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Abstract 

Blood pressure is the force and pressure that the blood exerts on the walls of the vessels when it flows through the vessels, and 

it is not a problem on its own. One of the important diseases is high blood pressure, which is caused by various factors. Many 

patients with high blood pressure (or hypertension) do not control their disease. As a person ages, blood pressure naturally 

increases. Blood pressure is proportional to dietary and behavioral habits, excitement, and stress, and even changes during the 

hours of the day and night. Today, the use of machine learning algorithms is widely increasing to classify patients with high 

blood pressure. This paper conducts a succinct investigation into the application of machine learning algorithms for the 

classification of individuals with high blood pressure, drawing on a comprehensive analysis of existing research in the field. 

The machine learning algorithms considered are categorized into three distinct groups: unsupervised learning, supervised 

learning, and reinforcement learning. While the majority of studies have traditionally concentrated on the analysis of at least 

one performance criterion, a limited number have ventured into the exploration of multiple criteria. Various patient data are 

analyzed by machine learning algorithms to predict and classify the likelihood and severity of high blood pressure. This study 

can help the application of machine learning algorithms to improve medical services for patients with high blood pressure, and 

to provide a model for effective health management. 
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1. Introduction 

In recent years, artificial intelligence has 

become a part of many technologies used by 

humans. Artificial intelligence is a broad field of 

building machines that have the ability to mimic 

human intelligence, but machine learning is a subset 

of artificial intelligence that focuses on enabling 

machines to learn from data without explicit 

programming. Intelligent methods, characterized by 

their adaptive and data-driven nature, have become 

ubiquitous in numerous domains, including but not 

limited to engineering, medicine, management, and 

economic. The pervasive adoption of these smart 

methodologies underscores their transformative 

impact on various facets of contemporary society. A 

comprehensive body of research has been dedicated 

to harnessing the potential of intelligent methods for 

system enhancement and quality improvement [1-

19]. 

This evolving field has witnessed a multitude 

of studies exploring novel applications and metho-

dologies, contributing to a deeper understanding of 

how intelligent techniques can be effectively 

employed to optimize the performance and elevate 

the quality standards of diverse systems. This 

ongoing research trajectory reflects a collective 

effort to unlock the full potential of smart methods 

across a spectrum of applications [21-27].  

High blood pressure (hypertension) is a silent 

disease and causes disturbances in the normal 

functioning of the body. The diagnosis of this 

disease may take a long time until the symptoms of 

high blood pressure appear in humans [28-31]. High 

blood pressure can cause tissue damage [32], and in 
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the long term it can cause heart diseases [33,34], 

kidney failure [35], arteriosclerosis [36] and stroke 

[37,38]. Therefore, early detection of high blood 

pressure is important and necessary for health and a 

better life [39,40]. High blood pressure is common 

among people over the age of 45, with a higher 

proportion of men than women [41,42]. More than 

half of people with high blood pressure are not 

aware of their disease, and most patients find out 

about their high blood pressure by accident [43,44]. 

The causes of high blood pressure can be 

environmental, genetic and biological, but the exact 

cause is not known [45]. High blood pressure is 

placed in one of the two groups of primary 

hypertension or secondary hypertension, most of the 

cases are primary hypertension, and in other words, 

there is no specific medical reason for it [46,47]. 

Blood pressure is established through two key 

measures: systolic and diastolic [48]. These 

measures correspond to the contraction and 

relaxation phases of the heart muscle between beats, 

respectively. Systolic blood pressure (SBP) 

(maximum blood pressure indicating the pressure of 

the arteries during heartbeat and blood pumping) 

and diastolic blood pressure (DBP) (minimum blood 

pressure indicating the amount of arterial pressure 

between heartbeats) [49,50]. It should be noted that 

SBP has more prognostic significance than DBP. 

In the state of ablution, the customary systolic 

blood pressure hovers around 120 millimetres of 

mercury, while the typical diastolic blood pressure 

is approximately 80 millimetres of mercury. 

Consequently, maintaining blood pressure below 

120/80 is considered ideal for a healthy condition. It 

is worth noting that blood pressure changes are a 

complex phenomenon that can fluctuate throughout 

the day due to various factors such as activity levels 

and emotional behaviors [51,52]. 

The categorization of individuals' blood pres-

sure, based on systolic blood pressure and diastolic 

blood pressure, is illustrated in Figs. 1 and 2, 

respectively [53-55]. Fig. 3 shows the blood flow in 

the heart for two blood pr3essure measurements 

[56,57]. 

 
Fig. 1. Classification of systolic pressure 

 
Fig. 2. Classification of diastolic pressure 

Many modifiable and non-modifiable risk 

factors are associated with high blood pressure 

[58,59]. For this reason, various studies have been 

conducted in different fields for blood pressure such 

as blood pressure measuring [60,61], blood pressure 

estimation [62,63], record blood pressure at home 

[64], evaluation of the blood pressure device [65], 

prediction of blood pressure without cuff [66], 

predicting individual responses to antihypertensive 

treatments [67] and blood pressure control [68]. 

Table (1) presents a compilation of review 

studies within the realm of blood pressure. 

Machine learning algorithms have also been 

used in the improvement and diagnosis of other 

diseases, and various studies have been conducted in 

this field, such as improving cancer diagnosis and 

prevention mechanisms [69], diagnosis and classifi-

cation of breast cancer [70], diagnosis of chronic 

kidney disease [71,72], early diagnosis of Parki-

nson's disease and prevention [73], diagnosis and 

treatment of neurological diseases [74]. 

Table (2) lists a number of review articles in 

other fields of application of machine learning 

algorithms to show the importance of the use of 

these algorithms. 

High blood pressure is a chronic disease and is 

caused by various causes. Hence, as a consequence 

of unregulated blood pressure, there is an elevated 

likelihood of acquiring health complications that 

impact various organs within the body.  

Machine learning is one of the important 

branches of artificial intelligence that has been the 

focus of researchers in various fields in recent years. 

There are different methods of machine learning 

algorithms, which are used to identify and predict 

blood pressure. Three categories of machine 

learning algorithms include unsupervised learning, 

supervised learning, and reinforcement learning. In 

this paper, various methods of supervised learning 

have been studied in blood pressure classification. 

More than 150 researches have been reviewed. In 

the studies conducted, various criteria have been 

examined, and the advantages of each method 

compared to other methods have been pointed out. 
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Table.1. 
A summary of a number of review studies in the field of blood pressure 

Ref. Subject Contributions 

[75] 

Lowering blood 

pressure with 

interval training 

An evaluation has been carried out to scrutinize the influence of high-intensity interval training on 

blood pressure in older individuals. The effectiveness of high-intensity interval training has been 

juxtaposed with that of continuous moderate-intensity exercise. While both forms of physical activity 

contribute to the reduction of blood pressure, high-intensity exercise demonstrates greater efficacy in 

lowering blood pressure among older individuals. 

[76] 

uric acid levels as 

potential indicators 

for adverse maternal 

outcomes 

A comprehensive assessment was undertaken to evaluate the reliability of uric acid as a predictor of 

adverse outcomes for both mothers and babies in pregnant women with hypertension. The results 

suggest that the measurement of uric acid does not offer substantial evidence to substantiate its utility 

in forecasting adverse maternal and neonatal outcomes. 

[77] 
Blood pressure 

measurement 

A literature review on home blood pressure measurement has been conducted, leading to the 

formulation of recommendations. In the case of systolic blood pressure, the variance between office 

blood pressure measurement and home blood pressure measurement is observed to escalate with age 

and office blood pressure elevation. Notably, a home blood pressure monitor demonstrates a high 

level of accuracy in detecting normal blood pressure. 

[78] 
Hypertension 

machine learning 

The utilization of machine learning in hypertension research is reviewed, along with an assessment 

of the quality of reporting, and the identification of potential barriers to machine learning to change 

hypertension care. Conclusions indicate that recent machine learning research on blood pressure is 

limited to exploratory research, and has significant shortcomings in reporting quality, model validity, 

and algorithmic bias. 

[79] 

Using biosensors to 

estimate blood 

pressure 

The diverse advantages have led to the proliferation of physiological sensors paired with artificial 

intelligence in various areas of the healthcare industry. An analysis and comparison of advanced 

methods for machine learning-based blood pressure estimation using photo-plethysmography 

biological signals is presented. Machine learning is divided into two groups: shallow learning and 

deep learning based on a survey of research work. 

[80] 

Non-invasive cuff-

less blood pressure 

measurement 

Signal processing techniques including machine learning and artificial intelligence have improved 

photo-plethysmography-based continuous and cuff-less blood pressure monitoring methods. 

A review of non-invasive cuff-less blood pressure estimation using the photo-plethysmography 

approach is presented. 

 

Table.2. 
Application of machine learning algorithms in the improvement and diagnosis of diseases other than high blood pressure 

Ref. Subject Contributions 

[81] Heart disease 

Proper heart function is essential for maintaining good health, and has a significant impact on other 

organs in the body. The heart circulates blood throughout the body. The prediction and diagnosis of 

heart disease is recently being done by machine learning algorithms, which help in early diagnosis 

and treatment by analyzing clinical data. 

[82] Sleep disorders 

Sleep disorders play an important role in human health and have a significant impact on improving 

human quality of life. Deep learning algorithms for sleep disorder classification are compared. An 

optimal method for sleep disorder classification is proposed, and the model is evaluated using public 

sleep health and lifestyle data. 

[83] Alzheimer's disease 
Alzheimer's disease worsens over time, leading to cognitive decline and memory loss. A review of 

machine learning algorithms for implementing early Alzheimer's classification is presented. 

[84] Cancer detection 

Personalized and data-driven care in cancer treatment remains a challenge to improve one of the 

leading causes of death worldwide. The use of artificial intelligence for prediction and automation of 

many cancers has expanded. The use of artificial intelligence and machine learning algorithms in 

cancer prediction is reviewed, along with current applications, limitations, and future prospects. 

[85] Neurological disease 

Prediction of neurological disorders using machine learning models is reviewed, and a comparison 

between biomarkers used in the field of machine learning and non-machine learning-based biomarkers 

is presented. The reviews show that deep learning techniques, especially convolutional neural 

networks, are useful for disease prediction. 

[86] Kidney disease 

Chronic kidney disease is a progressive disease that is a major cause of mortality and morbidity. 

Nuclear medicine imaging offers noninvasive assessment of renal function, but its clinical use is 

hampered by complexity and interpretative variability. An overview of the applications of machine 

learning in the diagnosis and monitoring of chronic kidney disease using renal scans is presented.  

[87] Stress  

Supervised learning and soft computing techniques for stress detection are reviewed, and the effects 

of social, behavioral, and biological stressors are outlined. Factors such as real-time data collection 

and multidimensional data along with data privacy pose challenges in designing accurate AI-based 

stress detection systems. 
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(a) Movement of blood flow in systolic blood pressure 

 
(b) Movement of blood flow in diastolic blood pressure 

Fig. 3. Movement of blood flow in two values of blood pressure 

Table.3. 
Parameters used for statistical analysis of classification learning 

algorithms 

Parameters Symbol Description 

True 

positives 
TP 

The count of test samples 

accurately classified within 
the positive class 

True 
negative 

TN 

The count of test samples 

accurately categorized 
within the negative class 

False 

positive 
FP 

The number of false 

positives among the test 

samples belonging to the 
negative class 

False 
negative 

FN 

The count of test samples 

that pertain to the positive 
class but are incorrectly 

labelled as negative 

2. Performance Evaluation Criteria of Models 

Generally, diverse evaluation metrics can be 

employed to gauge the effectiveness of a learning 

model [88,89]. Sensitivity and specificity measure 

the proportion of positive and negative labels that 

are correctly identified, respectively [90-93]. Accur-

acy shows the ratio of predictions made by the 

model. The positive predictive value (PPV) and 

negative predictive value (NPV) signify the 

probability that positive results from a screening test 

accurately correspond to true positives, and negative 

results from a screening test are accurate representa-

tions of true negatives, respectively [94,95]. 

Evaluation criteria for machine learning 

classification algorithms are [96-98]: 

𝐴𝐶 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                        (1) 

𝑆𝐸 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                    (2) 

𝑆𝑃 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃+𝐹𝑁
                         (3) 

𝑅𝐶 = 𝑅𝑒 𝑐 𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑁+𝐹𝑃
                     (4) 

𝑃𝑃𝑉 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (5) 

𝑁𝑃𝑃 = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
           (6) 

𝐹𝑃𝑅 = 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                            (7) 

In the above relationships, TP, TN, FP and FN 

parameters are defined according to Table (3) 

[99,100]. The false positive rate represents the 

frequency of negative samples that are incorrectly 

classified as positive, highlighting the specificity of 

the model. The F-score is defined as follows [101]: 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑃𝑉×𝑅𝐶

𝑃𝑃𝑉+𝑅𝐶
=

2×𝑇𝑃

2×𝑇𝑃+𝐹𝑁+𝐹𝑃
             (8)                     

The highest score for F is 1, which indicates 

perfect precision and recall. If XP and X represent 

the predicted data and the actual data, respectively, 

the mean absolute error (MAE), mean square error 

(MSE) and root mean square error (RMSE) are 

defined as follows, where n is the number of samples 

or recordings: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑋𝑃 − 𝑋|𝑛                                  (9) 

𝑀𝑆𝐸 =
1

𝑛
∑|𝑋𝑝 − 𝑋|

2
                                          (10) 

𝑅𝑀𝑆𝐸 = √∑|𝑋𝑝−𝑋|
2

𝑛
                                          (11) 

The standard deviation of the prediction error, 

or residuals, is a measure of the dispersion of the 

residuals, so the smaller the dispersion, the better the 

model will be [102,103]. The optimum value is 0 for 

MSE, RMSE and MAE. 

In general, machine learning algorithms are 

compared based on their suitability for a particular 

study and criteria. Key aspects of the comparison 

between learning algorithms are shown in Fig. 4. 

3. Machine Learning Algorithms for Blood 

Pressure 

Artificial intelligence and machine learning are 

closely related but distinct concepts. Machine 

learning, situated within the broader scope of 

artificial intelligence, is a practical technology 

designed to develop computer programs capable of 

accessing and learning from data. The fundamental 

goal is to enable these programs to make predictions 

or judgments without relying on explicit 

programming [104]. Machine learning algorithms 

leverage sample or training data to construct 

mathematical models, facilitating autonomous 

decision-making [105]. Machine learning algorit-

hms analyze the characteristics of input signals, 

thereby creating metrics for studies such as pred-

iction, classification, and clustering. 
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In Fig. 5, various categories of machine 

learning are depicted. This section specifically 

explores the application of diverse machine learning 

methods in the classification of blood pressure 

[106]. 

 
Fig. 4. Types of machine learning 

 

A) Decision Tree Learning 

Decision tree learning is a versatile learning 

method that operates without relying on predefined 

assumptions about the underlying data distribution. 

This methodology is applied to tackle a range of 

problems, with classification being one of its 

common applications. Decision trees are composed 

of internal nodes, branches, and leaf nodes. Internal 

nodes are responsible for decision-making, while the 

results of algorithms are represented by the leaf 

nodes. This approach finds utility in both 

classification and regression learning models. In 

classification models, leaf nodes exclusively 

consider a finite set of values, whereas in regression 

models, they have the capability to encompass 

continuous values [107,108]. 

Decision trees are divided into two groups 

based on the type of output variable: categorical 

variable decision tree and continuous variable 

decision tree. The advantages of this algorithm 

include modeling problems with multiple outputs 

and requiring less data for preprocessing. 

Disadvantages include not being suitable for big 

data, the effect of noise in the data, not handling high 

complexity, and the possibility of disproportionately 

valuing features [109,110]. According to the 

algorithm specifications, a sample decision tree is 

shown in Fig. 6. 

A calibration-free method for blood pressure 

estimation by training blood pressure and photo-

plethysmography data signals on a machine learning 

regression model is presented in [111]. The 

outcomes indicate that the standard deviation of 

error for systolic pressure is 5.3 mmHg, and for 

diastolic pressure, it is 6.4 mmHg. Additionally, the 

mean absolute error is approximately 4.2 mmHg for 

systolic pressure and 4.5 mmHg for diastolic 

pressure. 

In [112], a large number of samples have been 

conducted, and the application of decision trees to 

investigate predictors related to hypertension is 

presented, which is considered a representative 

sample of the Iranian population. The results show 

that the prevalence of hypertension in the sampled 

population is about 32%. 

B) Support Vector Machine 

Support vector machine (SVM) is a supervised 

machine learning algorithm that identifies data 

points by mapping the data into a feature space with 

a high number of dimensions. The algorithm creates 

a hyperplane (or a line), which separates the data 

into different classes. In this algorithm, the basis of 

the classifier's work is the linear classification of the 

data, and in the linear division of the data, a 

hyperplane is usually chosen, which will have a 

higher confidence margin. SVMs are divided into 

two types: linear (simple) and non-linear (kernel). 

This algorithm is a linear model for classification 

and regression problems. In SVM classifiers, a 

subset of training points is used when making 

decisions, and therefore requires less memory [113-

119]. The advantages of support vector machines 

include nonlinearity, high-dimensional perform-

ance, resilience to outliers, and memory efficiency. 

The disadvantages of support vector machines 

include slow training, difficulty in parameter tuning, 

and sensitivity to noise. Fig. 7 shows a sample 

operational flowchart for the support vector machine 

algorithm, which outlines how the algorithm works, 

including training, classification, regression, and 

prediction. 

Fig. 8 shows the common steps in developing 

a machine learning model such as Support vector 

machine to solve a classification or regression 

problem [120-123]. 

 
Fig. 5. An example decision tree 
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Fig. 6. Operation flow chart for the support vector machine 

algorithm 

To create predictive models of blood pressure 

disorders, three types of risk factors and SVM were 

used in [124], which were applied to pregnant 

women in different weeks. The outcomes suggest 

that with the progression of pregnancy, the model's 

average accuracy has consistently improved, 

eventually surpassing 92% by the end of the 

pregnancy period. 

Single finger photo-plethysmograph (PPG) 

signals and support vector regression (SVR) method 

have been used to predict blood pressure in [125]. 

The results show that the SVR model can accurately 

and consistently predict blood pressure for both 

training data and new data. 

Machine learning methods are used in the early 

assessment of stroke risk and also for the early 

prevention of identifying patients at risk. Early 

screening of stroke risk in patients with hypertension 

using a support vector machine as the base model 

has been investigated in [126], where a two-stage 

adaptive particle swarm optimization algorithm has 

been used to optimize parameters to increase the 

classification accuracy and computational efficiency 

of the model. 

A strategy for diagnosing high blood pressure 

using bioelectrical signal parameters and a swarm-

based support vector machine algorithm is presented 

in [127]. The results show that in the diagnosis of 

hypertension, swarm-based SVM has a better 

performance than various machine learning 

algorithms. Also, swarm-based SVM using 

electrocardiogram (ECG) and photoplethysmogram 

(PPG) shows a good performance for the diagnosis 

of hypertension, and its F1 score is 96.49%. 

However, the diagnosis of hypertension using only 

PPG has shown a low performance. 

C) Bidirectional Long Short-Term Memory 

Bidirectional long short-term (BiLSTM) 

memory network is a type of recurrent neural 

network that addresses the limitations of traditional 

recurrent neural networks. This architecture is used 

in tasks that require prediction based on past and 

future states [128]. 

Bidirectional processing allows the network to 

consider both the preceding and following context 

when making predictions. For scenarios where only 

past information is needed, long short-term memory 

(LSTM) is ideal, whereas bidirectional long short-

term memory shines in applications where 

understanding the full context of the sequence is 

required. The choice between these two approaches 

depends on the specific requirements of the task at 

hand [129]. The flowchart showing bidirectional 

long short-term memory and flowchart is shown in 

Fig. 9. In [130], the authors detail a blood pressure 

estimation model based on a two-way short-term 

memory network. Following the generalization 

process using the leave-one-subject-out approach, 

the model undergoes fine-tuning. The results 

indicate a mean absolute error of 2.05 mm Hg for 

the diastolic phase and 2.56 mm Hg for the systolic 

phase of blood pressure.  

A method for blood pressure classification 

using a two-way short-term memory network is 

proposed in [131], where time-frequency analysis is 

used based on photo-plethysmography signals. The 

classification performance is improved, as well as 

the training time is reduced. Based on the outcomes 

of the suggested approach, the blood pressure 

classification's accuracy, sensitivity, and specificity 

are, respectively, 97.33, 100, and 94.87%. 

 
Fig. 7. Typical steps in developing a support vector machine to 

solve a classification or regression problem 

 

 
Fig. 8. Flowchart of bidirectional long short-term memory 

operation 
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An examination of characteristic extraction 

strategies for blood pressure estimation employing 

photo plethysmography signals is provided in [132]. 

Feature extraction methodologies can be classified 

into three subgroups: time-based features, statistics-

based features, and frequency domain-based 

features. The analysis of these approaches involves 

the utilization of various machine learning methods 

to assess their performance from diverse 

perspectives. Results from experiments conducted 

on two datasets suggest that employing time-based 

group-based feature sets is a more reliable approach 

compared to other strategies for blood pressure 

estimation. 

D) K-Nearest Neighbour 

The k-nearest neighbour (KNN) algorithm is a 

nonparametric, supervised learning classifier that 

utilizes proximity to categorize or predict the 

grouping of a given data point. The KNN algorithm 

is a pattern recognition method that can be used for 

classification and for regression prediction 

problems. In KNN algorithm, points with similar 

inputs have similar outputs. A typical k-nearest 

neighbour algorithm flowchart involves four steps: 

input, distance calculation, nearest neighbor 

selection, and classification/prediction [133-135]. 

Easy implementation, simple interpretation of 

output results, very high accuracy, and versatility are 

some of the advantages of the k-nearest neighbor 

algorithm. Also, the need for a lot of memory, a long 

average calculation time, sensitivity to data scale, 

and limitations in choosing the value of k are some 

of the disadvantages of this algorithm [136,137]. 

Therefore, the flowchart in Fig. 10  can be 

considered a working example for the k-nearest 

neighbor algorithm. 

A deep learning system is introduced in [138] 

for the purpose of classifying and predicting 

hypertension based on blood pressure-related 

parameters. The k-nearest neighbour algorithm is 

employed to identify the k samples closest to the 

selected sample in the feature space. Empirical 

evidence shows that deep neural networks 

outperform decision trees. Unlike conventional 

machine learning algorithms such as decision trees, 

deep neural networks exhibit optimal performance 

in scenarios where energy usage is not subject to 

regulation. 

E) Random Forest 

Random forest is a learning-based algorithm 

that builds upon the decision tree model. In this 

algorithm, the output of several decision trees is 

combined to reach a single result. This algorithm is 

an ensemble learning method, and can be used for 

classification and regression. The advantages of this 

method include its ease of use and flexibility, 

because it solves classification and regression 

problems [139-141]. 

A decision tree is a simple and intuitive model, 

and it makes predictions by dividing data into 

smaller subsets based on different features. 

However, a random forest is an ensemble learning 

method, which uses a combination of multiple 

decision trees to improve the accuracy and stability 

of the model [142,143]. 

Fig. 11 shows four key features of random 

forests. The two methods, random forest and 

decision tree, are compared based on different 

parameters in Table (4). As is clear, the random 

forest method is used in important cases and data 

dispersion. 

Table.4. 
Comparison between decision tree and random forest 

Method 

Property 
Decision Tree 

Random 

Forest 

Structure (Nature) 
Single decision 
tree 

Ensemble of 

multiple 

decision trees 

Precision Less More 

Stability Less More 

Complexity Less More 

Resistance to 

overfitting 
Less More 

Interpretability More Less 

Overfitting More Less 

Training Time Less More 

Predictive Time Faster Longer 

Performance Well Well 

Handling Outliers 
More 

susceptible 
More robust 

 

The study in [144] explores the correlations 

between blood pressure and lifestyle factors and 

provides personalized and comprehensive 

suggestions for improving blood pressure levels. 

Data is autonomously gathered in the proposed 

approach. A random forest model is proposed, 

utilizing Shapley value-based feature selection, to 

create personalized blood pressure models. This 

model aims to identify the most influential lifestyle 

factors and offer comprehensive recommendations 

based on these aspects. 

The study cited in [145] utilized data from 

Iran's cross-sectional technique to monitor risk 

factors. The distribution of patients across different 

stages was determined, and a random forest model 

was employed to identify specific attributes 

associated with the progression of each stage. 

Subsequently, the model underwent optimization, 

considering six crucial factors at each stage to 

demonstrate population-based marginal effects. The 

random forest model detected characteristics and 

provided insights into improving efficient inclusion. 

The findings suggest that individuals who are 
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younger, male, have lower wealth, and are single are 

less likely to receive care at all levels. 

F) Gaussian Process Regression 

Gaussian process regression (GPR) is used in 

the prediction of blood pressure, especially 

hypertension, by analyzing multiple data points. 

This method is used for continuous estimation 

without the need for a blood pressure cuff. Its 

advantages include noise immunity, quantifying 

uncertainty and the ability to model uncertainty in 

blood pressure measurements. 

 
Fig. 9. Flowchart of the k-nearest neighbour algorithm 

 
Fig. 10. Main features of random forest in machine learning 

Gaussian functions are an example of expone-

ntial functions and are used to describe many 

phenomena [146]. Gaussian functions can be 

considered univariate or multivariate. Gaussian 

process regression (GPR) is a method used for 

regression and probabilistic modeling. It is well 

suited for handling complex and nonlinear 

relationships, and provides estimates of uncertainty 

for predictions made. Gaussian mixture regression 

combines the strengths of GPR to handle complex 

datasets with a mixture likelihood approach. A 

flowchart depicting this process typically involves 

several steps of data preprocessing, training the GPR 

model with kernel selection and hyper-parameter 

optimization, and prediction and evaluation with 

mixture likelihood [147-149]. 

A hybrid prediction method combining 

Gaussian process regression and a feature extraction 

step is presented in [150], which is applied to blood 

pressure estimation from cuff oscillometric 

waveforms. Seven performance metrics such as 

mean absolute error, agreement index, and mean 

absolute percentage error are used to evaluate the 

proposed method in terms of the performance of 

estimating systolic blood pressure and diastolic 

blood pressure values from cuff oscillometric 

waveforms. 

A method for improving the reliability of blood 

pressure estimates and confidence intervals is 

presented in [151], in which a combined feature 

selection method and Gaussian process-based 

decision making are used. To accurately estimate 

blood pressure and confidence intervals, F-test and 

robust neighbor component analysis are used for 

feature selection methods. 

G) Artificial Neural Network 

Artificial neural networks (ANNs) are used to 

classify blood pressure and hypertension. By 

analyzing health-related measures, these models can 

classify patients into different stages of blood 

pressure, as well as predict the likelihood of high 

blood pressure. The benefits of using artificial 

neural networks include improved accuracy, early 

detection, and personalized care. Applications of 

artificial neural networks in blood pressure 

classification include high blood pressure diagnosis, 

blood pressure monitoring, and personalized 

treatment. 

A comparison between the two methods, 

artificial neural network and SVM, is given in Table 

(5) for a number of parameters. The ANN method is 

similar to the SVM method in blood pressure 

classification, but they differ in performance and 

approach. ANNs can capture complex nonlinear 

relationships, which are suitable for more refined 

classifications as well as high accuracy.  
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Table.5. 
Comparison between support vector machines and artificial 

neural networks 
Method 

Property 

Support 

Vector 

Machines 

Artificial Neural 

Networks 

Complexity Simpler More complex 
Interpretability More Less 

Training Speed Fast Slow 

Accuracy High Very high 
Computational Cost Low High 

Comparing ANN with GPR, one can point out 

the handling of complex nonlinear relationships in 

ANN which may require larger data sets. It is worth 

noting that both techniques can be used for feature 

selection. 

In blood pressure classification, KNN and 

ANN learning algorithms are used to classify data 

points. The ANN technique is a more complex 

algorithm than KNN, which uses interconnected 

nodes to learn complex patterns from the data [152-

161]. A continuous convolutional neural network for 

blood pressure level classification is presented in 

[162], in which features extracted from PPG and 

ECG signals are integrated. Five-way cross-

validation is used in the training process to select the 

best model with the highest classification 

performance. The results show that the proposed 

method has achieved the highest test accuracy of 

94.56-95.15% with a 95% confidence interval in 

blood pressure level classification. 

A neural network classification model is 

presented to estimate the association between some 

parameters such as age and gender with diabetes in 

patients with hypertension in [163]. An unbalanced 

dataset consisting of non-hypertensive patients and 

hypertensive patients was used. The results of the 

study show that the sensitivity is 40%, specificity is 

87%, accuracy is 57.8% and area under the curve 

(AUC) is measured as 0.77. 

4. Criteria Difference in Algorithms Types 

Different machine learning algorithms will be 

evaluated by different metrics based on the type of 

learning task, such as classification, regression, and 

clustering, as well as the specific goals of the model. 

Typically, the metrics used are precision, accuracy, 

recall, and F1 score for classification. The metrics 

used are mean absolute error, mean square error for 

regression, and the metrics used are silhouette score 

and Davis-Bouldin index for clustering. Table (6) 

summarizes the evaluation of different learning 

algorithms. A number of specific considerations for 

the various algorithms that are most commonly used 

are given in Table (7). 

5. Conclusion 

High blood pressure stands as one of the 

prevalent health conditions, often lacking specific 

symptoms in many individuals, leading to potential 

confusion with other ailments. A considerable 

number of individuals with high blood pressure 

remain unaware of their condition. Machine 

learning, a subset of artificial intelligence reliant on 

pattern recognition, emerges as a powerful tool in 

addressing the challenges associated with high 

blood pressure.

Table.6. 
Evaluation of different learning algorithms 

Types of machine 

learning 
Difference in criteria 

Supervised Learning 

Classification 

Accuracy 
Accuracy in general predictions, and potential for misleading in 

unbalanced data 

Precision Uncertainty of predicted samples as positive 

Recall Uncertainty of predicted samples from all true positive samples 

F1-score 
Usefulness of harmonic mean precision and recall based on 

importance 

AUC-ROC Measurement of class distinction 

Regression 

Mean 

Absolute 
Error 

Mean absolute difference between predicted and actual values 

Mean 

Squared Error 
Mean squared difference and penalizing larger errors 

Root Mean 
Squared Error 

Root Mean Squared Error of the same units as the target variable 

R-squared 
The proportion of variance in the dependent variable determined by 

the model 

Unsupervised Learning 
(Clustering) 

Inertia Measures the compactness of clusters 

Silhouette 

Coefficient 

Measures the extent to which each data point is in its assigned cluster compared to 

other clusters 

Davies-Bouldin 
Index 

Measures the average similarity ratio of each cluster to its most similar cluster 

Reinforcement Learning 

Reward Function Numerical points received by an agent for performing certain actions 

Episode Length Number of steps for an agent to perform a task 

Training Time Time for an agent to learn the optimal policy 
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Table.7. 
Algorithm-Specific Considerations 

Algorithm Name Algorithm Considerations 

Decision Trees 
Evaluation using classification and 

regression metrics, Prone to overfitting 

Random Forests 
Evaluation using similar metrics to 

decision trees 

Neural Networks 

Accuracy, Precision, Recall, F1-score 

(for classification), MSE, RMSE (for 

regression) 

Support Vector 
Machines 

Area Under curve-Receiver Operating 

Characteristic, Accuracy, Precision, 

Recall, F1-score 

Clustering 

Algorithms 

Inertia, Silhouette Score, Davies-

Bouldin index 

 

The use of machine learning algorithms in the 

diagnosis and management of various diseases is 

increasing. The use of machine learning algorithms 

to analyze blood pressure data to predict high blood 

pressure, classify blood pressure categories, and 

identify potential risks is expanding. Factors such as 

specific data sets and the purpose of the research 

have an impact on the selection of the algorithm. 

Research studies consistently demonstrate the super-

ior performance of deep learning models compared 

to traditional machine learning methods.  

To choose the best algorithm for prediction, 

factors such as the nature of the problem, the type of 

data, and the unique requirements should be 

considered. Usually, SVM and random forest 

algorithms are better for prediction. Also, for 

processing long data, random forest and decision 

tree algorithms are faster. 

SVMs are powerful classifiers, but GPR has a 

more flexible model, which can provide both 

prediction and uncertainty estimation. 

Learning algorithms can improve early 

diagnosis, personalized treatment and even predict 

possible complications in some cases. The 

utilization of advanced technologies, such as deep 

learning, holds promise in enhancing our 

understanding, diagnosis, and management of high 

blood pressure, thereby contributing to more 

effective healthcare interventions. For algorithms, 

general considerations of time complexity, space 

complexity, hardware usage, and interpretability 

must be taken into account. Table (8) summarizes 

the key differences in a number of machine learning 

algorithms to compare their performance.

Table.8. 
Key differences in applied algorithms 

Alghorithm 

 

Feature 

Random Forest 
Bidirectional 

LSTM 

Gaussian 

Process 

Regression 

(GPR) 

Support Vector 

Machine 

(SVM) 

Decision Tree 

Learning 

K-Nearest 

Neighbors 

(KNN) 

Model type 
A collection of 

decision trees 

Recurrent 

neural network 
Probabilistic Discriminative  

Single tree-

based 

Non-parametric 
and sample-

based 

Interpretability 

Less 

interpretability 

compared to a 
single decision 

tree 

Challenging 

interpretability 

due to complex 
network 

architecture 

Greater 
interpretability, 

due to 

uncertainty 
estimates and 

probabilistic 

nature 

Low 

interpretability, 
relies on 

finding the 

optimal 
hyperplane 

More 
interpretability 

due to tree 

structure 

High 

interpretability, 

especially for 
smaller data 

sets 

Accuracy 

Achieving high 

accuracy 

(especially with 
balanced 

datasets) 

High in 
complex 

datasets and 

time series data 

Resulting from 

the Bayesian 

approach to 
modeling 

training data 

Varies based on 
kernel used and 

data 

characteristics 

Low (especially 

with complex 
datasets) 

Low (especially 

with noisy data 

or high-
dimensional 

data) 

Complexity 

Complicated 

due to 

numerous trees 

Complex due to 
the need for 

more 

computational 

resources 

Complex and 

computationall

y intensive 

Simple and 

easy to 

interpret 

Simple and 
understandable 

Simple 

implementation 

and training 

Classification 

Approach 

Using decision 

trees for 
prediction 

Training a deep 
neural network 

to classify 

sequence data 

Assignment 

based on 
Gaussian 

distribution and 

probability 
estimation 

Finding the 

optimal 
hyperpage 

Tree-like 

structure based 

on feature-
based decision 

rules 

Assignment 
based on 

nearest 

neighbors 
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