Sty b o Jyouss ‘ &y elis P . \
Js aslie ’
7 . 53 el .
slassds 3590y diels S ) Lo s
. “ Vs%)l-? v
0M65u5w~ Lo 580 P (S lodww JYsegy
CAPM
sl il ! w2yld 5l Peauzy | llug p S e8| Lae Byl S
v
&l S aladloe C.,I),.,J shiw 3o §en y g
é)il.o.c (S’L." 3 ‘ _
Glolosil s | o 4y el ” S, T
4-:‘ .- 4 . . f
Jls CAPM s S et oS
St
dLa’d:'S‘f;*“" Lgl.a:o.)‘o M)L..\ S
Sy Sl Faylo pw il N

Ol 0 095050 sl s ol Glsl (Bly ol Sl o hel sles o) 5l (S Cgality Julow

ol LS 5 (50050 5 5 e Sliles 8 Shas (o Cndy oz 2 Shol I8 el g

Gyt ol lono a5 aiies WS 1 o glacs g 3l o] il sode jyolis (golity sl asls
s g aill o8 STady 5 o Jbo pyal( Sni o Glles oS s pslosm )]

s o Comdy 5l 08, Sy b slacS i Ll do Sl ol 51 oslinal s

5 €SI B 2 sl Jelod o)1y 55508 Caag AT U8, aS SIS el B

I




Gobis ez li (050 05 5 1 55 el (gt pl o 0l A,SL» s «goladl asleyg,0»

Oladl 53 0 2l 5 gols G s li - ¥ Jgua

Table 2 — Common Fundamental Indicators in the Literature
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Figure 1 — Flowchart of the Research Methodology Steps
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Table 3 — Evaluation Metrics Used to Assess the Performance of Machine

Learning Models
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Table 4 — Comparison of Classification Algorithms’ Performance in Stock Pre-
selection
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A Hybrid SVM-Markowitz Model for Stock Selection and Optimal

Portfolio Formation Based on Fundamental Indicators

Abstract

In the volatile and unstable conditions of financial markets, optimizing
investment decisions—particularly in emerging markets—has become
increasingly vital. The purpose of this study is to design and evaluate a
hybrid framework for stock selection and portfolio allocation in the
Iranian capital market, integrating machine learning algorithms for
asset pre-selection and the Markowitz model for portfolio optimization.
Fundamental and price data of 157 companies listed on the Tehran
Stock Exchange during the period from April 2013 to December 2024
were collected and processed in 42 rolling time windows. After data
cleaning and normalization, four classification algorithms—Decision
Tree, Random Forest, Logistic Regression, and Support Vector
Machine (SVM)—were trained. The models’ performance was
evaluated using accuracy, precision, recall, and F1-score metrics. The
SVM model achieved the best results, with an accuracy of 61% and an
F1-score of 71.8%. Subsequently, two portfolio strategies, equal-weight
and Markowitz optimization (aimed at maximizing the Sharpe ratio),
were implemented. The results indicated that the Markowitz-based
portfolio outperformed both the equal-weighted portfolio and the
market index in terms of cumulative return (45.8%), Sharpe ratio (0.52),
and Jensen’s alpha. Moreover, it demonstrated superior performance in
drawdown control and maintaining a balanced beta. The main
innovation of this research lies in integrating machine learning
algorithms with the classical Markowitz model, thereby improving
input precision and preventing the inclusion of low-potential stocks in
the optimization process. Additionally, the simultaneous evaluation of
multiple algorithms and the selection of the most efficient model for
asset pre-screening add both scientific and practical value. As one of
the pioneering studies in the Iranian capital market, this hybrid
framework provides a novel and adaptable model applicable to other
emerging markets.

Keywords

Stock selection, Portfolio optimization, Markowitz model, Support Vector
Machine, Sharpe ratio




Introduction
In recent years, advancements in data processing technologies and the
exponential growth of financial data have made traditional methods of
analysis and decision-making in financial markets less effective. The high
price volatility, economic shocks, and complex market structures have
highlighted the increasing need for intelligent, data-driven models. In
emerging markets such as Iran, the lack of transparency, high volatility, and
significant informational costs exacerbate the limitations of classical models.
The classical mean-variance model of Markowitz (1952), though foundational
in portfolio theory, is highly dependent on the accuracy of inputs like expected
returns and covariance matrices. Any error in these inputs can result in
suboptimal asset selections and reduced portfolio efficiency.
This study explores the integration of machine learning algorithms,
specifically Support Vector Machines (SVM), into the asset pre-selection
phase, before applying the Markowitz model for portfolio optimization. The
research investigates whether machine learning can improve the quality of
inputs for the Markowitz model and subsequently enhance portfolio
performance in terms of risk-adjusted returns.
Methods and Tools
The proposed approach in this study utilizes machine learning algorithms for
asset pre-selection based on fundamental financial data. The machine learning
model is trained using features such as Price-to-Earnings (P/E) ratio, Return
on Equity (ROE), and other key financial indicators to classify stocks with
high growth potential. After selecting the top-performing stocks, the
Markowitz model is applied for portfolio optimization, focusing on
maximizing the Sharpe ratio. The performance of the portfolios is evaluated
by comparing risk-adjusted returns to a benchmark portfolio (equal-weighted
portfolio).

The methodology involves the following key steps:

1. Data Collection: Gathering fundamental financial data from publicly
available sources such as financial statements of listed companies.

2. Preprocessing: Normalizing and cleaning the data to ensure its
usability for machine learning algorithms.

3. Model Training: Using SVM to classify stocks based on their
potential for high returns and low risk.

4. Portfolio Construction: Optimizing the selected assets using the
Markowitz model, with a focus on maximizing the Sharpe ratio.

5. Performance Evaluation: Comparing the optimized portfolio’s
performance with a baseline equal-weighted portfolio using key
financial metrics such as the Sharpe ratio, Jensen's alpha, beta, and
maximum drawdown.




Results

The results of the study show that the machine learning model significantly
outperforms traditional methods of stock selection in terms of prediction
accuracy and classification precision. The SVM algorithm, when trained on
fundamental data, is able to identify stocks that exhibit better potential for high
returns compared to the market index. When the selected stocks are optimized
using the Markowitz model, the resulting portfolio outperforms the equal-
weighted portfolio with higher risk-adjusted returns, as measured by the
Sharpe ratio. Furthermore, the optimized portfolio exhibits greater stability
and lower risk, as indicated by lower values of maximum drawdown and a
more favorable Jensen's alpha.

Discussion and Analysis

The findings indicate that integrating machine learning algorithms,
particularly SVM, into the asset pre-selection phase enhances the accuracy of
stock selection and leads to better portfolio optimization. The Markowitz
model, which traditionally relies heavily on precise input data, benefits from
the improved quality of inputs generated by the machine learning model. This
hybrid approach not only increases the overall return of the portfolio but also
provides better risk management by selecting stocks with lower volatility and
higher stability.

Moreover, the study confirms that the use of fundamental data in machine
learning models improves the robustness of portfolio optimization,
particularly in emerging markets like Iran. Given the high volatility and
limited information in such markets, this approach offers a practical and
effective solution for investors looking to enhance their decision-making
processes.

The implications of these results suggest that machine learning algorithms can
be a valuable tool for pre-selecting assets in portfolio optimization. The
approach developed in this study is scalable and can be applied to other
emerging markets facing similar challenges, providing a data-driven and
intelligent framework for investment management.

Conclusion

This research contributes to the field of intelligent investment management by
introducing a novel hybrid approach that combines machine learning
algorithms with traditional financial models like the Markowitz model. The
study demonstrates that machine learning can improve asset selection and
portfolio optimization, resulting in enhanced risk-adjusted returns and lower
volatility. This hybrid framework holds significant potential for improving
investment decision-making, particularly in markets characterized by high
volatility and informational constraints.
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