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Abstract

Blood pressure is the force and pressure that the blood exerts on the walls of the vessels when it flows through the vessels, and
it is not a problem on its own. One of the important diseases is high blood pressure, which is caused by various factors. Many
patients with high blood pressure (or hypertension) do not control their disease. As a person ages, blood pressure naturally
increases. Blood pressure is proportional to dietary and behavioral habits, excitement, and stress, and even changes during the
hours of the day and night. Today, the use of machine learning algorithms is widely increasing to classify patients with high
blood pressure. This paper conducts a succinct investigation into the application of machine learning algorithms for the
classification of individuals with high blood pressure, drawing on a comprehensive analysis of existing research in the field.
The machine learning algorithms considered are categorized into three distinct groups: unsupervised learning, supervised
learning, and reinforcement learning. While the majority of studies have traditionally concentrated on the analysis of at least
one performance criterion, a limited number have ventured into the exploration of multiple criteria. Various patient data are
analyzed by machine learning algorithms to predict and classify the likelihood and severity of high blood pressure. This study
can help the application of machine learning algorithms to improve medical services for patients with high blood pressure, and

to provide a model for effective health management.
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1. Introduction

In recent years, artificial intelligence has
become a part of many technologies used by
humans. Artificial intelligence is a broad field of
building machines that have the ability to mimic
human intelligence, but machine learning is a subset
of artificial intelligence that focuses on enabling
machines to learn from data without explicit
programming. Intelligent methods, characterized by
their adaptive and data-driven nature, have become
ubiquitous in numerous domains, including but not
limited to engineering, medicine, management, and
economic. The pervasive adoption of these smart
methodologies underscores their transformative
impact on various facets of contemporary society. A
comprehensive body of research has been dedicated
to harnessing the potential of intelligent methods for

system enhancement and quality improvement [1-
19].

This evolving field has witnessed a multitude
of studies exploring novel applications and metho-
dologies, contributing to a deeper understanding of
how intelligent techniques can be effectively
employed to optimize the performance and elevate
the quality standards of diverse systems. This
ongoing research trajectory reflects a collective
effort to unlock the full potential of smart methods
across a spectrum of applications [21-27].

High blood pressure (hypertension) is a silent
disease and causes disturbances in the normal
functioning of the body. The diagnosis of this
disease may take a long time until the symptoms of
high blood pressure appear in humans [28-31]. High
blood pressure can cause tissue damage [32], and in
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the long term it can cause heart diseases [33,34],
kidney failure [35], arteriosclerosis [36] and stroke
[37,38]. Therefore, early detection of high blood
pressure is important and necessary for health and a
better life [39,40]. High blood pressure is common
among people over the age of 45, with a higher
proportion of men than women [41,42]. More than
half of people with high blood pressure are not
aware of their disease, and most patients find out
about their high blood pressure by accident [43,44].

The causes of high blood pressure can be
environmental, genetic and biological, but the exact
cause is not known [45]. High blood pressure is
placed in one of the two groups of primary
hypertension or secondary hypertension, most of the
cases are primary hypertension, and in other words,
there is no specific medical reason for it [46,47].
Blood pressure is established through two key
measures: systolic and diastolic [48]. These
measures correspond to the contraction and
relaxation phases of the heart muscle between beats,
respectively. Systolic blood pressure (SBP)
(maximum blood pressure indicating the pressure of
the arteries during heartbeat and blood pumping)
and diastolic blood pressure (DBP) (minimum blood
pressure indicating the amount of arterial pressure
between heartbeats) [49,50]. It should be noted that
SBP has more prognostic significance than DBP.

In the state of ablution, the customary systolic
blood pressure hovers around 120 millimetres of
mercury, while the typical diastolic blood pressure
is approximately 80 millimetres of mercury.
Consequently, maintaining blood pressure below
120/80 is considered ideal for a healthy condition. It
is worth noting that blood pressure changes are a
complex phenomenon that can fluctuate throughout
the day due to various factors such as activity levels
and emotional behaviors [51,52].

The categorization of individuals' blood pres-
sure, based on systolic blood pressure and diastolic
blood pressure, is illustrated in Figs. 1 and 2,
respectively [53-55]. Fig. 3 shows the blood flow in
the heart for two blood pr3essure measurements
[56,57].
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Many modifiable and non-modifiable risk
factors are associated with high blood pressure
[58,59]. For this reason, various studies have been
conducted in different fields for blood pressure such
as blood pressure measuring [60,61], blood pressure
estimation [62,63], record blood pressure at home
[64], evaluation of the blood pressure device [65],
prediction of blood pressure without cuff [66],
predicting individual responses to antihypertensive
treatments [67] and blood pressure control [68].

Table (1) presents a compilation of review
studies within the realm of blood pressure.

Machine learning algorithms have also been
used in the improvement and diagnosis of other
diseases, and various studies have been conducted in
this field, such as improving cancer diagnosis and
prevention mechanisms [69], diagnosis and classifi-
cation of breast cancer [70], diagnosis of chronic
kidney disease [71,72], early diagnosis of Parki-
nson's disease and prevention [73], diagnosis and
treatment of neurological diseases [74].

Table (2) lists a number of review articles in
other fields of application of machine learning
algorithms to show the importance of the use of
these algorithms.

High blood pressure is a chronic disease and is
caused by various causes. Hence, as a consequence
of unregulated blood pressure, there is an elevated
likelihood of acquiring health complications that
impact various organs within the body.

Machine learning is one of the important
branches of artificial intelligence that has been the
focus of researchers in various fields in recent years.
There are different methods of machine learning
algorithms, which are used to identify and predict
blood pressure. Three categories of machine
learning algorithms include unsupervised learning,
supervised learning, and reinforcement learning. In
this paper, various methods of supervised learning
have been studied in blood pressure classification.
More than 150 researches have been reviewed. In
the studies conducted, various criteria have been
examined, and the advantages of each method
compared to other methods have been pointed out.
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Table.1.
A summary of a number of review studies in the field of blood pressure
Ref. Subject Contributions
An evaluation has been carried out to scrutinize the influence of high-intensity interval training on
Lowering blood blood pressure in older individuals. The effectiveness of high-intensity interval training has been
[75] pressure with  juxtaposed with that of continuous moderate-intensity exercise. While both forms of physical activity
interval training contribute to the reduction of blood pressure, high-intensity exercise demonstrates greater efficacy in
lowering blood pressure among older individuals.
uric acid levels as A comprehensive assessment was undertaken to evaluate the reliability of uric acid as a predictor of
[76] potential indicators adverse outcomes for both mothers and babies in pregnant women with hypertension. The results
for adverse maternal  suggest that the measurement of uric acid does not offer substantial evidence to substantiate its utility
outcomes in forecasting adverse maternal and neonatal outcomes.
A literature review on home blood pressure measurement has been conducted, leading to the
formulation of recommendations. In the case of systolic blood pressure, the variance between office
[77] Blood PIESSUI®  hiood pressure measurement and home blood pressure measurement is observed to escalate with age
measurement . . ; -
and office blood pressure elevation. Notably, a home blood pressure monitor demonstrates a high
level of accuracy in detecting normal blood pressure.
The utilization of machine learning in hypertension research is reviewed, along with an assessment
Hypertension of the qua_lity of reporting, gnd t_he identification of potent_ial barrigrs to machine learning to change
[78] machine learning hypertension care. Conclusions indicate that recent machine learning research on blood pressure is
limited to exploratory research, and has significant shortcomings in reporting quality, model validity,
and algorithmic bias.
The diverse advantages have led to the proliferation of physiological sensors paired with artificial
Using biosensors to intelligence in various areas of the healthcare industry. An analysis and comparison of advanced
[79] estimate blood methods for machine learning-based blood pressure estimation using photo-plethysmography
pressure biological signals is presented. Machine learning is divided into two groups: shallow learning and
deep learning based on a survey of research work.
Non-invasive cuff- Signal processing techniques incIuS:Iing machine learning and artificial intglligence have improved
photo-plethysmography-based continuous and cuff-less blood pressure monitoring methods.
[80] less blood pressure h . . L .
measurement A rewew. of non-invasive cuff-less blood pressure estimation using the photo-plethysmography
approach is presented.
Table.2.
Application of machine learning algorithms in the improvement and diagnosis of diseases other than high blood pressure
Ref. Subject Contributions
Proper heart function is essential for maintaining good health, and has a significant impact on other
[81] Heart disease organs _in the pody. The hee}rt circulates blood_ through_out the bpdy. The predictioq and diag_nosis c_>f
heart disease is recently being done by machine learning algorithms, which help in early diagnosis
and treatment by analyzing clinical data.
Sleep disorders play an important role in human health and have a significant impact on improving
. human quality of life. Deep learning algorithms for sleep disorder classification are compared. An
[82] Sleep disorders . . o . - .
optimal method for sleep disorder classification is proposed, and the model is evaluated using public
sleep health and lifestyle data.
- Alzheimer's disease worsens over time, leading to cognitive decline and memory loss. A review of
[83] Alzheimer's disease . . . . . L e
machine learning algorithms for implementing early Alzheimer's classification is presented.
Personalized and data-driven care in cancer treatment remains a challenge to improve one of the
. leading causes of death worldwide. The use of artificial intelligence for prediction and automation of
[84] Cancer detection DR . . . . .
many cancers has expanded. The use of artificial intelligence and machine learning algorithms in
cancer prediction is reviewed, along with current applications, limitations, and future prospects.
Prediction of neurological disorders using machine learning models is reviewed, and a comparison
. . between biomarkers used in the field of machine learning and non-machine learning-based biomarkers
[85] Neurological disease . . . . . -
is presented. The reviews show that deep learning techniques, especially convolutional neural
networks, are useful for disease prediction.
Chronic kidney disease is a progressive disease that is a major cause of mortality and morbidity.
. . Nuclear medicine imaging offers noninvasive assessment of renal function, but its clinical use is
[86] Kidney disease . . . - . - .
hampered by complexity and interpretative variability. An overview of the applications of machine
learning in the diagnosis and monitoring of chronic kidney disease using renal scans is presented.
Supervised learning and soft computing techniques for stress detection are reviewed, and the effects
[87] Stress of social, behavioral, and biological stressors are outlined. Factors such as real-time data collection

and multidimensional data along with data privacy pose challenges in designing accurate Al-based
stress detection systems.
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(b) Movement of blood flow in diastolic blood pressure
Fig. 3. Movement of blood flow in two values of blood pressure

Table.3.
Parameters used for statistical analysis of classification learning
algorithms
Parameters Symbol Description
The count of test samples
True i e
ositives TP accurately classified within
P the positive class
The count of test samples
True -
negative TN accurately categorized
g within the negative class
The number of false
False positives among the test
. FP :
positive samples belonging to the

negative class
The count of test samples
False that pertain to the positive
p FN .
negative class but are incorrectly
labelled as negative

2. Performance Evaluation Criteria of Models

Generally, diverse evaluation metrics can be
employed to gauge the effectiveness of a learning
model [88,89]. Sensitivity and specificity measure
the proportion of positive and negative labels that
are correctly identified, respectively [90-93]. Accur-
acy shows the ratio of predictions made by the
model. The positive predictive value (PPV) and
negative predictive value (NPV) signify the
probability that positive results from a screening test
accurately correspond to true positives, and negative
results from a screening test are accurate representa-
tions of true negatives, respectively [94,95].
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Evaluation criteria for machine learning
classification algorithms are [96-98]:

AC = Accuracy = S i L\ — Q)
TP+TN+FP+FN
SE = Sensitivity = N )
SP = Specificity = e ®3)
RC =Recall = 4)
TN+FP
PPV = Positive predictive value = L. (5)
TP+EP
NPP = Negative predictive value = —— (6)
o TN+FN
FPR = Falsepositiverate = @)
FP+TN

In the above relationships, TP, TN, FP and FN
parameters are defined according to Table (3)
[99,100]. The false positive rate represents the
frequency of negative samples that are incorrectly
classified as positive, highlighting the specificity of

the model. The F-score is defined as follows [101]:
PPVXRC __ 2XTP (8)

PPV+RC  2XTP+FN+FP
The highest score for F is 1, which indicates

perfect precision and recall. If Xp and X represent
the predicted data and the actual data, respectively,
the mean absolute error (MAE), mean square error
(MSE) and root mean square error (RMSE) are
defined as follows, where n is the number of samples
or recordings:

F — Measure = 2 X

MAE = %znp(,, —X| 9)
1 2
MSE = ~¥|X, — X| (10)
2
RMSE = ==X (11)

n

The standard deviation of the prediction error,
or residuals, is a measure of the dispersion of the
residuals, so the smaller the dispersion, the better the
model will be [102,103]. The optimum value is 0 for
MSE, RMSE and MAE.

In general, machine learning algorithms are
compared based on their suitability for a particular
study and criteria. Key aspects of the comparison
between learning algorithms are shown in Fig. 4.

3. Machine Learning Algorithms for Blood
Pressure

Artificial intelligence and machine learning are
closely related but distinct concepts. Machine
learning, situated within the broader scope of
artificial intelligence, is a practical technology
designed to develop computer programs capable of
accessing and learning from data. The fundamental
goal is to enable these programs to make predictions
or judgments without relying on explicit
programming [104]. Machine learning algorithms
leverage sample or training data to construct
mathematical models, facilitating autonomous
decision-making [105]. Machine learning algorit-
hms analyze the characteristics of input signals,
thereby creating metrics for studies such as pred-
iction, classification, and clustering.
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In Fig. 5, various categories of machine
learning are depicted. This section specifically
explores the application of diverse machine learning
methods in the classification of blood pressure
[1086].

7| Classification
Supervised e —
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Fig. 4. Types of machine learning

A) Decision Tree Learning

Decision tree learning is a versatile learning
method that operates without relying on predefined
assumptions about the underlying data distribution.
This methodology is applied to tackle a range of
problems, with classification being one of its
common applications. Decision trees are composed
of internal nodes, branches, and leaf nodes. Internal
nodes are responsible for decision-making, while the
results of algorithms are represented by the leaf
nodes. This approach finds utility in both
classification and regression learning models. In
classification models, leaf nodes exclusively
consider a finite set of values, whereas in regression
models, they have the capability to encompass
continuous values [107,108].

Decision trees are divided into two groups
based on the type of output variable: categorical
variable decision tree and continuous variable
decision tree. The advantages of this algorithm
include modeling problems with multiple outputs
and requiring less data for preprocessing.
Disadvantages include not being suitable for big
data, the effect of noise in the data, not handling high
complexity, and the possibility of disproportionately
valuing features [109,110]. According to the
algorithm specifications, a sample decision tree is
shown in Fig. 6.

A calibration-free method for blood pressure
estimation by training blood pressure and photo-
plethysmography data signals on a machine learning
regression model is presented in [111]. The
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outcomes indicate that the standard deviation of
error for systolic pressure is 5.3 mmHg, and for
diastolic pressure, it is 6.4 mmHg. Additionally, the
mean absolute error is approximately 4.2 mmHg for
systolic pressure and 4.5 mmHg for diastolic
pressure.

In [112], a large number of samples have been
conducted, and the application of decision trees to
investigate predictors related to hypertension is
presented, which is considered a representative
sample of the Iranian population. The results show
that the prevalence of hypertension in the sampled
population is about 32%.

B) Support Vector Machine

Support vector machine (SVM) is a supervised
machine learning algorithm that identifies data
points by mapping the data into a feature space with
a high number of dimensions. The algorithm creates
a hyperplane (or a line), which separates the data
into different classes. In this algorithm, the basis of
the classifier's work is the linear classification of the
data, and in the linear division of the data, a
hyperplane is usually chosen, which will have a
higher confidence margin. SVMs are divided into
two types: linear (simple) and non-linear (kernel).
This algorithm is a linear model for classification
and regression problems. In SVM classifiers, a
subset of training points is used when making
decisions, and therefore requires less memory [113-
119]. The advantages of support vector machines
include nonlinearity, high-dimensional perform-
ance, resilience to outliers, and memory efficiency.
The disadvantages of support vector machines
include slow training, difficulty in parameter tuning,
and sensitivity to noise. Fig. 7 shows a sample
operational flowchart for the support vector machine
algorithm, which outlines how the algorithm works,
including training, classification, regression, and
prediction.

Fig. 8 shows the common steps in developing
a machine learning model such as Support vector
machine to solve a classification or regression
problem [120-123].
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Fig. 5. An example decision tree
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Fig. 6. Operation flow chart for the support vector machine
algorithm

To create predictive models of blood pressure
disorders, three types of risk factors and SVM were
used in [124], which were applied to pregnant
women in different weeks. The outcomes suggest
that with the progression of pregnancy, the model's
average accuracy has consistently improved,
eventually surpassing 92% by the end of the
pregnancy period.

Single finger photo-plethysmograph (PPG)
signals and support vector regression (SVR) method
have been used to predict blood pressure in [125].
The results show that the SVR model can accurately
and consistently predict blood pressure for both
training data and new data.

Machine learning methods are used in the early
assessment of stroke risk and also for the early
prevention of identifying patients at risk. Early
screening of stroke risk in patients with hypertension
using a support vector machine as the base model
has been investigated in [126], where a two-stage
adaptive particle swarm optimization algorithm has
been used to optimize parameters to increase the
classification accuracy and computational efficiency
of the model.

A strategy for diagnosing high blood pressure
using bioelectrical signal parameters and a swarm-
based support vector machine algorithm is presented
in [127]. The results show that in the diagnosis of
hypertension, swarm-based SVM has a better
performance than various machine learning
algorithms.  Also, swarm-based SVM using
electrocardiogram (ECG) and photoplethysmogram
(PPG) shows a good performance for the diagnosis
of hypertension, and its F1 score is 96.49%.
However, the diagnosis of hypertension using only
PPG has shown a low performance.

C) Bidirectional Long Short-Term Memory

Bidirectional long short-term (BIiLSTM)
memory network is a type of recurrent neural
network that addresses the limitations of traditional
recurrent neural networks. This architecture is used
in tasks that require prediction based on past and
future states [128].
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Bidirectional processing allows the network to
consider both the preceding and following context
when making predictions. For scenarios where only
past information is needed, long short-term memory
(LSTM) is ideal, whereas bidirectional long short-
term  memory shines in applications where
understanding the full context of the sequence is
required. The choice between these two approaches
depends on the specific requirements of the task at
hand [129]. The flowchart showing bidirectional
long short-term memory and flowchart is shown in
Fig. 9. In [130], the authors detail a blood pressure
estimation model based on a two-way short-term
memory network. Following the generalization
process using the leave-one-subject-out approach,
the model undergoes fine-tuning. The results
indicate a mean absolute error of 2.05 mm Hg for
the diastolic phase and 2.56 mm Hg for the systolic
phase of blood pressure.

A method for blood pressure classification
using a two-way short-term memory network is
proposed in [131], where time-frequency analysis is
used based on photo-plethysmography signals. The
classification performance is improved, as well as
the training time is reduced. Based on the outcomes
of the suggested approach, the blood pressure
classification's accuracy, sensitivity, and specificity
are, respectively, 97.33, 100, and 94.87%.

\
/

Hyper-parameter
tuning

s | R SWIN
Best trained model Q{:o;r_g ;

Prediction

Fig. 7. Typical steps in developing a support vector machine to
solve a classification or regression problem
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An examination of characteristic extraction
strategies for blood pressure estimation employing
photo plethysmography signals is provided in [132].
Feature extraction methodologies can be classified
into three subgroups: time-based features, statistics-
based features, and frequency domain-based
features. The analysis of these approaches involves
the utilization of various machine learning methods
to assess their performance from diverse
perspectives. Results from experiments conducted
on two datasets suggest that employing time-based
group-based feature sets is a more reliable approach
compared to other strategies for blood pressure
estimation.

D) K-Nearest Neighbour

The k-nearest neighbour (KNN) algorithm is a
nonparametric, supervised learning classifier that
utilizes proximity to categorize or predict the
grouping of a given data point. The KNN algorithm
is a pattern recognition method that can be used for
classification and for regression prediction
problems. In KNN algorithm, points with similar
inputs have similar outputs. A typical k-nearest
neighbour algorithm flowchart involves four steps:
input, distance calculation, nearest neighbor
selection, and classification/prediction [133-135].

Easy implementation, simple interpretation of
output results, very high accuracy, and versatility are
some of the advantages of the k-nearest neighbor
algorithm. Also, the need for a lot of memory, a long
average calculation time, sensitivity to data scale,
and limitations in choosing the value of k are some
of the disadvantages of this algorithm [136,137].
Therefore, the flowchart in Fig. 10 can be
considered a working example for the k-nearest
neighbor algorithm.

A deep learning system is introduced in [138]
for the purpose of classifying and predicting
hypertension based on blood pressure-related
parameters. The k-nearest neighbour algorithm is
employed to identify the k samples closest to the
selected sample in the feature space. Empirical
evidence shows that deep neural networks
outperform decision trees. Unlike conventional
machine learning algorithms such as decision trees,
deep neural networks exhibit optimal performance
in scenarios where energy usage is not subject to
regulation.

E) Random Forest

Random forest is a learning-based algorithm
that builds upon the decision tree model. In this
algorithm, the output of several decision trees is
combined to reach a single result. This algorithm is
an ensemble learning method, and can be used for
classification and regression. The advantages of this
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method include its ease of use and flexibility,
because it solves classification and regression
problems [139-141].

A decision tree is a simple and intuitive model,
and it makes predictions by dividing data into
smaller subsets based on different features.
However, a random forest is an ensemble learning
method, which uses a combination of multiple
decision trees to improve the accuracy and stability
of the model [142,143].

Fig. 11 shows four key features of random
forests. The two methods, random forest and
decision tree, are compared based on different
parameters in Table (4). As is clear, the random
forest method is used in important cases and data
dispersion.

Table.4.

Comparison between decision tree and random forest
Method - Random
Property Decision Tree Forest

Single decision Ense.mble of
Structure (Nature) tree mul_tl _ple

decision trees

Precision Less More
Stability Less More
Complexity Less More
Resistance to Less More
overfitting
Interpretability More Less
Overfitting More Less
Training Time Less More
Predictive Time Faster Longer
Performance Well Well
Handling Outliers More . More robust

susceptible

The study in [144] explores the correlations
between blood pressure and lifestyle factors and
provides  personalized and  comprehensive
suggestions for improving blood pressure levels.
Data is autonomously gathered in the proposed
approach. A random forest model is proposed,
utilizing Shapley value-based feature selection, to
create personalized blood pressure models. This
model aims to identify the most influential lifestyle
factors and offer comprehensive recommendations
based on these aspects.

The study cited in [145] utilized data from
Iran's cross-sectional technique to monitor risk
factors. The distribution of patients across different
stages was determined, and a random forest model
was employed to identify specific attributes
associated with the progression of each stage.
Subsequently, the model underwent optimization,
considering six crucial factors at each stage to
demonstrate population-based marginal effects. The
random forest model detected characteristics and
provided insights into improving efficient inclusion.
The findings suggest that individuals who are
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younger, male, have lower wealth, and are single are
less likely to receive care at all levels.

F) Gaussian Process Regression

Gaussian process regression (GPR) is used in
the prediction of blood pressure, especially
hypertension, by analyzing multiple data points.
This method is used for continuous estimation
without the need for a blood pressure cuff. Its
advantages include noise immunity, quantifying
uncertainty and the ability to model uncertainty in
blood pressure measurements.
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training data and 30% of the data for testing data)
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Setting the value of kk j

Give the learning system

all the training data points
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smallest distance (neighbors)
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Investigating the
error of test points
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No

Fig. 9. Flowchart of the k-nearest neighbour algorithm
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Fig. 10. Main features of random forest in machine learning
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Gaussian functions are an example of expone-
ntial functions and are used to describe many
phenomena [146]. Gaussian functions can be
considered univariate or multivariate. Gaussian
process regression (GPR) is a method used for
regression and probabilistic modeling. It is well
suited for handling complex and nonlinear
relationships, and provides estimates of uncertainty
for predictions made. Gaussian mixture regression
combines the strengths of GPR to handle complex
datasets with a mixture likelihood approach. A
flowchart depicting this process typically involves
several steps of data preprocessing, training the GPR
model with kernel selection and hyper-parameter
optimization, and prediction and evaluation with
mixture likelihood [147-149].

A hybrid prediction method combining
Gaussian process regression and a feature extraction
step is presented in [150], which is applied to blood
pressure estimation from cuff oscillometric
waveforms. Seven performance metrics such as
mean absolute error, agreement index, and mean
absolute percentage error are used to evaluate the
proposed method in terms of the performance of
estimating systolic blood pressure and diastolic
blood pressure values from cuff oscillometric
waveforms.

A method for improving the reliability of blood
pressure estimates and confidence intervals is
presented in [151], in which a combined feature
selection method and Gaussian process-based
decision making are used. To accurately estimate
blood pressure and confidence intervals, F-test and
robust neighbor component analysis are used for
feature selection methods.

G) Artificial Neural Network

Acrtificial neural networks (ANNSs) are used to
classify blood pressure and hypertension. By
analyzing health-related measures, these models can
classify patients into different stages of blood
pressure, as well as predict the likelihood of high
blood pressure. The benefits of using artificial
neural networks include improved accuracy, early
detection, and personalized care. Applications of
artificial neural networks in blood pressure
classification include high blood pressure diagnosis,
blood pressure monitoring, and personalized
treatment.

A comparison between the two methods,
artificial neural network and SVM, is given in Table
(5) for a number of parameters. The ANN method is
similar to the SVM method in blood pressure
classification, but they differ in performance and
approach. ANNs can capture complex nonlinear
relationships, which are suitable for more refined
classifications as well as high accuracy.



219 International Journal of Smart Electrical Engineering, Vol.14, No.4, Fall 2025

Table.5.
Comparison between support vector machines and artificial
neural networks

Method Support Artificial Neural

Property Vector Networks
Machines

Complexity Simpler More complex

Interpretability More Less

Training Speed Fast Slow

Accuracy High Very high

Computational Cost ~ Low High

Comparing ANN with GPR, one can point out
the handling of complex nonlinear relationships in
ANN which may require larger data sets. It is worth
noting that both techniques can be used for feature
selection.

In blood pressure classification, KNN and
ANN learning algorithms are used to classify data
points. The ANN technique is a more complex
algorithm than KNN, which uses interconnected
nodes to learn complex patterns from the data [152-
161]. A continuous convolutional neural network for
blood pressure level classification is presented in
[162], in which features extracted from PPG and
ECG signals are integrated. Five-way cross-
validation is used in the training process to select the
best model with the highest classification
performance. The results show that the proposed
method has achieved the highest test accuracy of
94.56-95.15% with a 95% confidence interval in
blood pressure level classification.

A neural network classification model is
presented to estimate the association between some
parameters such as age and gender with diabetes in
patients with hypertension in [163]. An unbalanced

ISSN: 2251-9246
EISSN: 2345-6221

dataset consisting of non-hypertensive patients and
hypertensive patients was used. The results of the
study show that the sensitivity is 40%, specificity is
87%, accuracy is 57.8% and area under the curve
(AUC) is measured as 0.77.

4. Criteria Difference in Algorithms Types

Different machine learning algorithms will be
evaluated by different metrics based on the type of
learning task, such as classification, regression, and
clustering, as well as the specific goals of the model.
Typically, the metrics used are precision, accuracy,
recall, and F1 score for classification. The metrics
used are mean absolute error, mean square error for
regression, and the metrics used are silhouette score
and Davis-Bouldin index for clustering. Table (6)
summarizes the evaluation of different learning
algorithms. A number of specific considerations for
the various algorithms that are most commonly used
are given in Table (7).

5. Conclusion

High blood pressure stands as one of the
prevalent health conditions, often lacking specific
symptoms in many individuals, leading to potential
confusion with other ailments. A considerable
number of individuals with high blood pressure
remain unaware of their condition. Machine
learning, a subset of artificial intelligence reliant on
pattern recognition, emerges as a powerful tool in
addressing the challenges associated with high
blood pressure.

Table.6.

Evaluation of different learning algorithms

Types of machine

Difference in criteria

Accuracy in general predictions, and potential for misleading in

unbalanced data
Uncertainty of predicted samples as positive
Uncertainty of predicted samples from all true positive samples
Usefulness of harmonic mean precision and recall based on
importance
Measurement of class distinction

Mean absolute difference between predicted and actual values

Mean squared difference and penalizing larger errors

Root Mean Squared Error of the same units as the target variable

learning
Accuracy
Precision
Classification Recall
F1-score
AUC-ROC
Supervised Learning A'l;/;z?ﬂte
Error
Mean
Regression Squared Error
Root Mean
Squared Error
R-squared
Inertia
Unsupervised Learning g(')lg‘fcf’; ?:etr?t
(Clustering) Davies-Bouldin
Index

Reinforcement Learning

Reward Function
Episode Length
Training Time

the model
Measures the compactness of clusters

The proportion of variance in the dependent variable determined by

Measures the extent to which each data point is in its assigned cluster compared to

other clusters

Measures the average similarity ratio of each cluster to its most similar cluster

Numerical points received by an agent for performing certain actions

Number of steps for an agent to perform a task
Time for an agent to learn the optimal policy
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Table.7.
Algorithm-Specific Considerations

Algorithm Name Algorithm Considerations

Evaluation using classification and
regression metrics, Prone to overfitting
Evaluation using similar metrics to
decision trees
Accuracy, Precision, Recall, F1-score
(for classification), MSE, RMSE (for
regression)

Avrea Under curve-Receiver Operating

Decision Trees

Random Forests

Neural Networks

Support Vector Characteristic, Accuracy, Precision,
Machines
Recall, F1-score
Clustering Inertia, Silhouette Score, Davies-
Algorithms Bouldin index

The use of machine learning algorithms in the
diagnosis and management of various diseases is
increasing. The use of machine learning algorithms
to analyze blood pressure data to predict high blood
pressure, classify blood pressure categories, and
identify potential risks is expanding. Factors such as
specific data sets and the purpose of the research
have an impact on the selection of the algorithm.
Research studies consistently demonstrate the super-
ior performance of deep learning models compared
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To choose the best algorithm for prediction,
factors such as the nature of the problem, the type of
data, and the unique requirements should be
considered. Usually, SVM and random forest
algorithms are better for prediction. Also, for
processing long data, random forest and decision
tree algorithms are faster.

SVMs are powerful classifiers, but GPR has a
more flexible model, which can provide both
prediction and uncertainty estimation.

Learning algorithms can improve early
diagnosis, personalized treatment and even predict
possible complications in some cases. The
utilization of advanced technologies, such as deep
learning, holds promise in enhancing our
understanding, diagnosis, and management of high
blood pressure, thereby contributing to more
effective healthcare interventions. For algorithms,
general considerations of time complexity, space
complexity, hardware usage, and interpretability
must be taken into account. Table (8) summarizes
the key differences in a number of machine learning
algorithms to compare their performance.

to traditional machine learning methods.

Table.8.
Key differences in applied algorithms
. Gaussian
Alghorithm Bidirectional Process Support Vector Decision Tree K-Nearest
Random Forest LSTM Regression Machine Learning Neighbors
Feature (GPR) (SVM) (KNN)
. . Non-parametric
Model type A cqll_ectlon of Recurrent Probabilistic Discriminative Single tree- and sample-
decision trees neural network based based
Greater Low
) Less _Challengl_n_g interpretability, interpretability, More _ H|gh. _
interpretability ~ interpretability due to - . - interpretability,
- - relies on interpretability .
Interpretability comparedtoa  due to complex uncertainty finding the due 1o tree especially for
single decision network estimates and ng smaller data
- o optimal structure
tree architecture probabilistic sets
hyperplane
nature
Achieving high High in Resulting f_rom Varies based on ) Low (es_peually
accuracy the Bayesian Low (especially  with noisy data
. . complex kernel used and - -
Accuracy (especially with datasets and approach to data with complex or high-
balanced - - modeling - datasets) dimensional
time series data . characteristics
datasets) training data data)
Complex due to
Complicated the need for Complex and Simple and . Simple
i : Simple and . .
Complexity due to more computationall easy to implementation
f . A . understandable L
numerous trees  computational y intensive interpret and training
resources
Assignment .
L Tree-like .
. -, Training a deep based on - Assignment
Classification Using decision neural network Gaussian Fmdnp g the structure based based on
trees for . L optimal on feature-
Approach - to classify distribution and . nearest
prediction - hyperpage based decision -
sequence data probability rules neighbors
estimation
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