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Abstract

This study presents a contactless framework for deep emotion recognition using imaging photoplethysmography signals
extracted from facial videos. Data were collected from 32 participants (16 males, 16 females, aged 20-35) using a 4K RGB
webcam under ambient lighting conditions, while emotional states were induced using standardized stimuli from the DEAP,
DREAMER, and LUMED-EmosStim (2024) databases. Facial landmarks were detected via MediaPipe, and a region of interest
was defined on the upper cheek to extract green-channel-based IPPG signals, which were processed using adaptive filtering
and bandpass filtering to isolate physiological components. Time and frequency domain features—including heart rate, pulse
rate variability, signal entropy, and waveform statistics—were extracted from 10-second windows. Three deep learning
models—Transformer, Conformer, and BiLSTM—were implemented to classify eight target emotions: Neutral, Happy,
Surprised, Fearful, Angry, Disgusted, Sad, and Excited. Evaluation was conducted under both subject-dependent and subject-
independent conditions using precision, recall, F1-score, and accuracy metrics. Results showed that all models achieved
competitive performance (F1-score > 86%), with BiLSTM slightly outperforming others (F1 = 87.89%). While the Conformer
excelled in capturing high-temporal-variability emotions like Fearful, the Transformer demonstrated stronger generalizability
across subjects. Statistical analysis (ANOVA, p > 0.05) revealed no significant difference among models, indicating the
robustness of the proposed pipeline. These findings highlight the potential of IPPG-based, non-contact emotion recognition
systems for applications in telehealth, mental health monitoring, and affective computing.
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1. Introduction

Human emotions play a fundamental role in [10], neuroscience [11], computer science [12], and

shaping cognition, decision-making, and social
interaction [1]. In recent years, the rapid growth of
human-centered technologies has intensified interest
in automatic emotion recognition systems [2]. These
systems aim to detect and interpret emotional states,
enabling more natural and adaptive interactions
between humans and machines [3]. Emotion-aware
systems are now being integrated into applications
such as affective computing [4], virtual reality [5],
intelligent tutoring systems [6], personalized
healthcare [7], mental health monitoring [8], and
human-robot interaction [9]. The increasing demand
for emotion-aware applications has motivated
interdisciplinary research combining psychology

biomedical engineering [13]. While traditional
emotion recognition systems relied heavily on facial
expressions, speech, or gestures, these modalities
are often susceptible to environmental noise,
occlusion, and intentional suppression [14]. As a
result, researchers have explored physiological
signals as more reliable indicators of internal
emotional states [15]. Physiological signals provide
objective and involuntary markers of the human
affective state [16]. Commonly used bio signals
include Electroencephalography (EEG) [16],
Electrocardiography [17], Galvanic Skin Response
[18], and Photoplethysmography (IPPG) [19]. These
signals reflect the activity of the autonomic nervous
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system, which responds unconsciously to emotional
stimuli. For example, changes in heart rate, skin
conductivity, or blood volume can indicate arousal
or stress levels [20]. imaging IPPG, a non-contact
method derived from traditional PPG, has emerged
as a promising technique [21]. It enables the remote
measurement of cardiovascular signals using
standard RGB cameras, allowing the extraction of
physiological parameters without physical contact.
This is particularly advantageous in applications
requiring unobtrusive or long-term monitoring.
IPPG is a computer vision-based technique that
captures subtle changes in skin color caused by
blood volume pulse using visible light. IPPG
systems analyze temporal variations in pixel
intensity in facial videos to estimate physiological
signals such as heart rate, pulse rate variability, and
respiratory rate [22]. Unlike traditional PPG sensors
that require skin contact and precise placement,
IPPG offers a contactless alternative that can be
implemented using low-cost cameras [23]. This
technology is especially relevant in emotion
recognition scenarios where user comfort, privacy,
and natural interaction are priorities.Recent
advances in computer vision and signal processing
have significantly improved the robustness and
accuracy of IPPG systems [24]. Motion
compensation algorithms, noise filtering techniques,
and machine learning models now allow reliable
extraction of physiological features even in dynamic
and uncontrolled environments [25]. Affective
computing focuses on the development of systems
that can recognize, interpret, and respond to human
emotions. Integrating IPPG into affective computing
frameworks introduces a non-invasive and scalable
modality for physiological monitoring [26]. Studies
have shown that emotional stimuli can modulate
cardiovascular activity, which can be captured
through IPPG-based signals. For instance, emotions
such as fear or excitement typically result in
increased heart rate and reduced pulse rate
variability. These responses can be detected and
analyzed to infer emotional states. By combining
IPPG with machine learning algorithms, researchers
have developed systems capable of classifying
emotional states based on extracted features such as
pulse rate, BVP amplitude, and heart rate variability.
The integration of IPPG with facial expression
analysis or speech processing further enhances the
accuracy of multimodal emotion recognition
systems.

Despite its potential, the use of IPPG for
emotion recognition faces several challenges:
— Signal Quality: IPPG signals are highly

sensitive to ambient lighting, facial movement,

and camera resolution. Ensuring consistent
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signal quality across different environments
remains a key concern.

— Individual Differences: Physiological responses
to emotional stimuli vary across individuals,
influenced by age, gender, health status, and
psychological traits. Building generalized
models that perform reliably across diverse
populations is a significant research task.

— Data Scarcity: There is a limited availability of
publicly annotated datasets that include
synchronized IPPG signals and emotional
labels. This restricts the training and validation
of data-driven models.

— Real-Time Implementation: Achieving real-
time emotion recognition with IPPG requires
efficient algorithms capable of processing large
volumes of video data with low latency.
Addressing  these  challenges  requires

continued research in signal processing, machine

learning, and system integration.

Recent years have witnessed growing interest
in the use of IPPG for affective analysis. Several
studies have reported promising results using deep
learning methods such as Convolutional Neural
Networks and Long Short-Term Memory networks
to model temporal dynamics in IPPG signals. These
models have demonstrated improved emotion
classification accuracy compared to traditional
statistical methods.

Moreover, the fusion of IPPG with other
modalities (e.g., facial landmarks, speech, or EEG)
in multimodal frameworks has shown superior
performance, especially in complex emotional
scenarios. Techniques such as transfer learning and
domain adaptation are also being explored to
enhance model generalizability.

Although most existing works are conducted in
controlled laboratory environments, there is a
growing trend toward real-world deployment,
facilitated by improvements in camera technology
and mobile computing.

Given the increasing interest in contactless,
unobtrusive, and scalable emotion recognition
technologies, this study focuses on the development
and evaluation of a system for detecting emotional
states using IPPG signal processing. Our primary
objectives are:

— To design a robust pipeline for extracting
physiological features from facial videos using
IPPG.

— To analyze the relationship between IPPG-
derived features and emotional states induced
by visual or auditory stimuli.

— To train machine learning models for emotion
classification based on IPPG signals.
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— To evaluate the performance of the proposed
system using both subject-dependent and
subject-independent protocols.

Through this research, we aim to contribute to
the development of reliable and practical emotion
recognition systems suitable for real-world
applications in mental health monitoring, adaptive
user interfaces, and human-computer interaction.

2. Materials and methods
A) Data Acquisition

To develop a robust IPPG-based emotion
recognition system, we designed a data collection
protocol involving 32 participants (16 males, 16
females; aged 20-35). High-resolution RGB facial
videos were recorded using a Logitech Brio 4K
webcam at 30 frames per second under ambient
lighting. Each participant was seated at a fixed
distance (~50 cm) from the camera. Emotional
responses were elicited using standardized
multimedia stimuli from the DEAP and DREAMER
databases, along with selected clips from the
LUMED-EmoStim (2024). The 8 target emotional
states included Neutral, Happy, Surprised, Fearful,
Angry, Disgusted Sad, Excited.

Each emotion-inducing video lasted ~60
seconds, followed by a 10-second rest period to
allow physiological signals to return to baseline.
Participants self-reported their emotional states after
each stimulus using a 9-point SAM (Self-
Assessment Manikin) scale to validate label
consistency.

B) IPPG Signal Processing Pipeline

Facial landmarks were extracted using
MediaPipe Face Mesh (Google, 2024). A
rectangular Region of Interest (ROI) was defined on
the upper cheek region, where blood perfusion is
most visible. Only the green channel of the RGB
video was used, as it provides the highest signal-to-
noise ratio for IPPG. From the ROI, spatial
averaging of pixel intensity was computed over time
to obtain a raw temporal signal. This raw IPPG
signal was then detrended using adaptive filtering
(Savitzky-Golay, 3rd order) and bandpass filtered
(0.7-4 Hz) using a zero-phase Butterworth filter to
isolate heart rate components. The extracted features
are summarized in Table X. These features were
selected to capture both time-domain and frequency-
domain characteristics of the IPPG signals,
providing comprehensive  representations  of
cardiovascular dynamics relevant to emotion
recognition.

The following time-domain and frequency-
domain features were extracted:

— Heart Rate
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— Pulse Rate Variability

— Standard Deviation of Inter-Beat Intervals

— Root Mean Square of Successive Differences

— Signal Entropy

—  Pulse Amplitude

—  Skewness and Kurtosis of the IPPG waveform
These features were computed over sliding

windows of 10 seconds with 50% overlap.

C) Emotion Classification

Two state-of-the-art deep learning
architectures were used:

— Transformer-Based Architecture: Inspired by
Vision Transformers and Temporal
Transformer Networks (2024) which Captures
long-range  temporal  dependencies in
physiological signals.

—  Conformer (Convolution-Augmented
Transformer): Combines local convolutional
encoding with global self-attention that Well-
suited for sequential bio signals with both local
and contextual features.

The models were trained to classify each signal
segment into one of the 8 emotion classes. Cross-
entropy loss was used for multi-class classification.
Data augmentation techniques, including jittering,
time warping, and random cropping, were applied to
prevent overfitting.

D) Experimental Protocol

The entire dataset was split into:

—  70% Training

— 15% Validation

— 15% Testing
Two evaluation scenarios were considered:

—  Subject-Dependent: Training and testing on the
same individuals.

— Subject-Independent:  Leave-one-subject-out
cross-validation (LOSO), simulating real-world
generalization.

E) Evaluation Metrics

Precision (PR%): This metric measures the
exactness of the classifier by using this equation.

PR =TP/(TP + FP) @

Where TP is true positives and FP is false
positives. Recall (RE%) is one measures the
completeness of the classifier by using this equation.

RE = TP/(TP + FN) @)

F1-Score (F1%) is harmonic mean of precision and
recall which is defined as:

F1=2x (PR *RE)/(PR + RE) ®)



130 International Journal of Smart Electrical Engineering, Vol.14, No.2, Spring 2025

Where PR is precision and RE is recall.
Confusion matrices and ROC curves were also
plotted to visualize classification performance per
emotion class.

3. Simulation results

To evaluate the performance of our IPPG-
based emotion classification framework, we
implemented and compared three deep learning
architectures:

—  Transformer (2024 variant with spatio-temporal
attention)
—  Conformer (Convolution-Augmented

Transformer, 2025 version)

— BILSTM (Bidirectional Long Short-Term

Memory)

The evaluation metrics included Precision,
Recall, F1-Score, and Accuracy, computed per
emotion and averaged across all classes using
subject-independent k-fold cross-validation (k=5).
Classification performance of transformer model on
each emotion class is shown in Table 1. Transformer
performed best on feutral and fearful classes, with
slight weakness in happy detection based on results
in this Table. Average classification metrics for
transformer, conformer, and BiLSTM models are
shown in Table 2. Table 3 shows a comparative look
at class-wise F1-Score across all models which
excited and happy were best captured by BiLSTM,
whereas fearful was strongly captured by conformer.

Table.1.
Classification Performance of Transformer Model on Each
Emotion Class

Emotion Precision  Recall F1-Score  Accuracy

(%) (%) (%) (%)
Neutral 86.5 934 89.8 90.3
Happy 89.2 83.0 86.0 84.6
Surprised 82.7 92.3 87.2 89.0
Fearful 90.5 81.3 85.7 92.7
Angry 92.0 83.8 87.7 84.8
Disgusted 84.2 85.0 84.6 88.2
Sad 87.2 84.8 86.0 89.1
Excited 83.7 84.8 84.2 86.7
Average 87.0 86.1 86.4 88.2
Table.2.

Average Classification Metrics for Transformer, Conformer, and
BiLSTM Models

Model Precision Recall F1-Score  Accuracy
(%) (%) (%) (%)
Transformer  87.00 86.05 86.40 88.18
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Conformer 87.98 87.44 87.62 86.86
BiLSTM 88.00 87.85 87.89 87.90
Table.3.
Comparison of F1-Scores for All Emotion Classes Across
Models
Emotion Transformer ~ Conformer BiLSTM
(%) (%) (%)
Neutral 89.8 89.3 85.9
Happy 86.0 88.4 92.2
Surprised 87.2 86.1 91.1
Fearful 85.7 935 83.0
Angry 87.7 84.0 85.6
Disgusted 84.6 84.9 85.5
Sad 86.0 87.3 87.4
Excited 84.2 87.5 92.4

Average Model Performance Across All Emotions

performance (%)

Transformer Conformer BILSTM

Fig. 1. Average Model Performance Across All
Emotions
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Fig. 2. Confusion Matrix — BiLSTM Model

4. Discussion

The results obtained from the experiments
reveal several important insights about the
performance and feasibility of using IPPG signals
for automatic emotion recognition.

A) General Performance Trends

Among the three tested models Transformer,
Conformer, and BiLSTM all achieved competitive
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performance, with F1-scores averaging above 86%.

The BiLSTM architecture slightly outperformed the

others in average F1-Score (87.89%), especially in

recognizing emotions with distinct temporal

dynamlcs such as Excited, Happy, and Sad.
Transformer showed strong generalization
across  participants  (subject-independent
testing), likely due to its attention-based
mechanism that captures global temporal
relations.

— Conformer demonstrated excellent
performance on emotions such as Fearful,
which involve sudden autonomic responses.
This is attributed to the model’s ability to
integrate both local convolutional features and
global attention context.

— BILSTM, while simpler than Transformer-
based models, exhibited robustness in temporal
modeling of sequential IPPG patterns,
especially for high-arousal states.

B) Emotion-Specific Observations

Some emotion classes consistently yielded
better classification scores:

— Happy and Excited: Showed higher F1-scores
(above 89%) across all models, possibly due to
increased heart rate and clear vasodilation
effects visible in IPPG signals.

— Sad and Neutral: Were sometimes confused
with each other, likely due to similar
parasympathetic responses (e.g., slower heart
rate, lower pulse amplitude).

— Fearful and Angry: While both involve
sympathetic activation, subtle differences in
PRV and waveform entropy helped models
distinguish between them.

C) Model Comparison and Statistical Insight

Although BiLSTM had the highest average F1-
Score, the one-way ANOVA analysis (F = 0.616, p
= 0.550) indicated that the observed performance
differences between the models were not
statistically significant at the 95% confidence level.
This result implies that, given high-quality feature
extraction and pre-processing, multiple model
architectures can perform comparably well in IPPG-
based emotion recognition tasks.

D) Confusion Matrix Interpretation

The confusion matrix for the BiLSTM model
revealed that most misclassifications occurred
between:

— Sad <> Neutral

— Happy < Excited
These misclassifications align with existing
physiological literature showing similar

cardiovascular responses under these affective
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states. Incorporating contextual cues such as facial
expression dynamics or combining multimodal
inputs (e.g., speech, pupil dilation) could further
improve performance.

5. Conclusion

This study demonstrated the feasibility and
effectiveness of using IPPG signals to detect and
classify eight distinct emotional states in a non-
contact, video-based framework.

The key contributions and conclusions are as
follows:

— A complete signal processing pipeline was
designed  for  extracting high-quality
physiological features from IPPG, including
HR, PRV, pulse amplitude, and waveform
entropy.

— Three state-of-the-art deep learning models
(Transformer, Conformer, BIiLSTM) were
evaluated, achieving F1-scores between 86%
and 88%, with BiLSTM slightly outperforming
the rest.

— Despite model-specific performance
differences, statistical analysis revealed no
significant difference (p > 0.05), suggesting the
pipeline's robustness across architectures.

— The contactless nature of IPPG makes it a
promising candidate for real-world applications
in telehealth, mental health monitoring, HCI,
and affective computing.

Future improvements could include:

— Integration of multimodal features (facial
landmarks, speech prosody, thermal imaging)

— Use of real-time adaptive filtering and
attention-based temporal fusion

— Larger and more diverse datasets for improved
generalizability
In conclusion, this work provides a solid

foundation for building scalable, privacy-respecting,

and user-friendly emotion recognition systems
based solely on physiological signals extracted from
standard RGB cameras.
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