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Abstract 

This paper studied the situation faced by an upstream textile manufacturer company supplying seat cover fabrics to 

major automotive producers which need to dynamically adjust task distribution on their assembly line in response 

to demand fluctuations, while improving load balance among workstations. The company itself has implemented 

lean manufacturing concept, specifically the takt-time rules to organize the pace of its assembly line. Problems 

occur when demand increases significantly and one (or several) workstations in the assembly line suffers capacity 

insufficiency. To rectify the insufficiency, parallel processing becomes necessary. The company relies heavily on 

manual labor and has limited number of workers; therefore, parallel processing can only be implemented by utilizing 

the available workers. To do this, a new algorithm was designed. The algorithm works to identify which 

workstations suffer insufficiency, which workstations are available to perform parallel processing and how long the 

parallel processing should be performed. The algorithm is numerically tested. Four cases which cover various 

situations commonly found in real world assembly line are designed as test cases. The experiment showed that the 

new algorithm managed to reallocate tasks among workstations in such a way that the targeted takt-time was 

achieved while the line smoothness index was improved. 
 

Keywords – Assembly line; Flexibility; Line balancing; Takt-time; Smoothness index. 

INTRODUCTION 

Modern manufacturing enterprises are confronted with increasingly complex challenges due to heightened global competition. 

To achieve sustainable competitiveness, organizations are compelled to enhance both operational efficiency and overall 

productivity. Market-driven demands for superior product quality, rapid delivery, and cost-effectiveness necessitate optimal 

performance across all production lines. In such environment, it becomes imperative for firms not only to sustain their 

production capacity but also to meticulously manage manufacturing processes to ensure operational efficiency and adaptability 

in the face of fluctuating customer demand [1]. 
A manufacturing company producing seat covers for major automotive brands is currently facing the challenge of highly 

fluctuating customer demand. Although the company has so far been able to fulfill all customer orders, this achievement has 

come at the expense of operational efficiency. The production line is experiencing performance disruptions due to uneven 

workload distribution, indicating a significant imbalance in the system. These reactive and inefficient practices pose a serious 

threat to the company's long-term sustainability and highlight the urgent need for a more agile, adaptive, and resilient production 

management strategy, particularly in the management of its assembly line. The company itself is in the early stage of lean 

manufacturing implementation. The lean manufacturing itself introduced the concept of takt-time as a pacing mechanism to 

synchronize production with customer demand [2][3]. The core idea is to adjust the speed of the assembly line so that it 
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consistently aligns with the rate of demand. When demand varies, the takt-time must be dynamically recalculated followed by 

task reallocation strategies among workstations to ensure that the new takt-time is consistently met. Task reallocation may 

involve merging tasks from multiple workstations into a single station or, conversely, splitting tasks originally assigned to a 

single workstation across several stations. However, not all tasks can be divided into smaller sub-tasks. In such cases, parallel 

processing becomes necessary to shorten the cycle-time. This paper addresses the task reallocation problem for the company’s 

assembly line such that the fluctuating demand is always fulfilled and balance workload between workstations is achieved [4]. 

Assembly Line Balancing (ALB) problem is a classical issue in operations research and industrial engineering, which 

aims to optimally assign tasks to workstations. The assignment must comply with specific constraints, such as precedence 

relations and cycle time limits. The typical objectives include minimizing the number of workstations or balancing workloads 

across stations to enhance overall efficiency[5]. Most ALB problem deals with deterministic demand and fixed task times 

which limit their applicability in dynamic environments. Recognizing this limit, Flexible Assembly Systems (FAS) emerges as 

a strategic solution to address the challenges of assembly line management, particularly in manufacturing environments 

characterized by highly variable demand, diverse product types (low-volume, high-mix production), and unstable workload 

distribution across stations. FAS enables dynamic task assignments, rapid reconfiguration of workstations, and adaptive 

responses to changing production requirements. These capabilities are crucial for maintaining balance and efficiency in modern 

manufacturing systems that are increasingly driven by customer demand [6].  

Parallel processing in assembly lines has become known as strategy to shorten cycle time [4] especially when tasks cannot 

be further divided into smaller sub-tasks. Its implementation introduces a critical requirement: the availability of additional 

resources. The availability of additional resources enables the duplication of workstations (or more), thus shortening the cycle 

time at a particular workstation  Nevertheless, not every manufacturing company has additional resources readily available in 

their system. In such system, the only way that parallel processing could be performed is by utilizing existing operators who 

experience idle time in other parts of the assembly line.  

This paper specifically addresses the problem of tasks reallocation where demand varies, and parallel processing is taken 

as step for shortening the workstation’s cycle time. The parallel processing itself is performed by utilizing idle time operators 

in other parts of the assembly line due to the limited number of resources. It raises important operational questions: which 

workstation on the assembly line has insufficient capacity to match the takt-time? Which workstation should be utilized to help 

the insufficient? At what point should a workstation begin its task helping the insufficient? How many units of workload should 

be transferred from the insufficient workstation to the helpers? This paper contributes to answering these questions by 

proposing a novel workload reallocation algorithm designed to create flexible and balance assembly line configurations. It is 

important particularly in labor-intensive environments where demand fluctuations and human resource constraints are 

prevalent. The algorithm is then tested into various cases to analyze its applicability.  

The paper will be divided into five sections. The introduction of the problem is in the first section. The second section 

discusses the literature review and position of this paper. The third section discusses the research method, algorithm 

development and implementation, the fourth section discusses the result, and the fifth section gives conclusion and 

recommendation. 

 

LITERATURE REVIEW 

Assembly lines are widely employed in manufacturing to produce standardized goods in large volumes. In this system, semi 

completed products move through a series of workstations, where each station carries out a specific set of tasks contributing to 

the product's assembly. This sequential process continues until the product is fully assembled and exits the line. The Assembly 

Line Balancing (ALB) problem represents a diverse group of optimization challenges focused on determining the best way to 

distribute tasks among workstations along the assembly line. In many cases, improvement in assembly line significantly 

increased production line productivity and capacity [7], [8], [9]. 

Among the various formulations of the Assembly Line Balancing (ALB) problem, the Simple Assembly Line Balancing 

(SALB) problem is the most extensively examined in literature. SALB represents a fundamental and widely adopted model 

within the broader family of line balancing problems. This problem addresses the assembly of a single product whose 

manufacturing process is decomposed into a set of basic tasks with known and deterministic processing times. These tasks 

must be assigned to several serially arranged workstations, which operate under a similar cycle time. A valid solution to the 

SALB problem involves assigning tasks to workstations such that the total processing time of tasks at any station does not 

exceed the cycle time, and all precedent constraints are maintained. The primary objective of the SALB problem is to optimize 

line performance, typically by minimizing the total idle time. There are several problem variants for SALB. The first is SALB-
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1, which seeks to minimize the number of workstations for a given cycle time. The second is SALB-2, which aims to minimize 

the cycle time for a fixed number of workstations. The third is SALB-E, which simultaneously optimizes both the number of 

workstations and the cycle time [4].  

SALB focuses on static and deterministic conditions. Real-world environments are far more dynamic. Key challenges 

include task time variability, worker skill heterogeneity, stochastic demand, task incompatibility, and limited resources. 

Research by [10] examined dynamic takt time decision on an assembly line to accommodate task time variability; [11] 

developed framework which considers processing time variability and product defect rate into line balancing process, which 

provides basic knowledge to deal with uncertainty; and [12] proposed the use of two different cycle time to anticipate demand 

fluctuations. On the other hand, worker skill heterogeneity was considered by [13] and [14]. Research by [13] modeled the 

effect of worker’s skill towards processing time while [14] modeled the effect of worker’s multi-skilled capability towards task 

assignment flexibility. Other research introduces extended models like U-shaped lines [15], mixed-model lines (MALB) [16], 

and two-sided lines (TSALB) [17] as ways to allocate a multi skilled worker to a number of machines. 

In response to variable demand, reallocation of tasks becomes essential to maintain line balance. Literature reveals three 

main strategies to deal with this. The first is task consolidation, which means combining tasks from multiple stations to reduce 

idle time when demand drops. The second is task splitting, which means dividing tasks into multiple stations or operators when 

demand increases or cycle-time decreases. The third is parallel processing, which is duplicating resources to shorten the 

workstation’s cycle time. The work of [4] designed heuristic algorithm to find the best task allocation strategy for a variant of 

SALB which allows parallel processing. They assume that the required resources to enable parallel processing is always 

available. While literature provides a solid theoretical foundation, most studies focus on idealized conditions. Few papers 

explore human-centered reallocation, especially under constraints of limited workforce and manual operations. Decision 

support tools for real-time task reassignment in response to demand shifts are underdeveloped. There is a pressing need for 

practical, algorithm-based frameworks that enable flexible task redistribution, operator reallocation based on workload and idle 

times, parallel execution of tasks using existing human resources. This study contributes to this space by developing a novel 

algorithm to dynamically reassign tasks and optimize the balance of manual assembly lines under fluctuating demand scenarios. 

 

RESEARCH METHOD 

A common challenge in assembly line operations can be described as follows: given a specified production demand and the 

available working hours, the takt-time is calculated to determine the pace at which products must be completed to meet demand. 

Subsequently, the cycle-time at each workstation along the assembly line is evaluated to ensure that it remains below the takt-

time. If all workstation cycle-times are within this limit, the assembly line is considered capable of fulfilling the demand. 

However, if even a single workstation has a cycle-time that exceeds the takt-time, the line will be unable to meet the production 

target within the production time frame. 

In response, lean manufacturing principles suggest for a detailed examination of each operation within the workstations 

and recommend the elimination of non-value-added activities to streamline processes, thereby reducing cycle-times to meet 

the takt-time. If this streamlining process proves insufficient and the takt-time is still not achieved, further intervention may 

involve decomposing complex operations into smaller sub-operations, each with a shorter execution time. These sub-operations 

can then be reassigned to new workstations, ensuring that the whole line is operating with a under the takt-time. This latter 

strategy, however, depends upon the fulfillment of two critical preconditions: (1) the original operations must be able to be 

divided into sub-operations, and (2) additional labor resources must be available to be assigned to the newly established 

workstations. In many practical scenarios, these conditions cannot be met. This study addresses assembly line balancing in 

contexts where such prerequisites are absent and proposes a practical algorithm for reallocating tasks when workstations are 

identified with cycle-times exceeding the takt-time. The objective of the algorithm is two folds, the first is fulfilling the targeted 

takt time and the second is balancing workload between workstations. The algorithm works with several constraints following 

the real system where this problem was originally recognized: each operation is bound to a sequential rule (precedence) and it 

cannot be divided into smaller sub-operations; the working hours and the number of operators currently in the system cannot 

be increased because the company urges full utilization of current operational time and resources. 

On the following sub-sections, the algorithm development and implementation will be explained.  
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I. Algorithm Development 

The proposed algorithm was developed for reallocating tasks among workstations on a particular assembly line. The assembly 

line produces a certain product with daily demand 𝐷 units and 𝐻 working hours. The assembly process is consisted of 𝑂 

assembly operations, where each is identified by the index of 𝑜 (𝑜 = 1,2, … , 𝑂). Each operation cannot be divided into smaller 

sub-operations. There are 𝑁 workstations, and each workstation is identified by the index of 𝑛, where 𝑛 = 1,2, … , 𝑁. Each 

operation is assigned to a workstation, which means that 𝑂 = 𝑁. Daily demand (𝐷) varies over time, which creates challenges 

for the production planner in adjusting tasks allocation among workstations. The proposed algorithm is aimed at helping the 

planning process. It is divided into three sub algorithms. Sub-algorithm 1 aims at evaluating the ability of each workstation on 

fulfilling demand and determining which mechanism should be pursued for conducting tasks reallocation (see sub-algorithm 1 

on Table I); Sub-algorithm 2 perform tasks reallocation through idle time adjustment, and Sub-algorithm 3 perform the same 

thing through total idle and waiting time adjustment (see sub-algorithm 3, on Table III). 

 
TABLE I. 

SUB ALGORITHM 1 (GENERATING WORKSTATIONS PROFILE) 

Input : Number of operations (𝑶), processing time for each operation (𝒕𝒐), number of workstations (𝑵), assignment of operations to each 

workstation (𝑿𝒐,𝒏), demand (𝑫) and operational time (𝑯). 

Step 1 : Calculate takt-time (𝑇) for fulfilling demand by dividing demand by the operational time; 𝑇 =
𝐷

𝐻
. 

Step 2 : Evaluate the ability of each workstation to fulfill demand. 

2a : Calculate the cycle time per unit (𝑐𝑛) for all operations assigned to workstation 𝑛; 𝑐𝑛 = ∑ 𝑋𝑜,𝑛𝑡𝑜
𝑂
𝑜=1 . 

2b : Determine the start time for the first unit at each workstation (𝑠𝑛,𝑛 = 1,2, … , 𝑁), which is equal to the completion time for the first 

unit at the previous workstation (𝑛 − 1) or equals to 0, for 𝑛 = 1; 𝑠𝑛 = {
0,       𝑖𝑓 𝑛 = 1
𝑓𝑛−1, 𝑖𝑓 𝑛 > 1

; Completion time for the first unit at 

workstation 𝑛 is the summation of start time for the first unit at workstation 𝑛 and cycle time per unit at workstation-𝑛; 𝑓𝑛 = 𝑠𝑛+ 𝑐𝑛. 

2c : Total cycle time for workstation 𝑛 (𝐶𝑛) by multiplying demand and the cycle time per unit at workstation-𝑛; 𝐶𝑛 = 𝐷𝑐𝑛. 

2d : Total waiting time at each workstation (𝑊𝑛). Waiting happens if a certain operation cannot be started due to the precedence 

relationship. In this case, waiting time per unit (𝑤𝑛) happens if 𝑐𝑛 < 𝑐𝑛−1. Total waiting time at workstation 𝑛 is the waiting time 

per unit multiplied by (𝐷 − 1); 𝑤𝑛 = 𝑐𝑛−1 − 𝑐𝑛 ; 𝑊𝑛 = 𝑤𝑛(𝐷 − 1). 

2e : Calculate the completion time for all unit at workstation-𝑛 by adding start time, total cycle time and waiting time, 𝐹𝑛 = 𝑠𝑛+ 𝐶𝑛+ 𝑊𝑛. 

2f : 
State the capacity sufficiency status (𝑆𝑆) of workstation-𝑛;  𝑆𝑆 = {

𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,             𝑖𝑓 𝐹𝑛 ≥ 𝐻 
𝐼𝑛𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

2g : Calculate the idle time for each workstation: deduct the total operational time by the completion time for all unit; 𝐼𝑛 = 𝐻 − 𝐹𝑛 

Step 3 : Check the sufficiency status for each workstation. If all workstation’s sufficiency status is “sufficient” then go to step 8, else, go to 

step 4. 

Step 4 : Calculate the total idle time for all workstations; 𝐼𝑡𝑜𝑡 = ∑ 𝐼𝑛
𝑁
𝑛=1  

Step 5 : Determine if the problem is solvable through adjusting the idle time (sub algorithm-2): if 𝐼𝑡𝑜𝑡 ≥ 0, then go to sub algorithm 2, else 

go to step 6. 

Step 6 : Calculate the total waiting time for all workstations; 𝑊𝑡𝑜𝑡 = ∑ 𝑊𝑛
𝑁
𝑛=1  

Step 7 : Determine if the problem is solvable through reducing waiting time (sub algorithm-3): if 𝐼𝑡𝑜𝑡 + 𝑊𝑡𝑜𝑡 ≥ 0, then go to sub algorithm 

3, else go to step 9. 

Step 8 : Declare that there is no line balancing problem. Go to step 10. 

Step 9 : Declare that the problem is unsolvable trough workload reallocation. Go to step 10. 

Step 10 : Terminate the algorithm. 

Output : Workstations profile 
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TABLE II 

SUB ALGORITHM 2 (TASK REALLOCATION THROUGH IDLE TIME ADJUSTMENT) 

Input : Workstations profile from sub-algorithm 1 

Step 1 : Compile list of insufficient workstations along with their positions on the assembly line (see step 2f on sub-algorithm 1); 𝑊𝑆𝑛
𝑖𝑛𝑠𝑢𝑓

 

= {𝑊𝑛} where 𝐼𝑛 < 0. Arrange the list of insufficient workstations having the most upstream position to downstream. Begin with the 

first workstation on the list.  

Step 2 : Calculate the amount of processing time which needs to be reallocated (𝑅𝑛
𝑡 ) from a particular insufficient workstation. Convert the 

processing time into units (𝑅𝑛
𝑢); 𝑅𝑛

𝑡 = |𝐼𝑛| ; 𝑅𝑛
𝑢 =

|𝐼𝑛|

𝑐𝑛
. 

Step 3 : Create list of possible helpers for the insufficient workstations. The helper should have 𝐼𝑛 > 0 and positioned before the insufficient 

workstations on the assembly line (upstream). 𝑊𝑆𝑛
ℎ𝑒𝑙𝑝

 = {𝑊𝑛} with 𝐼𝑛 > 0, 𝑛 < 𝑊𝑆𝑛
𝑖𝑛𝑠𝑢𝑓

. Arrange the list of helpers having the most 

upstream position to downstream. Begin with the first workstation on the list. 

Step 4 : Calculate the capability of amount of available idle time which can be allocated to help the insufficient workstations. Convert the 

idle time into units. 𝐻𝑛
𝑡 = 𝐼𝑛;  𝐻𝑛

𝑢 =
𝐼𝑛

𝑐𝑛
. 

Step 5 : Reallocate work from insufficient workstation (identified on step 2) to the helper according to their capability (identified on step 4). 

Identify the helper’s completion time associated with their previous work and use it as their start time as duplicates for the insufficient 

workstations. Eliminate 𝑊𝑆𝑛
ℎ𝑒𝑙𝑝

 from the list of helpers. 

Step 6 

 

: Subtract the amount of reallocated work at 𝑊𝑆𝑛
𝑖𝑛𝑠𝑢𝑓

from their load, recalculate their completion time and check whether 

insufficiency is resolved. If it is not, go back to step 3, else erase the workstation from the list of insufficient workstations and go to 

step 7. 

Step 7 : Check whether all insufficient workstation on the list is helped. If yes go to step 8, if not go back step 2.  

Step 8 : Terminate the algorithm. 

Output : New task allocation at workstations 

 

TABLE III 

SUB ALGORITHM 3 (TASK REALLOCATION THROUGH IDLE AND WAITING TIME ADJUSTMENT) 

Input : Workstations profile from sub-algorithm 1 

Step 1 : Compile list of insufficient workstations along with their positions on the assembly line (see step 2f on sub-algorithm 1). 𝑊𝑆𝑛
𝑖𝑛𝑠𝑢𝑓

 = 
{𝑊𝑛} with 𝐼𝑛 < 0. 

Step 2 : Start with the most downstream workstation on the assembly line. Determine its latest completion time (based on working hours). 
Determine its latest start by moving backwards incorporating the total cycle time at the workstation. Set the latest start as the starting 

time of the most downstream workstation 

Step 3 : Identify the most upstream workstation. Use the available time from the most downstream process to help the most upstream 
workstation.  

Step 4 : Calculate the effect of duplicating the most upstream workstation toward each downstream workstation. If insufficiency is resolved, 

then go to step 6, else go to step 5. 

Step 5 : Renew the profile of insufficient workstations and check whether another adjustment is needed. If yes, go back to step 2, else go to 
step 6.  

Step 6 : Terminate the algorithm. 

Output : New task allocation at workstations 

 

 

II. Algorithm Implementation 

An assembly line which consists of 3 workstations (𝑊𝑆1, 𝑊𝑆2 and 𝑊𝑆3) is designed based on real world situation at a particular 

manufacturing company. Each workstation is assigned to a single undivided operation. The precedence relationship is serial, 

which means that operation-1 is the predecessor of operation-2 and operation-2 is the predecessor of operation-3.  

 
TABLE IV 

LIST OF OPERATIONS, PRECEDENCE RELATIONSHIP AND WORKSTATION ASSIGNMENT 

Operation # Predecessor for Currently Assigned to 

Operation-1 Operation-2 Workstation-1 

Operation-2 Operation-3 Workstation-2 

Operation-3 - Workstation-3 

 

The proposed algorithm will be implemented to four cases (Case 1, 2, 3 and 4) as listed on Table  V. In Case 1, the 

situation was set where the operation time at 𝑊𝑆1 < 𝑊𝑆2 < 𝑊𝑆3, which means that the bottleneck workstation is positioned 

at the end of the assembly line. Case 2 represents a situation where the operation time at 𝑊𝑆2 < 𝑊𝑆1 < 𝑊𝑆3; in this case the 

bottleneck workstation is still at the end of the line (as in Case 1) but with different conditions of the feeder workstations. In 

Case 3, the operation time at 𝑊𝑆3 < 𝑊𝑆2 < 𝑊𝑆1, which means that the bottleneck workstation is at the very beginning of the 
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assembly line, slowing down all other downstream processes. Finally, in the last case (Case 4), the situation is set where the 

operation time at 𝑊𝑆3 < 𝑊𝑆1 < 𝑊𝑆2, which means that the bottleneck workstation is at the middle of the assembly line, 

therefore it is being a receiver as well as feeder towards another workstation on the assembly line. These four cases resemble 

situations commonly found on real world assembly lines where bottleneck workstations act as feeder, receiver or both.  

 
TABLE V 

ASSEMBLY LINE TEST CASES PROFILE 

Case/ 

Operation time at Workstation 

Operation time per unit at 𝑾𝑺𝒏 (in seconds) 

𝑾𝑺𝟏 𝑾𝑺𝟐 𝑾𝑺𝟑 

Case 1 27 40 44 

Case 2 40 27 44 

Case 3 44 40 27 

Case 4 40 44 27 

The demand for the system is 695 units per day and this daily demand should be fulfilled through 8 working hours 

(therefore the takt-time is 41,44 seconds). Each workstation processes one unit product at a time. After a particular unit is 

finished, it will be sent to the next workstation as their WIP. The time to move between workstations is neglected. 

 

Case 1 - The situation was set where the operation time at 𝑊𝑆1 < 𝑊𝑆2 < 𝑊𝑆3. This means that the bottleneck workstation is 

positioned at the end of the assembly line. Executing step 1 to 3 on sub-algorithm 1 into this case would result in the profile 

shown in Table VI. WS3 is listed as insufficient workstation (marked by negative idle time), whereas WS1 and WS2 as sufficient 

workstations (marked by positive idle time). 
TABLE VI 

CASE 1: RESULT AFTER IMPLEMENTING SUB-ALGORITHM 1  

𝑾𝑺𝒏 𝒔𝒏 

(in seconds) 

𝒄𝒏  

(in seconds) 

𝑪𝒏 
(in seconds) 

𝑾𝒏 

(in seconds) 

𝑭𝒏  

(in seconds) 

Capacity 

Sufficiency 

𝑰𝒏 
(in seconds) 

WS1 0 27 18,765 - 18,765 Sufficient 10,035 

WS2 27 40 27,800 - 27,827 Sufficient 973 

WS3 67 44 30,580 - 30,647 Insufficient -1,847 

 

Further execution of step 4 and 5 sub-algorithm 1 leads to the calculation of positive total idle time in the system which 

is 9,161 seconds. This means that to eliminate insufficiency, task reallocation should be done by implementing sub-algorithm 

2. The result is shown in Table VII.  

 
TABLE VII 

CASE 1: RESULT AFTER IMPLEMENTING SUB-ALGORITHM 2 

𝑾𝑺𝒏 𝒔𝒏 

(in seconds) 

𝒄𝒏  

(in seconds) 

𝑪𝒏 
(in seconds) 

𝑾𝒏 

(in seconds) 

𝑭𝒏  

(in seconds) 

WS1 0 27 18,765 - 18,765 

WS2 27 40 27,800 - 27,827 

WS3 67 44 28,732 - 28,799 

WS3 (by WS1) 18,765 44 1,848 - 20,613 

 

Given that WS1 is the first workstation listed as helper for WS3, soon after WS1 completed its predetermined tasks it 

must function as helper for WS3. It starts at 18,765 seconds and ends at 20.613 seconds (see the last line on Table VII). As a 

helper, WS1 helps WS3 processing 44 units of products for 1,848 seconds. Following this, the load of WS3 decreases by 44 

units, leading to faster completion time (28,799 seconds). The new completion time is still within the working period limit; 

thus the insufficiency problem at WS3 is solved. 

 

Case 2 – The case represents a situation where the operation time at 𝑊𝑆2 < 𝑊𝑆1 < 𝑊𝑆3; the bottleneck workstation is still at 

the end of the line (as in Case 1) but with different conditions of the feeder workstations. Table VIII shows the result of 

executing Step 1 to 3 on Sub-algorithm 1 into this case. 
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TABLE VIII 

CASE 2: RESULT AFTER IMPLEMENTING SUB-ALGORITHM 1  

𝑾𝑺𝒏 𝒔𝒏 

(in seconds) 

𝒄𝒏  

(in seconds) 

𝑪𝒏 
(in seconds) 

𝑾𝒏 

(in seconds) 

𝑭𝒏  

(in seconds) 

Capacity 

Sufficiency 

𝑰𝒏 
(in seconds) 

WS1 0 40 27,800 - 27,800 Sufficient 1,000 

WS2 40 27 18,765 9,022 27,827 Sufficient 973 

WS3 67 44 30,580 - 30,647 Insufficient -1,847 

 

Table VIII shows that WS3 suffers inefficiency (negative idle time) while WS1 and WS2 do not (positive idle time). 

Further execution of step 4 and 5 of Sub-algorithm 1 suggest that to eliminate insufficiency at WS3, Sub-algorithm 2 should 

be implemented. The result can be seen on Table IX.  
 

TABLE IX 

CASE 2 RESULT AFTER IMPLEMENTING SUB-ALGORITHM 2 

𝑾𝑺𝒏 𝒔𝒏 

(in seconds) 

𝒄𝒏  

(in seconds) 

𝑪𝒏 
(in seconds) 

𝑾𝒏 

(in 

seconds) 

𝑭𝒏  

(in seconds) 

WS1 0 40 27,800 - 27,800 

WS2 40 27 18,765 9,022 27,827 

WS3 67 44 28,644 
 

28,711 

WS3 (by WS1) 27,800 44 968 
 

28,768 

WS3 (by WS2) 27,827 44 968  28,795 

 

Table VIII shows that both WS1 and WS2 are functioning as helpers for WS3. This is necessary given that the idle time 

at WS1 could not cover the total insufficiency of WS3, therefore WS2 is utilized. Both workstations start functioning as helpers 

for WS3 right after completing their predetermined tasks. Each workstation helps WS3 processing 22 units of products for 968 

seconds. Following this, the load of WS3 decreases by 44 units, leading to faster completion time (28,711 seconds). The new 

completion time is still within the working period limit; thus, the insufficiency problem at WS3 is solved. 

 

Case 3 – In Case 3, the operation time at 𝑊𝑆3 < 𝑊𝑆2 < 𝑊𝑆1. It means that the bottleneck workstation is at the most upstream 

position, slowing down all other downstream processes. Table X shows the result of executing Step 1 to 3 on Sub-algorithm 1 

into this case. 
 

TABLE X 

CASE 3: RESULT AFTER IMPLEMENTING SUB-ALGORITHM 1  

𝑾𝑺𝒏 𝒔𝒏 

(in seconds) 

𝒄𝒏  

(in seconds) 

𝑪𝒏 
(in seconds) 

𝑾𝒏 

(in seconds) 

𝑭𝒏  

(in seconds) 

Capacity 

Sufficiency 

𝑰𝒏 
(in seconds) 

WS1 0 44 30,580 - 30,580 Insufficient -1,780 

WS2 44 40 27,800 2,776 30,620 Insufficient -1,820 

WS3 84 27 18,765 11,798 30,647 Insufficient -1,847 

 

As mentioned before, 𝑊𝑆1 slows down all other downstream processes and causes 𝑊𝑆2 and 𝑊𝑆3 to have insufficient 

capacity yet high level of waiting time. All workstations cannot finish their predetermined task on time. Execution of step 4 

and 5 on Sub-algorithm 1 will suggest the implementation of Sub-algorithm 3 for task reallocation, which means that task 

reallocation is done by adjusting the total waiting time. The result can be seen on Table IX. 

 
TABLE XI 

CASE 3: RESULT AFTER IMPLEMENTING SUB-ALGORITHM 3 

𝑾𝑺𝒏 𝒔𝒏 

(in seconds) 

𝒄𝒏  

(in seconds) 

𝑪𝒏 
(in seconds) 

𝑾𝒏 

(in 

seconds) 

𝑭𝒏  

(in seconds) 

WS1 0 44 20,548 - 20,548 

WS1 (by WS3) 3 44 10,032 - 10,035 

WS2 44 40 27,800 - 27,844 

WS3 10,035 27 18,765 - 28,800 
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Sub-algorithm 3 works backward, beginning from 𝑊𝑆3 as the most downstream workstation. Waiting time for 𝑊𝑆3 is 

high, yet it cannot finish its tasks within the time limit, so the focus is shifting this waiting time into productive time by 

functioning 𝑊𝑆3 as helper for 𝑊𝑆1. The latest finish of 𝑊𝑆3 for its own tasks is at 28,800 seconds; the amount of time needed 

by 𝑊𝑆3 to process 695 units of products is 18,765 seconds, therefore its latest start is at 10,035 seconds. Using this information, 

the latest finish of 𝑊𝑆3 helping WS1 is at 10,035 seconds. This amount of time can be used to process 228 units of product for 

WS1. Following this the load of WS1 decreases by 228 units, leading to faster completion time (20,548 seconds). The new 

completion time is still within the working period limit; thus, the insufficiency problem at WS1 is solved. Solving insufficiency 

problems at WS1 speeds up 𝑊𝑆2 on processing its tasks. Waiting time for 𝑊𝑆2 is eliminated, and therefore the completion 

time then fall within the time limit. Insufficiency problems at all workstations are solved. 

 

Case 4 – In this last case, the situation is set where the operation time at 𝑊𝑆3 < 𝑊𝑆1 < 𝑊𝑆2, which means that the bottleneck 

workstation is at the middle of the assembly line. Therefore, the bottleneck is being a receiver as well as feeder towards another 

workstation on the line. Table XII shows the result of executing step 1 to 3 on Sub-algorithm 1 into this case. 

 
TABLE XII 

CASE 4: RESULT AFTER IMPLEMENTING SUB-ALGORITHM 1  

𝑾𝑺𝒏 𝒔𝒏 

(in seconds) 

𝒄𝒏  

(in seconds) 

𝑪𝒏 
(in seconds) 

𝑾𝒏 

(in seconds) 

𝑭𝒏  

(in seconds) 

Capacity 

Sufficiency 

𝑰𝒏 
(in seconds) 

WS1 0 40 27,800 - 27,800 Sufficient 1,000 

WS2 40 44 30,580 - 30,620 Insufficient -1,820 

WS3 84 27 18,765 11,798 30,647 Insufficient -1,847 

 

Table XII shows that the total idle time for the system in Case 4 is negative, but the total idle and waiting time is positive. 

Based on this profile, step 4 and 5 on Sub-algorithm 1 will suggest the implementation of Sub-algorithm 3 for task reallocation. 

The result can be seen on Table XIII. 
 

TABLE XIII 

CASE 4: RESULT AFTER IMPLEMENTING SUB-ALGORITHM 3 

𝑾𝑺𝒏 𝒔𝒏 

(in seconds) 

𝒄𝒏  

(in seconds) 

𝑪𝒏 
(in seconds) 

𝑾𝒏 

(in seconds) 

𝑭𝒏  

(in seconds) 

WS1 0 40 17,800 - 17,800 

WS1 (by WS3) 35 40 10,000 
 

10,035 

WS2 40 44 19,580 - 19,620 

WS2 (by WS1) 17,800 44 11,000 - 28,800 

WS3 10,035 27 18,765 - 28,765 

 

Starting from 𝑊𝑆3 as the most downstream workstation. The latest finish of 𝑊𝑆3 for its own tasks is at 28,800 seconds; 

the amount of time needed by 𝑊𝑆3 to process 695 units of products is 18,765 seconds, therefore its latest start is at 10,035 

seconds. At this point, 𝑊𝑆3 can straightly be functioned as helper for 𝑊𝑆2 (the bottleneck workstation). But helping 𝑊𝑆2 

without considering their feeder (𝑊𝑆1) would create waiting time at 𝑊𝑆2. Thus, step 2 on Sub Algorithm 2 suggests that 𝑊𝑆3 

should be functioned as helper for 𝑊𝑆1 as the most upstream workstation. The latest finish of 𝑊𝑆3 helping WS1 is at 10,035 

seconds. This amount of time can be used to process 250 units of product for WS1. Following this, the load of WS1 decreases 

by 250 units, leading to faster completion time (17,800 seconds). The new completion time is still within the working period 

limit. It also creates idle time for 𝑊𝑆1 which can now be used to help 𝑊𝑆2. The starting time for 𝑊𝑆1 helping 𝑊𝑆2 is at 17,800 

seconds and able to process 250 units of product for 𝑊𝑆2. The load of 𝑊𝑆2 is then decrease by 250 units and its completion 

time is shortened to 19,620 seconds. Insufficiency problems at all workstations are solved. 

 

RESULT AND DISCUSSION 

The numerical experiment explained in the previous section shows that the proposed algorithm managed to reallocate tasks to 

match demand level. Table XIV shows adjustment towards workstation cycle time before (𝒄𝒏) and after (𝒄𝒏
′ ) adjustment is made. 
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TABLE XIV 

CYCLE TIME ADJUSTMENT AFTER TASKS REALLOCATION 

Case # 𝑾𝑺𝒏 𝒄𝒏  

(in seconds) 

Adjustment 

(in seconds) 
𝒄𝒏

′  

(in seconds) 

Case 1 WS1 27 2.66 29.66 

WS2 40 0.00 40.00 

WS3 44 -2.66 41.34 

Case 2 WS1 40 1.39 41.39 

WS2 27 1.39 28.39 

WS3 44 -2.79 41.21 

Case 3 WS1 44 -14.43 29.57 

WS2 40 0.00 40.00 

WS3 27 0.00 27.00 

Case 4 WS1 40 1.44 41.44 

WS2 44 -15.83 28.17 

WS3 27 14.39 41.39 

 

 

Given the profile on Table VII, Table IX, Table  XI, Table XIII and Table XIV, the system performance before and after 

tasks reallocation can be summarized as in Table XV.  

 
TABLE XV 

ASSEMBLY LINE PERFORMANCE BEFORE AND AFTER TASKS REALLOCATION 

Performance Indicator  Case 1   Case 2   Case 3   Case 4  

Before After Before After Before After Before After 

Demand fulfillment No Yes No Yes No Yes No Yes 

Takt-time achievement No Yes No Yes No Yes No Yes 

Smoothing Index 61.85 11.76 51.78 13.00 48.26 16.67 51.78 13.27 

 

Table XV shows that demand fulfillment and takt time achievement is 100% after the algorithm is implemented and all 

cases show improvement on the line smoothing index, which shows improvement regarding load balance between workstations. 

Experiment on larger case (15 workstations) shows similar patterns, which proves the effectiveness of the proposed algorithm. 

 

CONCLUSION AND RECOMMENDATION 

The results presented in this paper highlight the capability of the proposed algorithm to dynamically reallocate tasks among 

workstations in response to demand fluctuations in manual-heavy reliance assembly line, where parallel processing could only 

be achieved by utilizing existing workers. The algorithm systematically identifies (1) which workstations experience capacity 

insufficiencies, (2) which workstations possess the capability to assist by duplicating the work of the insufficient stations, and 

(3) the optimal quantity of tasks to be reallocated from the insufficient workstations to the assisting stations. It is capable of 

functioning effectively across a variety of real-world assembly line scenarios, regardless of whether the bottleneck occurs 

upstream, downstream, or in the middle of the production line. Implementation of the algorithm ensures fulfillment of demand, 

adherence to the targeted takt-time, and improvement in overall line efficiency. 

Further research should focus on comparing the performance of the proposed algorithm with alternative approaches that 

allow the addition of extra workers to the system as a means of enabling parallel processing. Such a comparison would provide 

decision-makers with a more comprehensive understanding of the trade-offs between operational performance and the 

investment required to implement each option 
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