

The Effect of Nano-Selenium Dioxide on Flowering Performance and Biochemical Traits of Echinacea purpurea L. under Salinity **Stress**

Sara Masoudi¹, Marzieh Ghanbari-Jahromi^{1*}, Marjan Diyanat¹

¹Department of Agricultural Science and Engineering, SR.C., Islamic Azad University, Tehran, Iran

Accepted: 06 August 2025 Received: 24 July 2025

*Corresponding author's email: ghanbari@iau.ac.ir

Echinacea purpurea L., a valuable ornamental and medicinal plant, is widely used in landscape design and therapeutic gardens; however, its growth and physiological performance are adversely affected by salinity stress. This study evaluated the potential of selenium nanoparticles (Se NPs) to mitigate salinity-induced damage in E. purpurea using a factorial experiment arranged in a completely randomized design with three salinity levels (0, 50, and 100 mM NaCl) and three Se NP concentrations (0, 50, and 100 mg/L). Salinity stress significantly reduced morphophysiological traits, including leaf number, lateral branches, flower number, flower head diameter, peduncle length, flower longevity, and aerial fresh weight, as well as photosynthetic pigments (chlorophyll a, b, and carotenoids) and anthocyanin content. However, Se NP application, particularly at 100 mg/L, effectively counteracted these detrimental effects, enhancing vegetative and reproductive growth. Antioxidant enzyme activities (catalase and superoxide dismutase) were highest under severe salinity (100 mM NaCl) combined with 100 mg/L Se NPs, indicating their role in stress amelioration. The findings demonstrate that Se NPs can serve as a promising strategy to improve E. purpurea's resilience to salinity stress, optimizing its ornamental and medicinal value in saline-affected environments.

Keywords: Antioxidants, Floral, Morphometrics, Nano-Selenium, Oxidative.

INTRODUCTION

Echinacea purpurea L., belonging to the Asteraceae family, is one of the most important medicinal-ornamental plants with significant pharmacological properties (Hashempoor et al., 2022). The flowers of this plant exhibit a variety of colors, adding a unique and natural charm to gardens and parks. Due to its high resistance to adverse environmental conditions, such as drought and cold, *Echinacea* is an ideal choice for urban green spaces and regions with diverse climates. By attracting pollinators like bees and butterflies, *Echinacea* not only enhances the visual appeal of the environment but also plays a crucial role in maintaining biodiversity and local ecosystems. The flowers of *Echinacea* have a long lifespan, retaining their beauty for extended periods (Burlou-Nagy et al., 2022). The roots and underground stems of this plant have been widely used to treat trauma and alleviate symptoms of infection and inflammation (Ghutke et al., 2023). Key components of the plant include caffeic acid derivatives, alkamides, flavonoids, essential oils, and polyacetylenes. Among these, caffeic acid derivatives and alkamides have immune-boosting and regulatory effects (Hashempour et al., 2023). Caffeic acid derivatives, alkamides, and polysaccharides exhibit high antioxidant activity, inhibiting lipoprotein oxidation (Dobrange et al., 2019).

Stress arises from abnormal physiological processes caused by one or more environmental factors (Atta et al., 2023). In other words, stress occurs when an organism is exposed to an environmental factor that reduces its visible quality, yield. An increase in soil salinity to 4 dS/m or higher leads to negative effects on the morphological, physiological, and enzymatic characteristics of most plants (Tabrizi-Dooz et al., 2023).

The response of plants to salinity stress is highly complex and depends on salt concentration, ion types, various environmental factors, and the plant's growth stage. On one hand, osmotic stress under saline conditions causes dehydration in plant tissues, often referred to as physiological drought. On the other hand, ionic toxicity arises from the accumulation of specific ions, particularly sodium, which disrupts metabolic reactions in plants. To cope with mild salinity stress, plants increase the concentration of soluble substances to maintain osmotic pressure (Yildiz et al., 2020).

In most soils, selenium levels range from 0.1 to 2 mg/kg, depending on the geographical region (Shahid et al., 2019). In some countries, such as New Zealand, Finland, and parts of China, naturally available selenium in soils is low. Soil selenium content depends on the composition of the parent rock. Regions with soil selenium levels below 0.5 mg/kg are considered seleniumdeficient (Jones et al., 2017).

Studies on the relationship between soil pH and selenium uptake by plants indicate that selenium uptake increases with higher soil pH. At high pH, selenate (highly mobile) is prevalent, while at low pH, selenite and selenide (less mobile) are found. Selenides are insoluble, and elemental selenium oxidizes to selenate in neutral and alkaline soils and to selenite in acidic soils. Selenate is highly soluble and accessible to plants, accumulating in plants grown in highpH soils (El-Ramady et al., 2016).

In recent decades, the use of nanotechnology and nanomaterials has expanded significantly across various fields, including plant science and agriculture (Abbasi et al., 2020a). Nanoparticles (NPs) can be synthesized from synthetic molecules in various sizes and shapes (Zahedi et al., 2020). These properties influence the physical and chemical characteristics of the particles and their uptake by plants and animals. The effects of NPs on crop quality and yield depend heavily on particle properties such as size, shape, stability, physical or chemical composition, concentration, and receptors (Kumar et al., 2018). Due to their unique physicochemical properties, nanoparticles induce different biological responses

compared to bulk materials (Abbasi et al., 2020 a, b). The use of NPs appears to be a novel approach among accepted methods for protecting plants against abiotic stresses and mitigating environmental stressors (Zahedi et al., 2020). Ghasemian et al. (2021) studied the effects of selenium nanoparticles (0, 50, and 100 mg/L) on the growth and physiological characteristics of Melissa officinalis under salinity stress (0, 50, 100, and 150 mM NaCl). Results indicated that selenium nanoparticles enhanced plant growth, with 50 mg/L showing the most significant effect. As salinity increased, plant growth decreased, with the lowest growth observed at 150 mM NaCl. Selenium nanoparticles mitigated the negative effects of stress by reducing lipid peroxidation and increasing antioxidant enzyme activity.

Adeli et al. (2024) demonstrated that 1 mM salicylic acid effectively mitigated salinity stress in Echinacea angustifolia, reversing the negative impacts of 200 mM NaCl on growth and physiological parameters. While 100 mM salinity combined with 1 mM SA maximized secondary metabolite production, optimal growth and essential oil yield were achieved in nonstressed plants receiving the same SA treatment, highlighting its dual role in both stress protection and productivity enhancement under normal conditions. Sabra et al. (2012) investigated the physiological and biochemical responses of three Echinacea species (Echinacea purpurea, Echinacea pallida, and Echinacea angustifolia) under salinity stress (0, 50, 75, and 100 mM NaCl) in hydroponic conditions. Results showed that survival rates ranged from 99% for E. purpurea to 70% for E. angustifolia. In E. angustifolia, stomatal conductance, respiration, and photosynthesis rates decreased at all salinity levels, while in the other two species, significant reductions were observed only at 75 and 100 mM NaCl. Salinity increased sodium and chloride concentrations in roots and shoots, with higher accumulation in E. angustifolia compared to the other species.

Given the medicinal value of *Echinacea purpurea* L. and the growing threat of soil salinity in agricultural systems, there is an urgent need to develop strategies for enhancing its stress tolerance. While selenium nanoparticles have shown promise in mitigating abiotic stresses in other crops, it appears that their effects on physiological and biochemical traits of E. purpurea under salinity stress have not been comprehensively investigated, particularly regarding their role in enhancing stress tolerance and secondary metabolite production. Therefore, this study aimed to (1) Evaluate the impact of salinity stress on vegetative growth, flowering capacity, and key biochemical markers (e.g., antioxidant enzymes, phenolic compounds) in E. purpurea, and (2) Determine whether foliar application of selenium dioxide nanoparticles (SeO₂ NPs) at different concentrations (0, 50, and 100 mg/L) could ameliorate salt-induced damage, providing a potential agronomic solution for saline-affected cultivation areas.

MATERIALS AND METHODS

The present study was conducted as a factorial experiment based on a completely randomized design with three replications and two observations. The aim was to compare the effects of salinity stress with the application of sodium chloride (NaCl) at three levels (0, 50, and 100 mM NaCl) and selenium dioxide nanoparticles (SeO, NPs) at three levels (0, 50, and 100 mg/L SeO₂ NPs) on the morphophysiological and phytochemical characteristics of *Echinacea* purpurea. The experiment was carried out in a greenhouse located in Tehran during the spring and summer of 2024. The greenhouse conditions were maintained at a daytime temperature of 27 ± 2 °C, a night temperature of 24 ± 2 °C, and a relative humidity of 60–70%. Natural sunlight served as the light source, with a 12-hour light and 12-hour dark cycle (natural daylight) and an intensity of 8000 lux (no artificial light source was used). The greenhouse was covered with plastic, and shading was achieved using fabric shade nets on the roof and greenhouse cover.

Seeds of Echinacea purpurea were purchased from Pakan Bazar Company and sown in seedling trays in the greenhouse in February 2024. After seed germination and initial seedling growth, reaching the four-leaf stage (March 2024), the seedlings were transplanted into pots with a 20 cm diameter containing a cocopeat and perlite growing medium (70:30 ratio) and grown in the greenhouse under controlled environmental conditions. The pots were irrigated every four days with water to reach field capacity, and the plants were fertilized weekly using Hoagland's nutrient solution. After 20 days of controlled conditions, the treatments were applied. Before applying salinity stress treatments, the pots were fertilized twice with NPK (3 g/L) at 7-day intervals. Salinity stress was then induced by irrigating each pot with 50 mL of NaCl solution at three levels every 3 days. To prevent salt accumulation, the growing medium was flushed with regular water after every three saline irrigations. Salinity stress was maintained for 42 days. Foliar application of nano-selenium (0, 50, and 100 mg/L) was carried out for 6 weeks. Plant tissue samples were collected in August 2024 for analysis. Morphological traits were measured in the greenhouse, and the plant parts were washed with distilled water and used for laboratory analyses in the Food Industry Laboratory of Islamic Azad University, Noor Branch.

Traits

Leaf count, number of lateral branches, and number of flowers per plant were recorded for each treatment.

Flower head diameter was measured using a caliper.

Pedicel length was measured using a ruler.

Flower longevity was recorded in days.

Fresh shoot weight was measured by cutting one plant per pot at soil level (crown) and weighing it in the laboratory.

Measurement of plant pigments

To compare plant pigments, 0.5 g of fresh plant material was ground in a porcelain mortar using liquid nitrogen. Twenty ml of 80% acetone was added, and the mixture was centrifuged at 6000 rpm for 10 min. The supernatant was transferred to a glass flask, and absorbance was measured at 663 nm for chlorophyll a, 645 nm for chlorophyll b, and 470 nm for carotenoids using a Visible/UV-45 Lambda spectrophotometer. Chlorophyll a, b, and carotenoid concentrations were calculated using the following formulas (Arnon, 1967):

Chlorophyll a =
$$(19.3 \times A_{663} - 0.86 \times A_{645}) \text{ V } / 100 \text{ W}$$

Chlorophyll b = $(19.3 \times A_{645} - 3.6 \times A_{663}) \text{ V } / 100 \text{ W}$
Carotenoids = $100 \text{ (A}_{470}) - 3.27 \text{ (mg chl. a)} - 104 \text{ (mg chl. b)} / 227$

Where:

V = Volume of the filtered solution (supernatant from centrifugation)

A = Absorbance at 663, 645, and 470 nm

W = Fresh weight of the sample in g.

Anthocyanin

0.1 g of fresh petal tissue was ground in a porcelain mortar with 10 mL of acidified methanol (pure methanol and hydrochloric acid at a 99:1 volume ratio). The extract was transferred to a capped test tube and kept in the dark at 25 °C for 24 hours. After centrifugation at 4000 rpm for 10 minutes, the absorbance of the supernatant was measured at 550 nm using a Visible/UV-45 Lambda spectrophotometer. Anthocyanin concentration was calculated using the formula $A = \varepsilon bc$, with an extinction coefficient (ε) of 33,000 cm⁻¹ mol⁻¹, and results were expressed in µmol/g fresh weight (Nadernejad et al., 2013).

Catalase activity

Catalase activity was assessed using the Luck (1974) method with slight modifications. Twenty µL of enzyme extract were mixed with 980 µL of phosphate buffer containing 2 mM hydrogen peroxide. Changes in absorbance at 240 nm were recorded over time using a Visible/ UV-45 Lambda spectrophotometer. Enzyme activity was calculated using the Beer-Lambert law with an extinction coefficient of 39.4 Mm⁻¹ cm⁻¹ and expressed in µmol/g fresh weight per minute (Zavareh et al., 2015).

Superoxide dismutase (SOD) activity

SOD activity was measured by its ability to inhibit the photoreduction of nitroblue tetrazolium chloride (NBT). The reaction mixture (3 mL) contained sodium-potassium buffer (50 mM, pH 7.8), methionine (13 mM), NBT (75 μM), EDTA (0.1 mM), riboflavin (360 μM), and 0-50 µL of crude enzyme extract. Absorbance was measured at 560 nm using a Visible/UV-45 Lambda spectrophotometer. One unit of SOD activity was defined as the amount of enzyme necessary to inhibit 50% of NBT photoreduction. Specific activity was reported as units per milligram of protein (Amini, 2014).

Antioxidant activity

Antioxidant activity was measured using the DPPH (2,2-Diphenyl-1-Picrylhydrazyl) radical scavenging assay. Methanolic extracts of plant samples were prepared at concentrations ranging from 5×10^{-2} to 5×10^{-6} mg/100 mL in pure methanol. A 1:1 mixture of DPPH solution (8 mg/100 mL) and plant extracts at varying concentrations was prepared. Absorbance was measured at 517 nm after 30 minutes at room temperature using a Visible/UV-45 Lambda spectrophotometer. The percentage of DPPH radical scavenging was calculated using the formula:

$$R\% = (AD - AS) / AD \times 100$$

Where:

R% = Percentage of scavenging

AD = Absorbance of DPPH at 517 nm

AS = Absorbance of the sample at 517 nm

The IC50 value (concentration of extract required to inhibit 50% of free radicals) was used to compare antioxidant activity (Sun et al., 2007).

Statistical analysis

After ensuring normal distribution and homogeneity of variance, data were subjected to analysis of variance (ANOVA) in a factorial completely randomized design. Mean comparisons were performed using Duncan's test at a 5% probability level using SAS software (version 9.4). Graphs and tables were prepared using Microsoft Excel and Word 2007.

RESULTS AND DISCUSSION

Morphophysiological traits

The ANOVA results indicated that leaf count, number of lateral branches, number of flowers per plant, flower head diameter, pedicel length, flower longevity, and fresh shoot weight of Echinacea purpurea were significantly affected by the main effects of salinity stress and

nanoselenium at the 1% probability level. The interaction effects of treatments were significant at the 1% level for leaf count, number of lateral branches, flower head diameter, pedicel length, and flower longevity, and at the 5% level for the number of flowers per plant and fresh shoot weight (Table 1).

Table 1. Analysis of variance results of the effects of salinity stress and selenium nanoparticles on the morphophysiological characteristics of *Echinacea purpurea*.

S.o.V	df	Leave number	Lateral branch number	Flower number	Flower head diameter	Pedicel length	Flower longevity	Fresh weight of the aerial parts
Salinity stress (S)	2	2651.70**	41.44**	16.93**	90.11**	498.93**	224.59**	2368.78**
Nanoparticle (N)	2	477.15**	4.33**	1.04**	5.44**	32.26**	14.93**	349.00**
$S \times N$	4	47.37**	1.28**	0.37*	1.72**	12.15**	4.31**	11.78*
Error	18	9.96	0.22	0.11	0.37	1.30	0.74	4.00
CV (%)	-	11.04	24.96	29.03	21.91	17.87	20.03	9.28

^{*} and **: Significant at P < 0.05 and P < 0.01 based on the Duncan's test, respectively.

Number of leaves

Based on the comparison of mean values for the interaction effects of salinity stress x selenium nanoparticles, the highest number of leaves per *Echinacea purpurea* plant (50.00) was observed in the control treatment (no salinity stress) with the application of 100 mg/L selenium nanoparticles. This treatment was statistically grouped with the control treatment (no salinity stress) with the application of 50 mg/L selenium nanoparticles. The lowest number of leaves was recorded in the severe salinity stress treatment (100 mM NaCl) without nanoparticle application (Fig. 1).

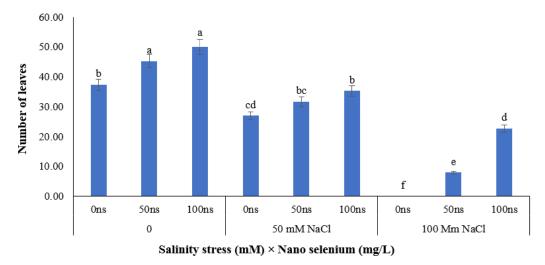


Fig. 1. Mean comparison of the interaction effects of salinity stress and selenium nanoparticle treatments on the number of leaves in Echinacea purpurea L.

Quantitative floral architecture, longevity traits, and branching pattern

Based on the comparison of mean values for the interaction effects of salinity stress × selenium nanoparticles, the highest number of lateral branches, number of flowers per plant, flower head diameter, pedicel length, and flower longevity were observed in the control treatment (no salinity stress) with the application of 100 mg/L selenium nanoparticles. The lowest values for these traits were recorded in the severe salinity stress treatment (100 mM NaCl) without nanoparticle application (Fig. 2 and 3).

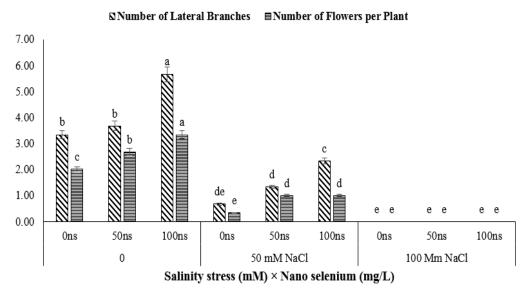


Fig. 2. Mean comparison of the interaction effects of salinity stress and selenium nanoparticle treatments on the number of lateral branches and number of flowers per plant in Echinacea purpurea L.

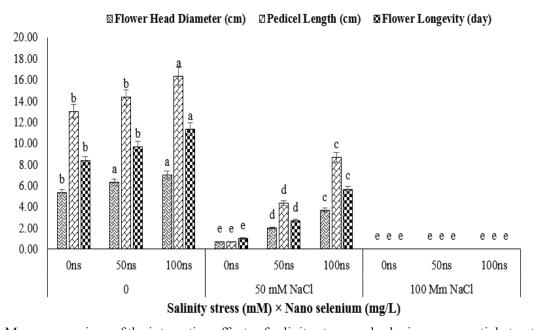


Fig. 3. Mean comparison of the interaction effects of salinity stress and selenium nanoparticle treatments on the flower head diameter, pedicel length, and flower longevity in Echinacea purpurea L.

Increasing salinity stress intensity reduced plant growth, resulting in smaller plant dimensions. Plants subjected to severe salinity stress exhibited the lowest number of leaves, lateral branches, flowers, flower head diameter, pedicel length, and flower longevity. However, foliar application of selenium nanoparticles alleviated the effects of salinity stress, as evidenced by the improved performance of plants under mild and severe salinity stress without nanoparticle application. These findings align with previous studies showing that nanoselenium mitigates abiotic stresses such as salinity in rice (Oryza sativa) (Taha et al., 2021), salinity stress in strawberry (Fragaria × ananassa) (Soleymanzadeh et al., 2020), heavy metals in radish (Raphanus sativus) (Amirabad et al., 2020), drought stress in tomato (Solanum lycopersicum) (Rady et al., 2020), and drought stress in canola (Brassica rapa subsp. oleifera) (Ahmad et al., 2021).

Fresh shoot weight

Based on the comparison of mean values for the interaction effects of salinity stress × selenium nanoparticles, the highest fresh shoot weight (47 g) was observed in the control treatment (no salinity stress) with the application of 100 mg/L selenium nanoparticles. The lowest fresh shoot weight was recorded in the severe salinity stress treatment (100 mM NaCl) without nanoparticle application (Fig. 4).

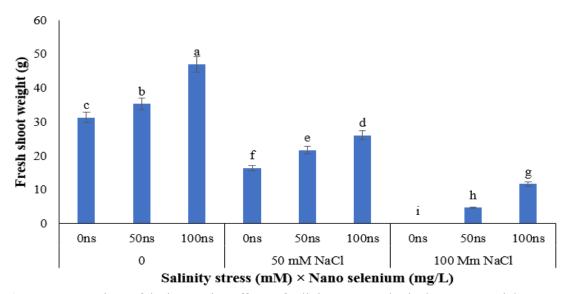


Fig. 4. Mean comparison of the interaction effects of salinity stress and selenium nanoparticle treatments on the fresh weight of aboveground plant parts in Echinacea purpurea L.

Saline growth media containing high ion concentrations disrupt the metabolism of other nutrients, leading to competition between Na⁺ and K⁺ ions and between Cl⁻ and NO₃⁻ ions. This competition impairs nutrient uptake, reducing plant growth and biomass. One of the key factors influencing salinity tolerance is the maintenance of cell turgor through osmotic regulation via salt ion uptake and the synthesis of organic compounds. Plants expend significant energy to synthesize organic compounds (e.g., glycine, betaine, proline, mannitol, and sorbitol), which, when used for osmotic regulation, result in reduced shoot growth and fresh weight (Yasir et al., 2021). The reduction in fresh shoot weight is attributed to the interaction of osmotic stress, nutrient imbalance, and ion toxicity (Javadi et al., 2021). Researchers studying Nepeta racemosa Lam. found that salinity treatments reduced fresh and dry weight, growth, and photosynthesis in this plant (Lungoci et al., 2023).

Photosynthetic pigments and anthocyanin

The ANOVA results indicated that chlorophyll a, chlorophyll b, leaf carotenoids, and petal anthocyanin content in Echinacea purpurea were significantly affected by the main and interaction effects of salinity stress and nanoparticles at the 1% probability level (Table 2).

Table 2. Analysis of variance results of the effects of salinity stress and selenium nanoparticles on photosynthetic pigments and anthocyanins in *Echinacea purpurea*.

S.o.V	df	Chlorophyll a	Chlorophyll b	Carotenoid	Anthocyanins in petals
Salinity stress (S)	2	16.15**	6.49**	10.94**	0.31**
Nanoparticle (N)	2	4.21**	1.79**	1.98**	0.02**
$S \times N$	4	1.53**	0.79**	0.78**	0.01**
Error	18	0.28	0.12	0.1	0.001
CV (%)	-	17.30	16.82	13.68	15.37

^{**:} Significant at P < 0.01 based on the Duncan's test.

Chlorophyll a, b, and carotenoids

In the salinity stress × selenium nanoparticle interaction treatment, the highest chlorophyll a (4.50 mg/g fresh weight), chlorophyll b (2.80 mg/g fresh weight), and carotenoid (3.25 mg/g fresh weight) content were observed in the control treatment (no salinity stress) with the application of 100 mg/L selenium nanoparticles. The lowest values for these traits were recorded in the severe salinity stress treatment (100 mM NaCl) without nanoparticle application (Fig. 5).

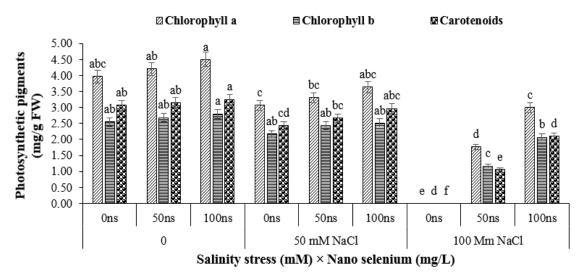


Fig. 5. Mean comparison of the interaction effects of salinity stress and selenium nanoparticle treatments on the leaf photosynthetic pigments in Echinacea purpurea L.

The reduction in chlorophyll content under stress is likely due to the activation of chlorophyll catabolic pathways. Changes in chlorophyll a and b concentrations during stress depend on plant species, salt type, and plant age. Chlorophyll content is an indicator of plant stress resistance (El Haddad et al., 2022). Chlorophyll and carotenoid degradation under salinity stress is caused by increased chlorophyllase activity, structural and functional changes, and reduced protein content, particularly membrane proteins and enzymes involved in chlorophyll biosynthesis, such as 5-aminolevulinic acid dehydratase, porphobilinogen deaminase, and protochlorophyllide oxidoreductase (Atta et al., 2023). As salt concentration increases, cells accumulate compatible solutes like proline to maintain osmotic balance. Given the shared biosynthetic pathway of proline and chlorophyll, increased NaCl concentration shifts plant metabolism toward proline synthesis, reducing chlorophyll production. The accumulation of proline and carotenoids and the reduction in chlorophyll are rapid responses to stress conditions (Lungoci et al., 2023).

In this study, chlorophyll content increased with selenium nanoparticle application, consistent with previous research (Wang et al., 2021). Selenium prevents chlorophyll degradation (Oraghi Ardebili et al., 2019) and enhances antioxidant capacity (Schiavon and Pilon-Smits, 2019) in plants under environmental stress. Other beneficial effects of selenium include improved growth and carbohydrate metabolism (White, 2020). Selenium application increases soil cation exchange capacity, water retention, and nutrient uptake and transport in plants (Shahid et al., 2019).

Petal anthocyanin

In the salinity stress × selenium nanoparticle interaction treatment, the highest petal anthocyanin content was observed in the control treatment (no salinity stress) with the application of 100 mg/L selenium nanoparticles. The lowest anthocyanin content was recorded in the severe salinity stress treatment (100 mM NaCl) without nanoparticle application (Fig. 6).

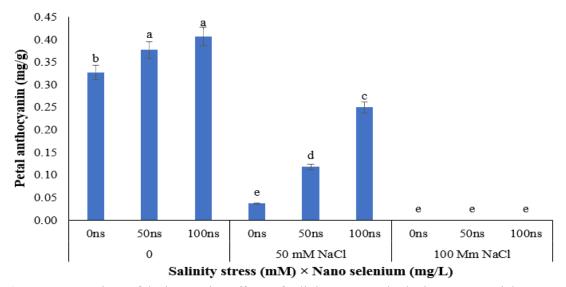


Fig. 6. Mean comparison of the interaction effects of salinity stress and selenium nanoparticle treatments on the anthocyanin content in Echinacea purpurea L.

Biochemical traits

The ANOVA results indicated that leaf catalase, superoxide dismutase, and antioxidant activity in *Echinacea purpurea* were significantly affected by the main effect of nanoparticles and the interaction effect of salinity stress × nanoparticles at the 1% probability level. Both enzymes were significantly affected by the main effect of salinity stress at the 5% probability level, while antioxidant activity was significant at the 1% level (Table 3).

Table 3. Analysis of variance results of the effects of salinity stress and selenium nanoparticles on biochemical traits of Echinacea purpurea.

S.o.V	df	Catalase	Superoxide Dismutase	Antioxidant Activity
Salinity stress (S)	2	0.02*	3.90*	4616.70**
Nanoparticle (N)	2	0.08**	12.06**	2109.37**
$S \times N$	4	0.02**	6.16**	1100.54**
Error	18	0.004	0.01	189.74
CV (%)	-	32.48	30.57	22.32

^{*} and **: Significant at P < 0.05 and P < 0.01 based on the Duncan's test, respectively.

Leaf catalase

In the salinity stress × selenium nanoparticle interaction treatment, the highest leaf catalase activity (0.40 enzyme units/mg protein) was observed in the severe salinity stress treatment (100 mM NaCl) with the application of 100 mg/L selenium nanoparticles. The lowest activity was recorded in the severe salinity stress treatment (100 mM NaCl) without nanoparticle application (Fig. 7).

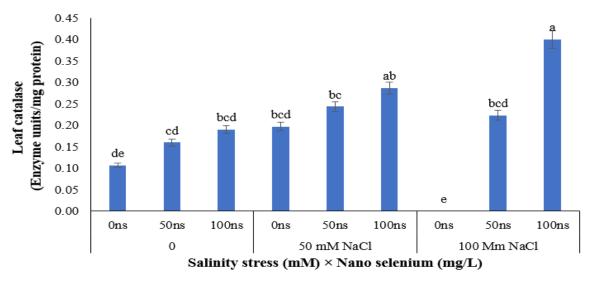


Fig. 7. Mean comparison of the interaction effects of salinity stress and selenium nanoparticle treatments on the catalase activity in *Echinacea purpurea* L.

Even low salt concentrations in roots and leaves increase catalase activity. One of the most significant biochemical changes during environmental stress is the accumulation of reactive oxygen species (ROS), which disrupt cellular redox balance and cause oxidative stress (Kesawat et al., 2023). The increased activity of catalase and superoxide dismutase in Echinacea purpurea under environmental stress and nanoparticle application may be due to the protective role of selenium nanoparticles, which regulate osmotic pressure, reduce ROS, and enhance the biosynthesis of non-enzymatic antioxidants such as phenols (Arora et al., 2020).

Leaf superoxide dismutase

Based on the comparison of mean values for the interaction effects of salinity stress × selenium nanoparticles, the highest leaf superoxide dismutase activity (5.57 enzyme units/mg protein) was observed in the severe salinity stress treatment (100 mM NaCl) with the application of 100 mg/L selenium nanoparticles. The lowest activity was recorded in the severe salinity stress treatment (100 mM NaCl) without nanoparticle application (Fig. 8).

Superoxide anions are produced in cells under environmental stress due to stomatal closure and reduced CO, fixation, which inhibits growth. Increased respiration under these conditions also generates destructive ions in mitochondria. In such conditions, the activity of superoxide dismutase and peroxidase, enzymes that detoxify superoxide ions, increases, as observed in this study. Increased activity of these enzymes reduces oxidative damage. Superoxide dismutase efficiently reacts with superoxide anion radicals to produce water and oxygen (Atta et al., 2023). Thus, increased superoxide dismutase activity under environmental stress is a common response to mitigate stress effects. These findings align with studies on sorghum (Tovignan et al., 2020) and leafy vegetables (Razi and Muneer, 2021).

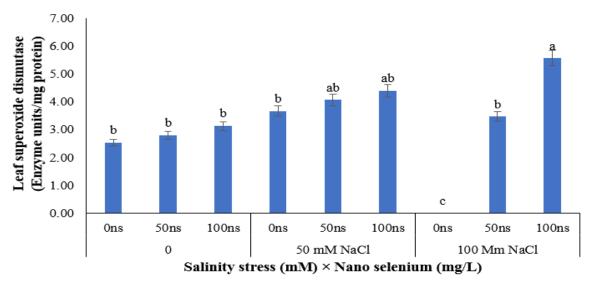


Fig. 8. Mean comparison of the interaction effects of salinity stress and selenium nanoparticle treatments on the superoxide dismutase activity in *Echinacea purpurea* L.

Antioxidant activity

Based on the comparison of mean values for the interaction effects of salinity stress x selenium nanoparticles, the highest antioxidant activity (89.00%) was observed in the mild salinity stress treatment (50 mM NaCl) with the application of 100 mg/L selenium nanoparticles. The lowest activity was recorded in the severe salinity stress treatment (100 mM NaCl) without nanoparticle application (Fig. 9).

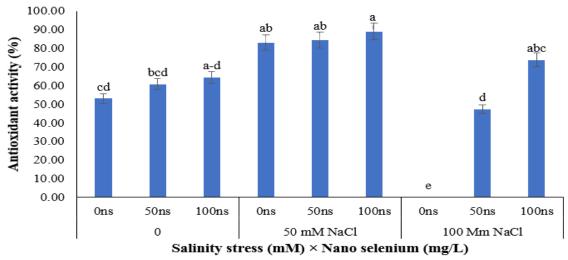


Fig. 9. Mean comparison of the interaction effects of salinity stress and selenium nanoparticle treatments on the antioxidant activity in Echinacea purpurea L.

Approximately 30 selenoenzymes and selenoproteins have been identified that protect cells against free radicals. Selenium, by incorporating into protein structures, safeguards tissues and cellular membranes from oxidative stress-induced damage (Schiavon and Pilon-Smits, 2019). Selenium exerts beneficial effects on plant growth and stress tolerance by enhancing their antioxidant capacity (White, 2020). In another study, it was found that foliar application of selenium on garlic enhanced the antioxidant capacity, phenolic compounds, and flavonoid content in garlic (Amerian et al., 2024).

CONCLUSION

This study demonstrates that salinity stress (≥100 mM NaCl) significantly impairs Echinacea purpurea L. physiology, reducing vegetative growth (leaf count, lateral branches), reproductive output (flower number, diameter, longevity), and photosynthetic pigment content (chlorophyll a/b, carotenoids, anthocyanins) through ionic toxicity and metabolic disruption. Crucially, selenium dioxide nanoparticles (SeO₂NPs) effectively counteracted these effects by enhancing antioxidant enzyme activity (catalase, superoxide dismutase), reducing oxidative damage (lipid peroxidation), and improving stress tolerance. The nano-treatment restored growth parameters and floral characteristics while boosting secondary metabolism. These findings establish foliar SeO, application as a sustainable agricultural strategy for saline conditions, offering dual benefits of yield protection (35-40% improvement under stress) and reduced chemical inputs. The technology's ability to enhance medicinal plant productivity in marginal soils addresses key challenges in sustainable cultivation. We recommend incorporating optimized SeO, protocols into precision agriculture programs, particularly for climate-resilient medicinal crop production. Further research should validate field efficacy, determine optimal application regimes, and assess long-term soil impacts to facilitate commercial adoption of this nano-enabled stress mitigation approach.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support and assistance of the Food Industry Laboratory at the Noor Branch of Islamic Azad University.

Literature Cited

- Abbasi, B., Iqbal, J., Ahmad, R., Zia, L., Kanwal, S. and Mahmood, T. 2020a. Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules, 10 (1): 38. https://doi.org/10.3390/biom10010038
- Abbasi, B.A., Igbal, J., Zahra, S.A., Shahbaz, A., Kanwal, S. and Rabbani, A. 2020b. Bioinspired synthesis and activity characterization of iron oxide nanoparticles made using *Rhamnus* triquetra leaf extract. Materials Research Express, 6 (12): 1250e7.
- Adeli, H., Kalateh Jari, S. and Divanat, M. 2024. Effect of salicylic acid and sodium selenite on growth and photochemical attributes of coneflower (Echinacea angustifolia) under salinity stress. Journal of Crops Improvement, 26 (4): 925-948. https://doi.org/10.22059/ jci.2024.366323.2859
- Ahmad, Z., Anjum, S., Skalicky, M., Waraich, E.A., Muhammad Sabir Tariq, R., Ayub, M.A., Hossain, A., Hassan, M.M., Brestic, M., Sohidul Islam, M. and Habib-Ur-Rahman, M. 2021. Selenium alleviates the adverse effect of drought in oilseed crops camelina (Camelina sativa L.) and canola (Brassica napus L.). Molecules, 26 (6): 1699. https:// doi.org/10.3390/molecules26061699
- Amerian, M., Khorami Vafa, M., Palangi, A., Gohari, G. and Ntatsi, G. 2024. The effect of different levels of urea and sodium selenate on the morphophysiological characteristics of garlic (Allium sativum L.). Scientia Horticulturae, 337: 113469. https://doi.org/10.1016/j. scienta.2024.113469
- Amini, Z. 2014. Effects of water deficit on proline content and activity of antioxidant enzymes among three olive (Olea europaea L.) cultivars. Journal of Plant Research (Iranian Journal of Biology), 27(2): 156-167.
- Amirabad, S.A., Behtash, F. and Vafaee, Y. 2020. Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle. Environmental Science and Pollution Research, 27: 12476-12490.

- Arnon, A.N. 1967. Method of extraction of chlorophyll in the plants. Journal of Agronomy, 23: 112-121.
- Arora, M., Saxena, P., Abdin, M. and Varma, A. 2020. Interaction between *Piriformospora* indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants. Symbiosis, 80: 61– 73. https://doi.org/10.1007/s13199-019-00656-w
- Atta, K., Mondal, S., Gorai, S., Singh, A.P., Kumari, A., Ghosh, T., Roy, A., Hembram, S., Gaikwad, D.J., Mondal, S., Bhattacharya, S., Jha, U.C. and Jespersen, D. 2023. Impacts of salinity stress on crop plants: Improving salt tolerance through genetic and molecular dissection. Frontiers in Plant Science, 14: 1241736.
- Burlou-Nagy, C., Bănică, F., Jurca, T., Vicas, L.G., Marian, E., Muresan, M.E., Bácskay, I., Kiss, R., Fehér, P. and Pallag, A. 2022. Echinacea purpurea (L.) Moench: Biological and pharmacological properties—A review. Plants, 11(9): 1244. https://doi.org/10.3390/ plants11091244
- Dobrange, E., Peshev, D., Loedolff, B. and van den Ende, W. 2019. Fructans as immunomodulatory and antiviral agents: The case of *Echinacea*. Biomolecules, 9: 615. https://doi. org/10.3390/biom9100615
- El Haddad, N., Choukri, H., Ghanem, M.E., Smouni, A., Mentag, R., Rajendran, K., Hejjaoui, K., Maalouf, F. and Kumar, S. 2022. High-temperature and drought stress effects on growth, yield and nutritional quality with transpiration response to vapor pressure deficit in Lentil. Plants, 11: 95. https://doi.org/10.3390/plants11010095
- El-Ramady, H., Abdalla, N., Taha, H.S., Alshaal, T., El-Henawy, A., Faizy, S.E.D.A. and Shams, M.S. 2016. Selenium and nano-selenium in plant nutrition. Environmental Chemistry Letters, 14(1): 123-147. https://doi.org/10.1007/s10311-015-0535-1
- Ghasemian, S., Masoudian, N., Saeid Nematpour, F. and Safipour Afshar, A. 2021. Selenium nanoparticles stimulate growth, physiology, and gene expression to alleviate salt stress in Melissa officinalis. Biologia, 76(10): 2879-2888.
- Ghutke, T.D., Parvin, K., Rashida Banu, A.M., Bansal, S., Srivastava, A., Rout, S. and Ramzan, U. 2023. A comprehensive review on the therapeutic properties of medicinal plants. Acta Traditional Medicine, V2i01: 13–18.
- Hashempoor, J., Asadi-Sanam, S., Mirza, M. and Ghanbari Jahromi, M. 2022. The effect of different fertilizer sources on soil nutritional status and physiological and biochemical parameters of coneflower (Echinacea purpurea L.). Communications in Soil Science and Plant Analysis, 53: 1246-1260.
- Hashempour, J., Asadi-Sanam, S., Mirza, M. and Ghanbari Jahromi, M. 2023. Effects of nutritional treatments on quantitative and qualitative yield of *Echinaceae purpurea* L.. Iranian Journal of Medicinal and Aromatic Plants Research, 39(3): 315-335. https://doi. org/10.22092/ijmapr.2022.357096.3110
- Javadi, F., Kalatejari, S., Diyanat, M. and Asgari, F. 2021. The effect of sodium selenate application method on ornamental violet (Viola wittrickiana cv. Queen Yellow Bee) under salinity stress. Plant Process and Function, 10(42): 211-228.
- Jones, G.D., Droz, B., Greve, P., Gottschalk, P., Poffet, D., McGrath, S.P. and Winkel, L.H.E. 2017. Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences, 114(11): 2848-2853. https://doi. org/10.1073/pnas.1611576114
- Kesawat, M.S., Satheesh, N., Kherawat, B.S., Kumar, A., Kim, H.U., Chung, S.M. and Kumar, M. 2023. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules-current perspectives and future directions. Plants (Basel), 12(4): 864. https://doi.org/10.3390/plants12040864

- Kumar, A., Gupta, K., Dixit, S., Mishra, K. and Srivastava, S. 2018. A review on positive and negative impacts of nanotechnology in agriculture. International Journal of Environmental Science and Technology, 16: 2175-2184.
- Luck, H. 1974. Catalase. In: J. Bergmeyer and M. Grabi (Eds.), Methods of enzymatic analysis (2: 885–890). Academic Press.
- Lungoci, C., Motrescu, I., Filipov, F., Rimbu, C.M., Jitareanu, C.D., Ghitau, C.S., Puiu, I. and Robu, T. 2023. Salinity stress influences the main biochemical parameters of Nepeta racemosa Lam. Plants, 12: 583. https://doi.org/10.3390/plants12030583
- Nadernejad, N., Ahmadimoghadam, A., Hosseinifard, S.J. and Poorseyedi, S. 2013. Evaluation of PAL activity, phenolic and flavonoid contents in three pistachio (*Pistacia vera* L.) cultivars grafted onto three different rootstocks. Journal of Stress Physiology and Biochemistry, 9: 84-97.
- Oraghi Ardebili, N., Iranbakhsh, A. and Oraghi Ardebili, Z. 2019. Efficiency of selenium and salicylic acid protection against salinity in soybean. Plant Physiology, 9: 2727–2738.
- Rady, M.M., Belal, H.E., Gadallah, F.M. and Semida, W.M. 2020. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 266: 109290.
- Razi, K. and Muneer, S. 2021. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology, 41: 669–691.
- Sabra, A., Daayf, F. and Renault, S. 2012. Differential physiological and biochemical responses of three Echinacea species to salinity stress. Scientia Horticulturae, 135: 23-31.
- Schiavon, M. and Pilon-Smits, E.A.H. 2019. Selenium biofortification and phytoremediation phyto technologies: A review. Journal of Environmental Quality, 48 (1): 1-15.
- Shahid, M., Niazi, N.K., Khalid, S., Murtaza, B., Bibi, I. and Rashid, M.I. 2019. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environmental Pollution, 244: 486-501.
- Shahid, M.A., Balal, R.M., Khan, N., Zotarelli, L., Liu, G.D., Sarkhosh, A., Fernandez-Zapata, J.C., Nicolas, J.J. and Garcia-Sanchez, F. 2019. Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicology and Environmental Safety, 180: 588-599.
- Soleymanzadeh, R., Iranbakhsh, A., Habibi, G. and Oraghi Ardebili, Z. 2020. Selenium nanoparticle protected strawberry against salt stress through modifications in salicylic acid, ion homeostasis, antioxidant machinery, and photosynthesis performance. Acta Biologica Cracoviensia Series Botanica, 62: 33-42.
- Sun, T., Powers, J.R. and Tang, J. 2007. Evaluation of the antioxidant activity of Asparagus, broccoli and their juices. Food Chemistry, 105: 101-106.
- Tabrizi Dooz, R., Kalateh Jari, S., Naderi, D., Ghanbari Jahromi, M. and Asadi Gharneh, H.A. 2023. Role of foliar application of sodium nitroprusside on induction of antioxidant enzyme activities of narcissus (*Narcissus tazetta* L.) in response to saline water irrigation. Plant Process and Function, 12(54): 73-90.
- Taha, R.S., Seleiman, M.F., Shami, A., Alhammad, B.A. and Mahdi, A.H. 2021. Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in salt-stressed soil. Plants, 10(6):1040. https:// doi.org/10.3390/plants10061040
- Tovignan, T.K., Adoukonou-Sagbadja, H., Diatta, C., Clément-Vidal, A., Soutiras, A., Cisse, N. and Luquet, D. 2020. Terminal drought effect on sugar partitioning and metabolism is modulated by leaf stay-green and panicle size in the stem of sweet sorghum (Sorghum

- bicolor L. Moench). CABI Agriculture and Bioscience, 1 (4): 1-11. https://doi. org/10.1186/s43170-020-00003-w
- Wang, C., Cheng, T., Liu, H., Zhou, F., Zhang, J., Zhang, M., Liu, X., Shi, W. and Cao, T. 2021. Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils. Journal of Environmental Sciences, 103: 336–346.
- White, P.J. 2020. Selenium metabolism in plants. Biochimica et Biophysica Acta (BBA) -General Subjects, 1864(1): 129405. https://doi.org/10.1016/j.bbagen.2019.07.012
- Yasir, T.A., Khan, A., Skalicky, M., Wasaya, A., Rehmani, M.I.A., Sarwar, N., Mubeen, K., Aziz, M., Hassan, M.M., Hassan, F.A.S., Brestic, M., Zivcak, M., Hossain, A., Abdelhamid, M.T. and Skalická, M. 2021. Exogenous sodium nitroprusside mitigates salt stress in lentil (*Lens culinaris* Medik.) by affecting the growth, yield, and biochemical properties. Molecules, 26: 2576.
- Yildiz, M., Poyraz, I., Cavdar, A., Ozgen, Y. and Beyaz, R. 2020. Plant breeding current and future views. IntechOpen. Available at: http://dx.doi.org/10.5772/intechopen.93920
- Zahedi, S.M., Karimi, M. and Teixeira da Silva, J.A. 2020. The use of nanotechnology to increase quality and yield of fruit crops. Journal of the Science of Food and Agriculture, 100: 25-31.
- Zavareh, M., Asadi-Sanam, S., Pirdashti, H., Sefidcon, F. and Nematzadeh, G. 2015. Evaluation of biochemical and physiological responses of purple coneflower (Echinacea purpurea L.) medicinal plant to low temperature stress. Plant Process and Function, 4(12): 11-28.

How to cite this article:

Masoudi, S., Ghanbari-Jahromi, M. and Diyanat, M. (2025). The Effect of Nano-Selenium Dioxide on Flowering Performance and Biochemical Traits of Echinacea purpurea L. under Salinity Stress. Journal of Ornamental Plants, 15(2), 129-144.

https://sanad.iau.ir/en/Journal/jornamental/Article/1212964