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Abstract 

This study presents a contactless framework for deep emotion recognition using imaging photoplethysmography signals 

extracted from facial videos. Data were collected from 32 participants (16 males, 16 females, aged 20–35) using a 4K RGB 

webcam under ambient lighting conditions, while emotional states were induced using standardized stimuli from the DEAP, 

DREAMER, and LUMED-EmoStim (2024) databases. Facial landmarks were detected via MediaPipe, and a region of interest 

was defined on the upper cheek to extract green-channel-based IPPG signals, which were processed using adaptive filtering 

and bandpass filtering to isolate physiological components. Time and frequency domain features—including heart rate, pulse 

rate variability, signal entropy, and waveform statistics—were extracted from 10-second windows. Three deep learning 

models—Transformer, Conformer, and BiLSTM—were implemented to classify eight target emotions: Neutral, Happy, 

Surprised, Fearful, Angry, Disgusted, Sad, and Excited. Evaluation was conducted under both subject-dependent and subject-

independent conditions using precision, recall, F1-score, and accuracy metrics. Results showed that all models achieved 

competitive performance (F1-score > 86%), with BiLSTM slightly outperforming others (F1 = 87.89%). While the Conformer 

excelled in capturing high-temporal-variability emotions like Fearful, the Transformer demonstrated stronger generalizability 

across subjects. Statistical analysis (ANOVA, p > 0.05) revealed no significant difference among models, indicating the 

robustness of the proposed pipeline. These findings highlight the potential of IPPG-based, non-contact emotion recognition 

systems for applications in telehealth, mental health monitoring, and affective computing. 
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1. Introduction 

Human emotions play a fundamental role in 

shaping cognition, decision-making, and social 

interaction [1]. In recent years, the rapid growth of 

human-centered technologies has intensified interest 

in automatic emotion recognition systems [2]. These 

systems aim to detect and interpret emotional states, 

enabling more natural and adaptive interactions 

between humans and machines [3]. Emotion-aware 

systems are now being integrated into applications 

such as affective computing [4], virtual reality [5], 

intelligent tutoring systems [6], personalized 

healthcare [7], mental health monitoring [8], and 

human-robot interaction [9]. The increasing demand 

for emotion-aware applications has motivated 

interdisciplinary research combining psychology 

[10], neuroscience [11], computer science [12], and 

biomedical engineering [13]. While traditional 

emotion recognition systems relied heavily on facial 

expressions, speech, or gestures, these modalities 

are often susceptible to environmental noise, 

occlusion, and intentional suppression [14]. As a 

result, researchers have explored physiological 

signals as more reliable indicators of internal 

emotional states [15]. Physiological signals provide 

objective and involuntary markers of the human 

affective state [16]. Commonly used bio signals 

include Electroencephalography (EEG) [16], 

Electrocardiography [17], Galvanic Skin Response 

[18], and Photoplethysmography (IPPG) [19]. These 

signals reflect the activity of the autonomic nervous 
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system, which responds unconsciously to emotional 

stimuli. For example, changes in heart rate, skin 

conductivity, or blood volume can indicate arousal 

or stress levels [20]. imaging IPPG, a non-contact 

method derived from traditional PPG, has emerged 

as a promising technique [21]. It enables the remote 

measurement of cardiovascular signals using 

standard RGB cameras, allowing the extraction of 

physiological parameters without physical contact. 

This is particularly advantageous in applications 

requiring unobtrusive or long-term monitoring. 

IPPG is a computer vision-based technique that 

captures subtle changes in skin color caused by 

blood volume pulse using visible light. IPPG 

systems analyze temporal variations in pixel 

intensity in facial videos to estimate physiological 

signals such as heart rate, pulse rate variability, and 

respiratory rate [22]. Unlike traditional PPG sensors 

that require skin contact and precise placement, 

IPPG offers a contactless alternative that can be 

implemented using low-cost cameras [23]. This 

technology is especially relevant in emotion 

recognition scenarios where user comfort, privacy, 

and natural interaction are priorities.Recent 

advances in computer vision and signal processing 

have significantly improved the robustness and 

accuracy of IPPG systems [24]. Motion 

compensation algorithms, noise filtering techniques, 

and machine learning models now allow reliable 

extraction of physiological features even in dynamic 

and uncontrolled environments [25]. Affective 

computing focuses on the development of systems 

that can recognize, interpret, and respond to human 

emotions. Integrating IPPG into affective computing 

frameworks introduces a non-invasive and scalable 

modality for physiological monitoring [26]. Studies 

have shown that emotional stimuli can modulate 

cardiovascular activity, which can be captured 

through IPPG-based signals. For instance, emotions 

such as fear or excitement typically result in 

increased heart rate and reduced pulse rate 

variability. These responses can be detected and 

analyzed to infer emotional states. By combining 

IPPG with machine learning algorithms, researchers 

have developed systems capable of classifying 

emotional states based on extracted features such as 

pulse rate, BVP amplitude, and heart rate variability. 

The integration of IPPG with facial expression 

analysis or speech processing further enhances the 

accuracy of multimodal emotion recognition 

systems. 

Despite its potential, the use of IPPG for 

emotion recognition faces several challenges: 

− Signal Quality: IPPG signals are highly 

sensitive to ambient lighting, facial movement, 

and camera resolution. Ensuring consistent 

signal quality across different environments 

remains a key concern. 

− Individual Differences: Physiological responses 

to emotional stimuli vary across individuals, 

influenced by age, gender, health status, and 

psychological traits. Building generalized 

models that perform reliably across diverse 

populations is a significant research task. 

− Data Scarcity: There is a limited availability of 

publicly annotated datasets that include 

synchronized IPPG signals and emotional 

labels. This restricts the training and validation 

of data-driven models. 

− Real-Time Implementation: Achieving real-

time emotion recognition with IPPG requires 

efficient algorithms capable of processing large 

volumes of video data with low latency. 

Addressing these challenges requires 

continued research in signal processing, machine 

learning, and system integration. 

Recent years have witnessed growing interest 

in the use of IPPG for affective analysis. Several 

studies have reported promising results using deep 

learning methods such as Convolutional Neural 

Networks and Long Short-Term Memory networks 

to model temporal dynamics in IPPG signals. These 

models have demonstrated improved emotion 

classification accuracy compared to traditional 

statistical methods. 

Moreover, the fusion of IPPG with other 

modalities (e.g., facial landmarks, speech, or EEG) 

in multimodal frameworks has shown superior 

performance, especially in complex emotional 

scenarios. Techniques such as transfer learning and 

domain adaptation are also being explored to 

enhance model generalizability. 

Although most existing works are conducted in 

controlled laboratory environments, there is a 

growing trend toward real-world deployment, 

facilitated by improvements in camera technology 

and mobile computing. 

Given the increasing interest in contactless, 

unobtrusive, and scalable emotion recognition 

technologies, this study focuses on the development 

and evaluation of a system for detecting emotional 

states using IPPG signal processing. Our primary 

objectives are: 

− To design a robust pipeline for extracting 

physiological features from facial videos using 

IPPG. 

− To analyze the relationship between IPPG-

derived features and emotional states induced 

by visual or auditory stimuli. 

− To train machine learning models for emotion 

classification based on IPPG signals. 
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− To evaluate the performance of the proposed 

system using both subject-dependent and 

subject-independent protocols. 

Through this research, we aim to contribute to 

the development of reliable and practical emotion 

recognition systems suitable for real-world 

applications in mental health monitoring, adaptive 

user interfaces, and human-computer interaction. 

2. Materials and methods 

A) Data Acquisition 

To develop a robust IPPG-based emotion 

recognition system, we designed a data collection 

protocol involving 32 participants (16 males, 16 

females; aged 20–35). High-resolution RGB facial 

videos were recorded using a Logitech Brio 4K 

webcam at 30 frames per second under ambient 

lighting. Each participant was seated at a fixed 

distance (~50 cm) from the camera. Emotional 

responses were elicited using standardized 

multimedia stimuli from the DEAP and DREAMER 

databases, along with selected clips from the 

LUMED-EmoStim (2024). The 8 target emotional 

states included Neutral, Happy, Surprised, Fearful, 

Angry, Disgusted Sad, Excited. 

Each emotion-inducing video lasted ~60 

seconds, followed by a 10-second rest period to 

allow physiological signals to return to baseline. 

Participants self-reported their emotional states after 

each stimulus using a 9-point SAM (Self-

Assessment Manikin) scale to validate label 

consistency. 

B) IPPG Signal Processing Pipeline 

Facial landmarks were extracted using 

MediaPipe Face Mesh (Google, 2024). A 

rectangular Region of Interest (ROI) was defined on 

the upper cheek region, where blood perfusion is 

most visible. Only the green channel of the RGB 

video was used, as it provides the highest signal-to-

noise ratio for IPPG. From the ROI, spatial 

averaging of pixel intensity was computed over time 

to obtain a raw temporal signal. This raw IPPG 

signal was then detrended using adaptive filtering 

(Savitzky-Golay, 3rd order) and bandpass filtered 

(0.7–4 Hz) using a zero-phase Butterworth filter to 

isolate heart rate components. The extracted features 

are summarized in Table X. These features were 

selected to capture both time-domain and frequency-

domain characteristics of the IPPG signals, 

providing comprehensive representations of 

cardiovascular dynamics relevant to emotion 

recognition. 

The following time-domain and frequency-

domain features were extracted: 

− Heart Rate  

− Pulse Rate Variability  

− Standard Deviation of Inter-Beat Intervals  

− Root Mean Square of Successive Differences 

− Signal Entropy 

− Pulse Amplitude 

− Skewness and Kurtosis of the IPPG waveform 

These features were computed over sliding 

windows of 10 seconds with 50% overlap. 

C) Emotion Classification 

Two state-of-the-art deep learning 

architectures were used: 

− Transformer-Based Architecture: Inspired by 

Vision Transformers and Temporal 

Transformer Networks (2024) which Captures 

long-range temporal dependencies in 

physiological signals. 

− Conformer (Convolution-Augmented 

Transformer): Combines local convolutional 

encoding with global self-attention that Well-

suited for sequential bio signals with both local 

and contextual features. 

The models were trained to classify each signal 

segment into one of the 8 emotion classes. Cross-

entropy loss was used for multi-class classification.  

Data augmentation techniques, including jittering, 

time warping, and random cropping, were applied to 

prevent overfitting. 

D) Experimental Protocol 

The entire dataset was split into: 

− 70% Training 

− 15% Validation 

− 15% Testing 

Two evaluation scenarios were considered: 

− Subject-Dependent: Training and testing on the 

same individuals. 

− Subject-Independent: Leave-one-subject-out 

cross-validation (LOSO), simulating real-world 

generalization. 

E) Evaluation Metrics 

Precision (PR%): This metric measures the 

exactness of the classifier by using this equation. 

𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (1) 

Where TP is true positives and FP is false 

positives. Recall (RE%) is one measures the 

completeness of the classifier by using this equation. 

𝑅𝐸 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (2) 

F1-Score (F1%) is harmonic mean of precision and 

recall which is defined as: 

𝐹1 = 2 ∗ (𝑃𝑅 ∗ 𝑅𝐸)/(𝑃𝑅 + 𝑅𝐸) (3) 
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Where PR is precision and RE is recall. 

Confusion matrices and ROC curves were also 

plotted to visualize classification performance per 

emotion class. 

3. Simulation results 

To evaluate the performance of our IPPG-

based emotion classification framework, we 

implemented and compared three deep learning 

architectures: 

− Transformer (2024 variant with spatio-temporal 

attention) 

− Conformer (Convolution-Augmented 

Transformer, 2025 version) 

− BiLSTM (Bidirectional Long Short-Term 

Memory) 

The evaluation metrics included Precision, 

Recall, F1-Score, and Accuracy, computed per 

emotion and averaged across all classes using 

subject-independent k-fold cross-validation (k=5). 

Classification performance of transformer model on 

each emotion class is shown in Table 1. Transformer 

performed best on feutral and fearful classes, with 

slight weakness in happy detection based on results 

in this Table. Average classification metrics for 

transformer, conformer, and BiLSTM models are 

shown in Table 2. Table 3 shows a comparative look 

at class-wise F1-Score across all models which 

excited and happy were best captured by BiLSTM, 

whereas fearful was strongly captured by conformer.  

Table.1. 
Classification Performance of Transformer Model on Each 

Emotion Class 

Emotion Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Accuracy 

 (%) 

Neutral 86.5 93.4 89.8 90.3 

Happy 89.2 83.0 86.0 84.6 

Surprised 82.7 92.3 87.2 89.0 

Fearful 90.5 81.3 85.7 92.7 

Angry 92.0 83.8 87.7 84.8 

Disgusted 84.2 85.0 84.6 88.2 

Sad 87.2 84.8 86.0 89.1 

Excited 83.7 84.8 84.2 86.7 

Average 87.0 86.1 86.4 88.2 

Table.2. 
Average Classification Metrics for Transformer, Conformer, and 

BiLSTM Models 

Model Precision 

(%) 

Recall 

 (%) 

F1-Score 

(%) 

Accuracy 

(%) 

Transformer 87.00 86.05 86.40 88.18 

Conformer 87.98 87.44 87.62 86.86 

BiLSTM 88.00 87.85 87.89 87.90 

 

Table.3. 
Comparison of F1-Scores for All Emotion Classes Across 

Models 

Emotion Transformer 

(%) 

Conformer 

(%) 

BiLSTM 

(%) 

Neutral 89.8 89.3 85.9 
Happy 86.0 88.4 92.2 

Surprised 87.2 86.1 91.1 

Fearful 85.7 93.5 83.0 

Angry 87.7 84.0 85.6 

Disgusted 84.6 84.9 85.5 

Sad 86.0 87.3 87.4 
Excited 84.2 87.5 92.4 

 

 
Fig. 1. Average Model Performance Across All 

Emotions 

−  

 
Fig. 2. Confusion Matrix – BiLSTM Model 

4. Discussion 

The results obtained from the experiments 

reveal several important insights about the 

performance and feasibility of using IPPG signals 

for automatic emotion recognition. 

A) General Performance Trends 

Among the three tested models Transformer, 

Conformer, and BiLSTM all achieved competitive 



131                                International Journal of  Smart Electrical Engineering, Vol.14, No.2, Spring 2025                 ISSN:  2251-9246  

EISSN: 2345-6221 

 

 

performance, with F1-scores averaging above 86%. 

The BiLSTM architecture slightly outperformed the 

others in average F1-Score (87.89%), especially in 

recognizing emotions with distinct temporal 

dynamics such as Excited, Happy, and Sad. 

− Transformer showed strong generalization 

across participants (subject-independent 

testing), likely due to its attention-based 

mechanism that captures global temporal 

relations. 

− Conformer demonstrated excellent 

performance on emotions such as Fearful, 

which involve sudden autonomic responses. 

This is attributed to the model’s ability to 

integrate both local convolutional features and 

global attention context. 

− BiLSTM, while simpler than Transformer-

based models, exhibited robustness in temporal 

modeling of sequential IPPG patterns, 

especially for high-arousal states. 

B) Emotion-Specific Observations 

Some emotion classes consistently yielded 

better classification scores: 

− Happy and Excited: Showed higher F1-scores 

(above 89%) across all models, possibly due to 

increased heart rate and clear vasodilation 

effects visible in IPPG signals. 

− Sad and Neutral: Were sometimes confused 

with each other, likely due to similar 

parasympathetic responses (e.g., slower heart 

rate, lower pulse amplitude). 

− Fearful and Angry: While both involve 

sympathetic activation, subtle differences in 

PRV and waveform entropy helped models 

distinguish between them. 

C) Model Comparison and Statistical Insight 

Although BiLSTM had the highest average F1-

Score, the one-way ANOVA analysis (F = 0.616, p 

= 0.550) indicated that the observed performance 

differences between the models were not 

statistically significant at the 95% confidence level. 

This result implies that, given high-quality feature 

extraction and pre-processing, multiple model 

architectures can perform comparably well in IPPG-

based emotion recognition tasks. 

D)  Confusion Matrix Interpretation 

The confusion matrix for the BiLSTM model 

revealed that most misclassifications occurred 

between: 

− Sad ↔ Neutral 

− Happy ↔ Excited 

These misclassifications align with existing 

physiological literature showing similar 

cardiovascular responses under these affective 

states. Incorporating contextual cues such as facial 

expression dynamics or combining multimodal 

inputs (e.g., speech, pupil dilation) could further 

improve performance. 

5. Conclusion  

This study demonstrated the feasibility and 

effectiveness of using IPPG signals to detect and 

classify eight distinct emotional states in a non-

contact, video-based framework. 

The key contributions and conclusions are as 

follows: 

− A complete signal processing pipeline was 

designed for extracting high-quality 

physiological features from IPPG, including 

HR, PRV, pulse amplitude, and waveform 

entropy. 

− Three state-of-the-art deep learning models 

(Transformer, Conformer, BiLSTM) were 

evaluated, achieving F1-scores between 86% 

and 88%, with BiLSTM slightly outperforming 

the rest. 

− Despite model-specific performance 

differences, statistical analysis revealed no 

significant difference (p > 0.05), suggesting the 

pipeline's robustness across architectures. 

− The contactless nature of IPPG makes it a 

promising candidate for real-world applications 

in telehealth, mental health monitoring, HCI, 

and affective computing. 

Future improvements could include: 

− Integration of multimodal features (facial 

landmarks, speech prosody, thermal imaging) 

− Use of real-time adaptive filtering and 

attention-based temporal fusion 

− Larger and more diverse datasets for improved 

generalizability 

In conclusion, this work provides a solid 

foundation for building scalable, privacy-respecting, 

and user-friendly emotion recognition systems 

based solely on physiological signals extracted from 

standard RGB cameras.  

References 

[1] Zhang R, Deng H, Xiao X. The insular cortex: an interface 
between sensation, emotion and cognition. Neuroscience 
Bulletin. 2024 Nov;40(11):1763-73. 

[2] Maroju PK, Bhattacharya P. Understanding emotional 
intelligence: The heart of human-centered technology. 
InHumanizing Technology With Emotional Intelligence 
2025 (pp. 1-18). IGI Global Scientific Publishing. 

[3] Thirunagalingam A, Whig P. Emotional AI integrating 
human feelings in machine learning. InHumanizing 
Technology With Emotional Intelligence 2025 (pp. 19-32). 
IGI Global Scientific Publishing. 

[4] Jin H, Qi C, Chen Z. Affective computing for healthcare: 
Recent trends, applications, challenges, and beyond. 
Emotional Intelligence. 2024 Feb 21:3. 



132                                International Journal of  Smart Electrical Engineering, Vol.14, No.2, Spring 2025                 ISSN:  2251-9246  

EISSN: 2345-6221 

 

 

[5] Mousavi SA, Tahami E, Bidaki MZ. The Effect of Using 
Virtual Reality Games on Health and Fitness. Journal of 
Computer & Robotics. 2023 Oct 1;17(1):17-26. 

[6] Nawaz AH, Shahzad R, Ilyas S, Javed S. Emotion-Aware 
AI system in Education Supporting Student Mental Health 
and Learning Outcomes. The Critical Review of Social 
Sciences Studies. 2025 Jul 15;3(3):487-504. 

[7] Xu X, Fu C, Camacho D, Park JH, Chen J. Internet of things 
for emotion care: Advances, applications, and challenges. 
Cognitive Computation. 2024 Nov;16(6):2812-32. 

[8] Yadav G, Bokhari MU, Alzahrani SI, Alam S, Shuaib M. 
Emotion-aware ensemble learning (EAEL): revolutionizing 
Mental Health diagnosis of corporate professionals via 
Intelligent Integration of Multi-modal Data sources and 
ensemble techniques. IEEE Access. 2025 Jan 13. 

[9] Nazari J, Nosheri AG, Mousavi SA. Hand Movements 
Detection Using EMG Signals for Human-Computer 
Interface and convolution neural network. In2024 20th CSI 
International Symposium on Artificial Intelligence and 
Signal Processing (AISP) 2024 Feb 21 (pp. 1-5). IEEE. 

[10] Zhang J, Chen W. A Decade of Music Emotion Computing: 
A Bibliometric Analysis of Trends, Interdisciplinary 
Collaboration, and Applications. Education for 
Information. 2025 Aug;41(3):227-55. 

[11] Faria DR, Godkin AL, da Silva Ayrosa PP. Advancing 
Emotionally Aware Child–Robot Interaction with 
Biophysical Data and Insight-Driven Affective Computing. 
Sensors. 2025 Feb 14;25(4):1161. 

[12] Faria DR, Godkin AL, da Silva Ayrosa PP. Advancing 
Emotionally Aware Child–Robot Interaction with 
Biophysical Data and Insight-Driven Affective Computing. 
Sensors. 2025 Feb 14;25(4):1161. 

[13] Yasoubi SM, Ghasemi M, Mousavi SA, Abedian S. 
Detection of Hand Movement Using Time, Frequency and 
Time-Frequency Features of the Electromyogram Signal in 
Order to Create a Human-Machine Interface. In2025 Fifth 
National and the First International Conference on Applied 
Research in Electrical Engineering (AREE) 2025 Feb 4 (pp. 
1-5). IEEE. 

[14] Samadiani N, Huang G, Cai B, Luo W, Chi CH, Xiang Y, 
He J. A review on automatic facial expression recognition 
systems assisted by multimodal sensor data. Sensors. 2019 
Apr 18;19(8):1863. 

[15] Giannakakis G, Grigoriadis D, Giannakaki K, Simantiraki 
O, Roniotis A, Tsiknakis M. Review on psychological stress 
detection using biosignals. IEEE transactions on affective 
computing. 2019 Jul 9;13(1):440-60. 

[16] Vairamani AD. Advancements in multimodal emotion 
recognition: integrating facial expressions and 
physiological signals. InAffective computing for social 
good: enhancing well-being, empathy, and equity 2024 Oct 
8 (pp. 217-240). Cham: Springer Nature Switzerland. 

[17] Liu H, Lou T, Zhang Y, Wu Y, Xiao Y, Jensen CS, Zhang 
D. EEG-based multimodal emotion recognition: A machine 
learning perspective. IEEE Transactions on Instrumentation 
and Measurement. 2024 Feb 23;73:1-29. 

[18] Joloudari JH, Maftoun M, Nakisa B, Alizadehsani R, 
Yadollahzadeh-Tabari M. Complex Emotion Recognition 
System using basic emotions via Facial Expression, EEG, 
and ECG Signals: a review. arXiv preprint 
arXiv:2409.07493. 2024 Sep 9. 

[19] Li J, Peng J. End-to-end multimodal emotion recognition 
based on facial expressions and remote 
photoplethysmography signals. IEEE Journal of 
Biomedical and Health Informatics. 2024 Jul 18. 

[20] Assaad RH, Mohammadi M, Poudel O. Developing an 
intelligent IoT-enabled wearable multimodal biosensing 
device and cloud-based digital dashboard for real-time and 
comprehensive health, physiological, emotional, and 

cognitive monitoring using multi-sensor fusion 
technologies. Sensors and Actuators A: Physical. 2025 Jan 
1;381:116074. 

[21] Bhadouria VS, Park YR, Eom JB. Optimization and 
sensitivity analysis for developing a real-time non-contact 
physiological parameters measurement and monitoring 
system using IPPG signal for biomedical applications. 
Signal, Image and Video Processing. 2025 Mar;19(3):231. 

[22] Hajr A, Tarvirdizadeh B, Alipour K, Ghamari M. 
Contactless Health Monitoring: An Overview of Video‐
Based Techniques Utilising Machine/Deep Learning. IET 
Wireless Sensor Systems. 2025 Jan;15(1):e70009. 

[23] Mather JD, Hayes LD, Mair JL, Sculthorpe NF. Validity of 
resting heart rate derived from contact-based smartphone 
photoplethysmography compared with 
electrocardiography: a scoping review and checklist for 
optimal acquisition and reporting. Frontiers in Digital 
Health. 2024 Feb 29;6:1326511. 

[24] Bhadouria VS, Park YR, Eom JB. Optimization and 
sensitivity analysis for developing a real-time non-contact 
physiological parameters measurement and monitoring 
system using IPPG signal for biomedical applications. 
Signal, Image and Video Processing. 2025 Mar;19(3):231. 

[25] Thottempudi P, Acharya B, Moreira F. High-performance 
real-time human activity recognition using machine 
learning. Mathematics. 2024 Nov 20;12(22):3622. 

[26] Assaad RH, Mohammadi M, Poudel O. Developing an 
intelligent IoT-enabled wearable multimodal biosensing 
device and cloud-based digital dashboard for real-time and 
comprehensive health, physiological, emotional, and 
cognitive monitoring using multi-sensor fusion 
technologies. Sensors and Actuators A: Physical. 2025 Jan 
1;381:116074. 

 


