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Abstract  
Customer satisfaction attracts increasing attention in competitive environments. The consistent 

vehicle routing problem (ConVRP), introduced in recent years, incorporates customer satisfaction 

into VRP. In ConVRP, vehicle routes must be designed for multiple periods, and each customer 

must be visited by the same driver at roughly the same time on each period. Previous ConVRP 

research models travel times as constant and based only on distance. This is unrealistic for urban 

areas, where travel times vary dynamically with factors like congestion and time of day. The time-

dependent VRP (TDVRP) incorporates time-varying travel times. In this paper, the ConVRP is 

considered with time-dependent travel times to integrate the TDVRP and ConVRP models. A 

mixed-integer linear programming (MILP) model is proposed for the new problem, termed the 

consistent TDVRP (ConTDVRP). We extend the ConVRP benchmark instances from the literature 

by incorporating time-dependent travel times. The model is solved using a solver for small-scale 

instances. Since the new problem -an extension of the two aforementioned models- is NP-hard, we 

propose a template-based hybrid large neighborhood search (THLNS) algorithm that incorporates 

variable neighborhood search (VNS) to solve it. An iterative procedure is also presented to modify 

a heuristic departure-time adjustment in the literature to be used with time-dependent travel times. 

Computational experiments and sensitivity analysis are performed on new extended instances to 

evaluate the efficiency of the proposed algorithm. Three presented methods in ConVRP literature 

are adapted to solve ConTDVRP and the results of proposed approach compared with them for 

three time-dependent speed profiles on extended instances. The results demonstrate that the 

proposed method not only achieves consistent solutions with reduced computation time but also 

delivers solutions with 13.38%, 10.61%, and 35.67% lower average travel times compared to the 

three alternative methods. Departure-time adjustment also results in 17.48% lower average travel 

times and 5.91% better time consistency across all benchmark instances and speed profiles. 
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1. Introduction 

The classical vehicle routing problem (VRP), studied for 

over 65 years, aims to minimize the total cost or distance 

traveled by a homogeneous fleet under given constraints. 

While traditionally focused on fleet efficiency, recent 

research has shifted toward customer-related factors like 

service quality and satisfaction. Businesses now prioritize 

consistent service delivery—often more valuable than 

marginal cost savings—as a key competitive advantage, 

especially in parcel delivery industries where reliability 

enhances perceived service quality. This leads to the 

introduction of the consistent vehicle routing problem 

(ConVRP) (Groër, Golden, & Wasil, 2009).  

In the ConVRP framework, consistency constraints ensure 

that the same driver visits the same customers (named 

driver consistency) at roughly the same times across 

different planning periods (named arrival time 

consistency). Driver (or service provider) consistency 

improves service quality in home 

healthcare, where assigning the same personnel to patients 

enhances care through better communication between 

staff and patients, which in turn reduces service time. 

Similarly, in other applications like small-package 

delivery or transportation for the elderly and disabled 

people, limiting customers per driver eliminates the need 

to learn new routes or adjust to new customers. This 

increases driver productivity, service quality, and finally 

leads to greater customer satisfaction. In business 

applications—such as wholesale-to-retail distribution, 

reverse logistics (pickup and delivery), and restaurant 

supply chain food distribution—as well as personal 

customer services like home healthcare, consistent arrival 

times enable customers to plan service receptions more 

efficiently and foster long-term relationships with the 

company. This builds customer loyalty and enhances 

satisfaction. 

This study presents the first integration of time-dependent 

VRP (TDVRP) with the ConVRP, which focuses on 

customer satisfaction. Unlike prior ConVRP research, 

which relied on unrealistic constant travel times, this 

research uses time-dependent functions to accurately 

reflect real-world variables like traffic congestion. This 

allows for precise calculation of customer arrival times, 

ensuring both driver and visit-time consistency to enhance 

practical applicability and customer satisfaction. While 

this approach better balances service quality and 

operational costs, it also increases computational 

complexity due to the dynamic travel time calculations. 

We propose a novel hybrid approach called template-

based hybrid LNS (THLNS), which integrates variable 

neighborhood search (VNS) into a large neighborhood 

search (LNS) framework, preserving the template 

concept. The proposed approach employs a novel search 

space filtering mechanism to skip the evaluation of 

unpromising solutions and estimates time-dependent 

travel times to deliver consistent satisfactory solutions 

with reduced computational time. We investigate the 

impact of modeling time-dependent travel times on 

ConVRP’s performance metrics. Prior studies have 

proposed departure-time adjustment heuristics to improve 

arrival time consistency (measured by l-max index). We 

modify an existing sophisticated heuristic (Kovacs, 

Golden, Hartl, & Parragh, 2015) by incorporating time-

dependent travel times.     

The LNS metaheuristic and its adaptive counterpart, the 

ALNS, have been effectively used to solve numerous 

VRP variants, especially the ConVRP. (Voigt, 2025) 

classify ALNS operators using unified terminology, 

evaluate their performance and provide guidelines for 

future use. Existing ConVRP heuristic approaches have 

predominantly employed the template concept to maintain 

driver consistency and satisfy precedence principle, 

typically implementing LNS frameworks. While VNS has 

demonstrated strong performance for ConVRP in terms of 

solution quality (Xu & Cai, 2018). We conduct an 

extensive evaluation comparing our method with state-of-

the-art approaches, regarding the runtime and solution 

quality metrics using newly developed benchmark 

instances. This study makes following main contributions:  

 Develops a model for the new problem and proposes 

an efficient solution approach by integrating the most 

effective existing ConVRP methods.  

 Incorporates time-dependent travel time estimation 

functions and introduces a novel search space 

filtering technique to significantly reduce 

computational requirements. 

 Adapts an existing heuristic for departure-time 

adjustment to accommodate time-dependent travel 

times. 

The article’s structure is as follows: Section 2 presents an 

in-depth review of relevant ConVRP and TDVRP 

literature to identify research gaps. Section 3 describes the 

new problem along with key assumptions and notation, 

then formulates it as a mixed-integer linear programming 

(MILP) model. Section 4 presents our proposed solution 

framework and the modified departure-time adjustment 

heuristic. Section 5 presents computational experiments 

analyzing the approach’s efficiency through comparisons 

with CPLEX solver solutions and existing ConVRP 

methods, including sensitivity analyses on generated 

benchmark instances. Finally, Section 6 presents 

concluding remarks along with suggestions for future 

studies. 

2. Literature Review 

This study bridges the ConVRP and TDVRP frameworks 

to enhance the practical applicability of ConVRP models. 

We systematically review both literatures to identify the 

critical research gap at their intersection. 

2.1. ConVRP Related Research 

As an extension of the classical VRP, the ConVRP falls 

into the category of NP-hard problems. Since its 

introduction, various versions suitable for different real-
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world applications have been explored in previous 

studies. (Kovacs, Golden, Hartl, & Parragh, 2014) 

conducted a systematic review of vehicle routing 

problems incorporating consistency considerations. Due 

to the problem’s high complexity, researchers have 

proposed different approaches to derive near-optimal 

solutions of high quality within acceptable computation 

times, with most employing metaheuristics or hybrid 

heuristic methods. A few numbers of studies have 

developed specialized exact methods to determine optimal 

solutions for larger-scale problems more effectively 

(Goeke, Roberti, & Schneider, 2019; Subramanyam & 

Gounaris, 2016, 2018).  

(Shaw, 1998) first proposed LNS algorithm to solve VRP. 

Since then, the LNS and its adaptive version (ALNS 

(Ropke & Pisinger, 2006)) has effectively solved many 

VRP variants specially the ConVRP. (Groër et al., 2009) 

developed a mixed-integer programming (MIP) model 

and a record-to-record heuristic (ConRTR) for the 

ConVRP. The key feature of their approach is enforcing 

the precedence principle to ensure consistent customer 

sequencing across days. Their two-step method involves 

creating template routes from "frequent customers" (those 

with multi-day demand) and building daily routes by 

adjusting these templates, adding or removing "non-

frequent customers" with single-day demand. They 

generated new test instances from classic VRP 

benchmarks and evaluated their algorithm by comparing 

its results against a non-consistent version of the RTR 

method. (Tarantilis, Stavropoulou, & Repoussis, 

2012)  introduced a template-based tabu search (TTS) 

algorithm for the ConVRP. Similar to ConRTR, TTS 

operates at both master and daily levels: it first generates 

template routes, then resolves and improves daily routes. 

Template feasibility is evaluated by checking the 

feasibility of corresponding daily routes. Finally, a tabu 

search is applied to each daily route to further improve 

them through neighborhood search.(Kovacs, Parragh, & 

Hartl, 2014) developed a template-based adaptive large 

neighborhood search (TALNS) for the ConVRP. The 

algorithm iteratively improves an initial template using 

adaptively selected removal and repair operators, 

accepting new templates via simulated annealing. A key 

insight was their heuristic for optimizing depot departure 

times, which proved critical in avoiding significant costs 

when stricter service time consistency was required.(Xu 

& Cai, 2018)  developed a VNS algorithm for the 

ConVRP. Their two-step method first uses a "shaking" 

procedure to diversify the search with a template (which 

may be infeasible), and then a local search to optimize it. 

They used three neighborhood structures (relocation, 

exchange, reverse) and a "near points" technique to 

improve efficiency by skipping unpromising operations. 

Infeasible templates were evaluated with penalty costs for 

violations. The second step was only performed on 

higher-quality templates to achieve feasibility and further 

improve the solution.  

(Feillet, Garaix, Lehuédé, Péton, & Quadri, 

2014)  introduced "time classes" as a new measure for 

time consistency, grouping customers with service start 

times within a defined sensitivity threshold. The objective 

is to minimize the total number of time classes, 

formulated as a graph coloring problem. Their model 

generalizes the ConVRP (Groër et al., 2009), which 

corresponds to the special case of a single time class. The 

authors solved the model using a LNS 

method.(Smilowitz, Nowak, & Jiang, 2013) examined 

how workforce management strategies affect 

transportation firms' competitive positioning. The study 

established two workforce management metrics: (1) 

driver-customer consistency, quantified by repeated 

service encounters, and (2) driver-area consistency, 

measured by frequency of serving specific geographic 

zones. (Yu, Hu, & Wu, 2024)  proposed a ConVRP 

framework that integrates two key objectives: 1. 

Workload Equity: Enforcing a maximum daily workload 

difference between drivers. 2. Route 

Consistency: Promoting the use of familiar routes by 

applying reduced costs for travel time on them. They 

developed an ALNS algorithm with new operators to 

solve this problem. The algorithm uses remove and repair 

operators to generate new solutions. For feasible solutions 

that meet all constraints, departure schedules are further 

adjusted to enhance time consistency. (Mancini, 

Gansterer, & Hartl, 2021) investigated a collaborative 

ConVRP where multiple companies share customers to 

maximize collective profit. Their model enforces service 

consistency by requiring the same company (but not 

necessarily the same driver) to serve a customer 

throughout the period. They formulated the problem with 

a mathematical model enhanced by valid inequalities and 

developed a matheuristic (MH) to solve large instances, 

evaluating its performance against an iterative local 

search (ILS) method 

(Kovacs, Golden, et al., 2015) introduced the generalized 

ConVRP (GenConVRP), which limits the number of 

drivers per customer and penalizes service time 

variations. Departing from template-based methods, they 

employed a flexible LNS applied directly to all daily 

routes. Their algorithm also incorporated adjustable route 

departure times to improve arrival time consistency and 

used a greedy method to reduce the l-max. (Luo, Qin, 

Che, & Lim, 2015)  studied a multi-period VRP with time 

windows (VRPTW) where customer visits are limited to a 

few vehicles. They formulated a MIP model and solved it 

using a three-step heuristic: first generating initial 

solutions via decomposition, then minimizing fleet size 

with a tree-search repair mechanism, and finally applying 

TS to reduce total travel distance. 

(Kovacs, Parragh, & Hartl, 2015) later proposed a multi-

objective GenConVRP (MoGenConVRP), treating 

routing costs, driver consistency, and arrival time 

consistency as conflicting objectives. They developed 

exact ϵ -constraint algorithms and a multi-directional 
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large neighborhood search that combined multi-

directional local search (MDLS) with LNS to solve large-

scale instances. (Lian, Milburn, & Rardin, 2016) 

enhanced the MDLS method for the multi-objective 

ConVRP. Their approach integrated LNS to identify non-

dominated solutions iteratively, under the assumption that 

all vehicles depart the depot at time zero in every period. 

(Sungur, Ren, Ordóñez, Dessouky, & Zhong, 2010) 

addressed a stochastic courier delivery problem (CDP) 

with uncertain demands and service times. Using 

stochastic and robust optimization, their goal was to 

maximize coverage and efficiency rather than enforce 

fixed assignments. Their approach generated a master 

schedule for overall planning and adaptable daily plans 

optimized for coverage, route consistency, travel cost, and 

on-time delivery. They developed a two-part heuristic and 

a TS algorithm to solve large-scale instances. (Alvarez, 

Cordeau, & Jans, 2024)  addressed a ConVRP with 

uncertain customer presence and demand. Using a two-

stage stochastic model, their approach first plans routes 

while penalizing consistency violations. In the second 

stage, it minimizes actual routing and penalty costs after 

uncertainties are realized. They solved the problem via 

sample average approximation (SAA), employing exact 

algorithms to handle sampled scenarios iteratively. 

(Subramanyam & Gounaris, 2016) proposed a branch-

and-cut algorithm for the consistent traveling salesman 

problem (ConTSP), a special case of the ConVRP with a 

single uncapacitated vehicle. This was the first exact 

solution method for consistency-based routing problems. 

Their approach, which included three MIP models 

compared via branch-and-cut, can serve as either a 

component in metaheuristic hybrids or an exact 

decomposition method for the ConVRP. (Subramanyam 

& Gounaris, 2018) developed an exact method for the 

ConTSP that incorporates vehicle waiting times. Their 

approach decomposed the problem into periodic time-

windowed TSPs within a branch-and-bound framework, 

accounting for AM/PM time windows and variable depot 

departure schedules.(Goeke et al., 2019) introduced the 

first exact solution method for the ConVRP. They found 

standard column generation ineffective due to weak linear 

relaxations caused by consistency constraints. Instead, 

their novel approach used column generation with 

variables representing a vehicle’s complete multi-period 

route sequence. A modified Clarke-Wright algorithm 

(Clarke & Wright, 1964) generated initial solutions, while 

LNS provided upper bounds for larger instances. Driver 

consistency was prioritized before addressing arrival time 

consistency. 

(Braekers & Kovacs, 2016) studied a dial-a-ride problem 

(DARP) with driver consistency for specialized transit 

services. Their model included precedence constraints 

between pickup and drop-off locations. They proposed 

two formulations and solved them using a branch-and-cut 

approach enhanced with techniques to reduce model size 

and strengthen constraints. (Ulmer, Nowak, Mattfeld, & 

Kaminski, 2020)  studied a dynamic, stochastic multi-

period routing problem where driver-customer familiarity 

reduces service times after initial contact. Daily revealed 

demands necessitate sequential decisions modeled as a 

Markov decision process (MDP). The goal was to 

evaluate the strategic benefit of long-term driver-customer 

relationships. (Jost, Jungwirth, Kolisch, & Schiffels, 

2022) tackled a specialized transportation problem for 

football players with prioritized passenger demands. They 

introduced an iterative, template-based heuristic to 

maximize demand priority and routing consistency. An 

ϵ -constraint mechanism balanced these objectives under 

fleet capacity constraints 

(Zhen, Lv, Wang, Ma, & Xu, 2020) introduced a new 

variant combining ConVRP with the VRP with 

simultaneous pick-up and delivery (VRPSPD), termed 

ConVRPSPD (or ConVRPSDC). They formulated it as a 

MIP and solved medium to large instances using 

template-based methods: RTR travel, LNS-enhanced local 

search (LSVNS), and TTS. (Stavropoulou, 2022) studied 

a heterogeneous fleet ConVRP that jointly optimizes fleet 

composition and consistent routing to minimize total costs 

(fixed and variable) under vehicle availability constraints. 

A hierarchical tabu search (HTS) algorithm was used, 

where the upper level selects the fleet mix and the lower 

level employs variable neighborhood descent (VND) to 

optimize routes. (Stavropoulou, Repoussis, & Tarantilis, 

2019)  studied a VRP combining profit maximization and 

service consistency. The model included mandatory 

regular customers and optional profitable customers. 

Routes were designed to maximize profit under capacity, 

tour-length, and time consistency constraints, using an 

adaptive TS algorithm with long and short-term memory 

for effective exploration. 

(Nolz, Absi, Feillet, & Seragiotto, 2022)  introduced the 

CEVRP-BCM, integrating electric vehicle routing with 

backhauls, charging, and consistency. Their hybrid 

approach combined template-based ALNS with constraint               

programming for charging and quadratic optimization for 

pickups/deliveries. A backhaul policy mandated deliveries 

before pickups. The objective function penalized 

violations of arrival time and driver consistency, 

promoting equitable service. The TALNS method used 

worst-case demands to generate templates. 
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      
  

 Minimizing total travel time in all periods     
(Groër et al., 

2009) 

      

 

  

Maximizing the count of served customers 

and minimizing travel time and 

lateness/earliness penalties 

    
(Sungur et al., 

2010) 

      
 

  Minimizing total travel time in all periods     
(Tarantilis et 

al., 2012) 

      

 

  

Minimizing the total distance and 

maximizing the driver-to-customer and 

driver-to-service region familiarity  

    
(Smilowitz et 

al., 2013) 

      

 

  Minimizing total travel time in all periods     

(Kovacs, 

Parragh, et al., 

2014)  

      

 

  

Minimize total travel time across all periods 

by limiting the maximum count of time 

classes per customer 

    
(Feillet et al., 

2014) 

      

 

  
Minimizing the weighted aggregation of 

overall travel time and l-max 
    

(Kovacs, 

Golden, et al., 

2015)  

      
 

  
First minimizing the utilized fleet size then 

minimizing the overall travel time 
    

(Luo et al., 

2015) 

      

 

  

Minimizing the vector of overall travel 

time, maximum count of assigned drivers 

across all customers and l-max  

    

(Kovacs, 

Parragh, et al., 

2015) 

      

 

  

Minimizing the vector of total distance 

traveled, maximum number of drivers per 

customer and maximum arrival time 

difference 

    
(Lian et al., 

2016)  

      

 

  Minimizing total travel time in all periods     

(Subramanyam 

& Gounaris, 

2016) 

      
 

  
Minimizing the total travel cost in all 

periods 
    

(Braekers & 

Kovacs, 2016) 

      
 

  Minimizing total travel time in all periods     
(Xu & Cai, 

2018) 

      

 

  Minimizing total travel time in all periods     

(Subramanyam 

& Gounaris, 

2018) 

      
 

  
Maximizing the overall obtained profit 

minus the overall travel cost 
   

 

 

(Stavropoulou 

et al., 2019)  

      
 

  Minimizing total travel time in all periods     
(Goeke et al., 

2019) 

      
 

  Minimizing total travel time in all periods     
(Zhen et al., 

2020)  

      
 

  
Minimizing expected cost including service 

and routing costs in all periods 
    

(Ulmer et al., 

2020)  

      
 

  
Maximizing the overall revenue minus the 

overall travel cost in all periods 
    

(Mancini et al., 

2021)  

         Maximizing the priorities of players then     (Jost et al., 
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minimizing total travel time in all periods 2022)  

      
 

  
Minimizing the total cost including vehicles 

fixed costs and routing cost 
    

(Stavropoulou, 

2022) 

      

 

  

Minimizing the total cost including fixed 

costs, travel time and consistency violation 

costs 

    
(Nolz et al., 

2022)  

         

Minimizing the overall travel time 

including the time discounts resulted from 

traveling familiar routes in all periods 

    
(Yu et al., 

2024)  

         

Sum of the penalty costs of driver 

consistency violation and expected routing 

costs and penalty costs of non-serving 

customers in all scenarios 

    
(Alvarez et al., 

2024)  

         Minimizing total travel time in all periods     This study 

 

2.2. Relevant Literature on TDVRP      

The study of TDVRP has its own rich history since its 

initial introduction. (Gendreau, Ghiani, & Guerriero, 

2015) performed the systematic review of TDVRP, 

establishing key classification frameworks. (Adamo, 

Gendreau, Ghiani, & Guerriero, 2024) later synthesized 

methodological advances in TDVRP (2015–2022), 

highlighting emerging machine learning applications and 

unresolved challenges in routing.  

(Beasley, 1981) first presented a time-dependent travel 

time model with an algorithm for a two-interval planning 

period including distinct travel times. (Ahn & Shin, 1991) 

studied the time-dependent VRP with time windows 

(TDVRPTW), introducing the key concept of arrival time 

monotonicity. This property simplifies computations, 

enables efficient feasibility checks, and reduces the 

computational burden. Their work demonstrated that with 

this property, solving the TDVRPTW is only marginally 

harder than the standard VRPTW. (Malandraki & Daskin, 

1992) formulated MILP models for the time-dependent 

TSP and VRP using step-function travel times. They 

proposed nearest-neighbor heuristics for both problems 

and a cutting-plane method for the TDTSP. Their 

heuristics were also adaptable to continuous travel time 

functions. (Hill & Benton, 1992) introduced a modeling 

framework employing node-based time-varying step 

functions for speed, with edge travel times computed from 

the mean speed of adjacent nodes. (Fleischmann, Gietz, & 

Gnutzmann, 2004)  studied a static TDVRP, introducing a 

parametric method to smooth travel time functions under 

the first-in-first-out (FIFO) principle. They also proposed 

a route-based time window concept to derive feasibility 

conditions for path concatenation operations. 

(Jung & Haghani, 2001) developed a genetic algorithm 

(GA) for a dynamic TDVRP where new demands and 

changing travel times occur after vehicle departure. They 

categorized vehicles as used or unused. (Haghani & Jung, 

2005), in later work, established solution lower bounds 

and provided simulation results on a large network. Early 

models, however, violated the FIFO principle by allowing 

later departures to sometimes result in earlier arrivals. 

(Ichoua, Gendreau, & Potvin, 2003) introduced the 

foundational IGP speed model for TDVRPs, which 

guarantees FIFO compliance by using interval-specific 

travel speeds. Key contributions include a method 

(Algorithm A.1 in Appendix A) to compute FIFO-

preserving travel time functions (illustrated in Fig. A.1 in 

Appendix A), dynamic speed adjustments at interval 

boundaries, and a parallel TS algorithm with an 

approximated evaluation for computational efficiency. 

Validated on Solomon benchmarks (Solomon, 1987), the 

IGP model has become a cornerstone in TDVRP research.  

(Donati, Montemanni, Casagrande, Rizzoli, & 

Gambardella, 2008) solved the TDVRPTW using a 

multiple ant colony system (MACS). The approach 

employed two hierarchical colonies: ACS-VEI to 

minimize the number of vehicles and ACS-TIME to 

minimize travel time. They evaluated the algorithm on 

modified Solomon benchmarks (Solomon, 1987) against 

five speed models across four time intervals. (Hashimoto, 

Yagiura, & Ibaraki, 2008) solved the TDVRPTW with an 

iterative local search that uses dynamic programming 

(DP) to efficiently optimize route schedules and a filtering 

mechanism to prune low-potential neighborhoods. (C. Liu 

et al., 2020) developed an enhanced ant colony algorithm 

(ACA) for the same problem, incorporating congestion 

avoidance through modified pheromone updates to 

prevent congested routes.  (Balseiro, Loiseau, & Ramonet, 

2011) developed a hybrid ant colony optimization (ACO) 

for TDVRPTW that combats infeasible solutions by 

integrating insertion heuristics. It used three constructive 

heuristics for initialization and a local search phase 

employing Fleischmann’s route time windows 

(Fleischmann et al., 2004) to efficiently verify feasibility 

during customer sequence insertions.  (Maden, Eglese, & 

Black, 2010) studied TDVRPTW with departure-time 

scheduling, using a parallel insertion method and TS 

algorithm, validated on a UK distribution case. (Figliozzi, 

2012) provided a general framework for generating 
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TDVRP instances and a heuristic for hard/soft time 

windows, employing a generalized nearest neighbor 

heuristic (GNNH). (Gmira, Gendreau, Lodi, & Potvin, 

2021) developed a TS method for TDVRPTW with 

segment-based speeds including an approximate 

evaluation method and time-dependent Dijkstra’s 

algorithm, testing it on NEWLET benchmarks with up to 

200 nodes. (Ticha, Absi, Feillet, & Quilliot, 2017). 

(Dabia, Ropke, Van Woensel, & De Kok, 2013) 

introduced the first exact branch-and-price algorithm for 

TDVRPTW, using column generation and a labeling 

algorithm for the time-dependent pricing subproblem. 

(Soler, Albiach, & Martínez, 2009) transformed 

TDVRPTW into an equivalent asymmetric capacitated 

VRP (ACVRP) via graph reduction techniques. (Sun, 

Veelenturf, Dabia, & Van Woensel, 2018) studied 

profitable TDVRPTW with precedence constraints, 

developing a modified labeling algorithm and generating 

new benchmarks. (Sun, Veelenturf, Hewitt, & Van 

Woensel, 2018) in subsequent work, proposed an exact 

branch-and-price method for the time-dependent pickup 

and delivery problem with time windows (TDPDPTW) 

with profits. 

The green vehicle routing problem (GVRP) is a recent 

variant of the VRP, closely related to the TDVRP. Its 

primary objective is to incorporate environmental aspects, 

such as minimizing greenhouse gas (GHG) emissions. 

The classic version of the GVRP assumes constant travel 

speeds for vehicles. (Sharafi & Bashiri, 2016) developed 

two MIP models for the GVRP that include social factors, 

such as fair workload distribution for drivers. They also 

proposed a genetic algorithm for large-scale problems. 

(Manavizadeh, Farrokhi-Asl, & WT Lim, 2020) proposed 

a mathematical model for the GVRP that incorporates a 

bi-fuel mixed fleet and refueling options using a 

comprehensive fuel consumption function. They 

linearized the model and introduced valid inequalities to 

calculate the fuel consumption of the bi-fuel vehicles. The 

model's validity was demonstrated by solving a small-

scale example. (Shahrabi, Nasiri, & Al-e, 2024) proposed 

a sustainable VRP model integrated with cross-docking to 

enhance efficiency. The model minimizes costs, GHG 

emissions, maximum driver working hours (for social 

equity), and ensures high product freshness. A hybrid 

GA-MIP algorithm was developed for large instances, 

with results validated against CPLEX and a case study. 

Several studies have been conducted on time-dependent 

GVRP (TDGVRP). (Alinaghian & Naderipour, 2016) 

created a detailed fuel model and solved the problem with 

an enhanced firefly algorithm. (Soysal & Çimen, 2017) 

modeled congestion and solved their problem by 

converting it into a TSP solved with restricted dynamic 

programming (RDP). (Fan, Zhang, Tian, Lv, & Fan, 

2021) used trigonometric speed functions and a hybrid 

GA for a time-dependent problem with time windows. (Y. 

Liu et al., 2023) also addressed this with an ALNS 

heuristic featuring a time discretization search (TDS).  

(Ulsrud, Vandvik, Ormevik, Fagerholt, & Meisel, 2022) 

developed a MIP model and ALNS for weather-dependent 

vessel routing, allowing for unmet or delayed demand.   

(Mancini, 2017) studied TDVRP without time windows, 

proposing a two-step heuristic method. The first step 

generates initial solutions using a multi-start random 

constructive heuristic (MRCH), then the second step 

includes these solutions in a set partitioning problem 

formula. (Huang, Zhao, Van Woensel, & Gross, 2017) 

introduced the TDVRP considering path flexibility 

(TDVRP-PF), including decisions for selecting the proper 

path in TDVRP. They modeled TDVRP-PF under both 

traffic situations with deterministic and stochastic 

congestion conditions. 

(R. Zhang, Guo, & Wang, 2020) studied a time-dependent 

electric vehicle routing problem with time windows 

(TDEVRPTW) that includes congestion tolls for peak 

travel. They formulated it as a MIP model and solved it 

using an ALNS algorithm. (Lu, Chen, Hao, & He, 2020) 

studied TDEVRP, enhancing route planning for vehicles 

by optimizing departure schedules and speeds across all 

route segments using an iterative VNS (IVNS) algorithm 

that combines VND for node sequencing with specialized 

optimization for departure times and speed variables. 

(Xiong, Xu, Yan, Guo, & Zhang, 2024) enhanced electric 

vehicle routing models with drivetrain loss considerations 

under traffic congestion, using real-time congestion 

coefficients and presented an ALNS with capacity-aware 

initial solutions. 

(Pan, Zhang, & Lim, 2021) introduced the multi-trip 

TDVRPTW (MTTDVRPTW). They solved it using a 

hybrid ALNS-VND algorithm, which featured a segment-

based method to efficiently check route feasibility, (Zhao, 

Poon, Tan, & Zhang, 2024) presented a GA hybridized 

with time-dependent split algorithm (TD-SPA) for 

MTTDVRP. The TD-SPA was devised to split a tour into 

multiple routes and GA was used to generate these tours. 

Monotone queue optimization (MQO) was used to speed-

up the TD-SPA. 

(Kok, Hans, & Schutten, 2012) tested congestion 

protocols using Dijkstra’s algorithm and an RDP 

heuristic. (T. Zhang, Chaovalitwongse, & Zhang, 2014) 

developed a hybrid ACS and TS algorithm for a time-

dependent vehicle routing problem with simultaneous 

pickup and delivery (TDVRPSPD). (Rincon-Garcia, 

Waterson, Cherrett, & Salazar-Arrieta, 2020) used an 

LNS algorithm with a scheduling component to adhere to 

driving time regulations.  (Cai, Lv, Xiao, & Xu, 2021) 

presented a linearized model for connected and automated 

vehicle (CAV) routing, solved with a particle swarm 

optimization (PSO) enhanced by VNS. (Jie, Liu, & Sun, 

2022) incorporated stochastic factors (such as weather and 

traffic conditions) into TDVRP with soft time windows, 
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solving it with a hybrid sweep algorithm and improved 

PSO (IPSO). (Zhou, Li, Bian, & Zhang, 2024) introduced 

two-echelon TDVRP with simultaneous pickup-delivery 

and satellite synchronization (2E-TDVRPSPDSS), solved 

by a memetic algorithm (MA) featuring self-adaptive 

operators and specialized local search. 
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         Minimizing total travel time     
(Malandraki & 

Daskin, 1992) 

         

Minimizing the weighted 

aggregation of the overall travel 

time and delay time in serving 

all customers 

    
(Ichoua et al., 

2003) 

         

Minimizing overall travel time 

and the fraction of customers 

with time window violations 

    
(Fleischmann et 

al., 2004) 

         

Minimizing the total cost 

including vehicle fixed costs, 

routing costs and penalty cost 

of time window violations 

    
(Haghani & 

Jung, 2005) 

         

Minimizing total travel time 

including transportation and 

waiting times 

    
(Soler et al., 

2009) 

         

First minimizing the route 

number then minimizing the 

overall travel time 

    
(Figliozzi, 

2012) 

         Minimizing overall travel time     
(Dabia et al., 

2013) 

         Minimizing fuel consumption     

(Alinaghian & 

Naderipour, 

2016) 

         
Maximizing the earned profit 

minus the overall travel time 
    

(Sun, 

Veelenturf, 

Dabia, et al., 

2018) 

         

Maximizing the earned profit 

minus the sum of travel time 

and fixed costs 

    

(Sun, 

Veelenturf, 

Hewitt, et al., 

2018) 

         
Minimizing total distance 

traveled 
    

(Pan et al., 

2021) 

         
Minimizing fuel consumption 

and greenhouse gas generation 
    

(Cai et al., 

2021) 

         
Minimizing total travel time 

including transportation, 
    

(Gmira et al., 

2021) 
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waiting and service times 

         

Minimizing the total cost 

including fixed costs, fuel 

consumption and penalty costs 

of time windows violations 

    
(Fan et al., 

2021)  

         

Minimizing the total cost 

including the vessels travel 

costs plus the cost of renting 

new vessels and penalty costs 

of back-ordering some demands 

    
(Ulsrud et al., 

2022) 

         

Minimizing total cost including 

distance traveled costs, fixed 

costs and penalty costs of time 

window violations 

    (Jie et al., 2022)  

         
Minimizing greenhouse gas 

generations 
    

(Y. Liu et al., 

2023) 

         

Minimizing the sum of fixed 

cost and overall travel time 

costs 

    
(Zhao et al., 

2024) 

         Minimizing fuel consumption     
(Xiong et al., 

2024) 

         

Minimizing the sum of fixed 

costs, routing costs, loading, 

inventory and fuel consumption 

costs 

    
(Zhou et al., 

2024) 

As shown in Table 1, all existing ConVRP research 

assumes constant travel times, and none has considered 

time-dependent travel times in their models. Additionally, 

Table 2 reveals that the existing TDVRP literature has not 

yet explored consistency considerations for customers. 

This indicates a significant research gap in the ConVRP 

literature, where all studies assume constant travel 

times—an assumption far removed from real-world 

applications. Moreover, most ConVRP studies do not 

allow flexible depot departure times—a feature 

demonstrated in the literature to enhance arrival time 

consistency. To address this gap, we incorporate both 

time-dependent travel times and flexible vehicle departure 

times into the ConVRP model, with constant travel times 

becoming a special case of the newly proposed model. 

3. Problem Description and Mathematical Modeling 

In this section, we extend the ConVRP by assuming time-

dependent travel times instead of distance or constant 

times used in all previous studies of ConVRP. We call the 

new problem as consistent time-dependent vehicle routing 

problem (ConTDVRP). The ConTDVRP is characterized 

as follows. We have a fleet of at most k identical vehicles 

positioned at a single depot, each with a fixed capacity Q. 

These vehicles must depart from and return to the depot 

after completing their routes. The problem spans d days 

(or periods) with each customer requiring service on 

a specific pre-determined day(s) and can be served at 

most once per day from any vehicle. All routes must 

finish by time T. The service time and demand for each 

customer on their requested day are known in advance 

with specific values. The same driver services each 

customer at approximately the same time each day 

throughout the planning period, ensuring the maximum 

difference between the latest and earliest arrival times 

(called l-max) never exceeds the permitted maximum L. 

In this problem, initial vehicle departure from the depot is 

synchronized to occur at time zero, (i.e., from the start of 

working day) and vehicles are prohibited from idle 

waiting at customer sites. The travel time between any 

two locations is derived from time-dependent speed 

profiles which is a piece-wise linear function. The 

model’s objective function seeks to minimize total travel 

time (including travel times and service times) across all 

routes in all days of the planning period. One application 

of this problem is providing services to disabled and 

elderly people because consistency between service 

providers and customers (driver consistency) is important 

in these cases. Additionally, consistency in service times 

for these customers (arrival time consistency) must be 

maintained, which is why arrival time consistency is 

defined as a constraint in the model. The other 

assumptions of modelling the new problem are described 

in details as follows: 

• All demands in all periods must be fully met. 

• The number of available vehicles is unlimited (matching 

the total count of customers in the proposed model). 

• There are no time windows for customer demands. 

• The speed profiles between two nodes are time-

dependent and defined as stepwise functions for every 

pair of nodes in the entire network. 
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• The continuous piece-wise linear travel time functions 

associated with each pair of nodes are derived from the 

time-dependent stepwise speed functions; therefore, the 

FIFO property always holds. 

• The fastest routes connecting all nodes are precomputed 

for the entire network and do not change. 

• While traveling, a vehicle’s speed changes along the 

remaining edge distance when the time interval of the 

speed profile changes. 

• All customers have delivery demands. 

 

Notation 

The following notation is used in the mathematical modeling of ConTDVRP: 

Sets                                                                               Description 
𝐷 = {1,2, … . . , 𝑑}                                                                set of planning periods. 

𝐾 = {1,2, … . . , 𝑘}                                                          set of available vehicles in the fleet. 

𝑀𝑖𝑗 = {1,2, … . . , 𝑚𝑖𝑗}     ∀𝑖, 𝑗 ∈ 𝑁                                set of time slots in the travel time function for edge (i,j). 

𝑁 = {0,1,2, … . . , 𝑛}                                                       set of customer nodes plus depot. (where depot is node 0). 

𝑁′ = {1,2, … . . , 𝑛}                                                        set of customers. 

Parameters 

𝑏𝑝𝑖𝑗𝑚                              ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑚 ∈ 𝑀𝑖𝑗              breakpoint of time slot m in the travel time function for edge (i,j). 

𝑑                                                                                    count of planning periods. 

𝑘                                                                                    count of available vehicles. 

𝐿                                                                                    maximum arrival time difference across all customers. 

𝑀′                                                                                  a big positive value. 

𝑚𝑖𝑗                                 ∀𝑖, 𝑗 ∈ 𝑁                                 the count of breakpoints in the travel time function for edge (i,j). 

𝑛                                                                                    count of customers. 

𝑄                                                                                   maximum capacity of each vehicle. 

𝑞𝑖𝑑                                  ∀𝑖 ∈ 𝑁′, ∀𝑑 ∈ 𝐷                    demand of customer i in period d. 

𝑠𝑖𝑑                                   ∀𝑖 ∈ 𝑁′, ∀𝑑 ∈ 𝐷                     service time of customer i in period d. 

𝑇                                                                                    latest allowed return time to depot (maximum tour-length). 

𝑤𝑖𝑑 ∈ {0,1}                    ∀𝑖 ∈ 𝑁′, ∀𝑑 ∈ 𝐷                    1 if customer i requests demand in period d, 0 otherwise. 

𝜃𝑖𝑗𝑑𝑚                              ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑑 ∈ 𝐷, ∀𝑚 ∈ 𝑀𝑖𝑗 gradient of the travel time function for edge (i,j) in time slot m of 

period d. 

𝜔𝑖𝑗𝑑𝑚                             ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑑 ∈ 𝐷, ∀𝑚 ∈ 𝑀𝑖𝑗  intercept of the travel time function for edge (i,j) in time slot m of 

period d. 

Decision Variables 

𝑡𝑖𝑗𝑑𝑚𝑘                              ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑑 ∈ 𝐷,                         

                                       ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾  

𝑡𝑖𝑘𝑑

 

                                 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷     departure time of vehicle k from customer i in period d. 

𝑥𝑖𝑗𝑑𝑚𝑘 ∈ {0,1}               ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑑 ∈ 𝐷,                1 if vehicle k travels from i to j in time slot m of period d, 0 otherwise. 

                                       ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾 

𝑧𝑖𝑘𝑑 ∈ {0,1}                   ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷     1 if vehicle k visits customer i in period d equals 1, 0 otherwise.   

MILP Model 

𝑂𝐹 = 𝑀𝑖𝑛 ∑ ∑ ∑ ∑ ∑ 𝜃𝑖𝑗𝑑𝑚 ∗
𝑚𝑖𝑗

𝑚=1
𝑑
𝑑=1

𝑘
𝑘=1

𝑛
𝑗=0

𝑛
𝑖=0 𝑡𝑖𝑗𝑑𝑚𝑘 + 𝜔𝑖𝑗𝑑𝑚 ∗ 𝑥𝑖𝑗𝑑𝑚𝑘                                                                           (1) 

𝑧0𝑘𝑑 = 1                                                                                                          ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷                                          (2) 

𝑡0𝑘𝑑 = 0                                                                                                          ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷                                          (3) 

∑ 𝑧𝑖𝑘𝑑
𝑘
𝑘=1 =  𝑤𝑖𝑑                                                                                             ∀𝑖 ∈ 𝑁′, ∀𝑑 ∈ 𝐷                                           (4) 

∑ 𝑞𝑖𝑑 ∗ 𝑧𝑖𝑘𝑑
𝑛
𝑖=1 ≤ 𝑄                                                                                         ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷                                           (5) 

∑ ∑ 𝑥𝑖𝑗𝑑𝑚𝑘

𝑚𝑖𝑗

𝑚=1
𝑛
𝑖=0 = ∑ ∑ 𝑥𝑗𝑖𝑑𝑚𝑘

𝑚𝑗𝑖

𝑚=1
𝑛
𝑖=0 = 𝑧𝑗𝑘𝑑                                              ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷                              (6) 

𝑤𝑖𝑑 + 𝑤𝑖𝑑′ − 2 ≤ 𝑧𝑖𝑘𝑑 − 𝑧𝑖𝑘𝑑′ ≤ −(𝑤𝑖𝑑 + 𝑤𝑖𝑑′ − 2)                                   ∀𝑖 ∈ 𝑁′, ∀𝑘 ∈ 𝐾, ∀𝑑, 𝑑′ ∈ 𝐷|𝑑 ≠ 𝑑′          (7) 

𝑡𝑖𝑘𝑑 = ∑ ∑ 𝑡𝑖𝑗𝑑𝑚𝑘

𝑚𝑖𝑗

𝑚=1
𝑛
𝑗=0                                                                                 ∀𝑖 ∈ 𝑁′, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷                            (8) 

𝑡𝑖𝑘𝑑 + 𝜃𝑖𝑗𝑑𝑚 ∗ 𝑡𝑖𝑘𝑑 + 𝜔𝑖𝑗𝑑𝑚 − (1 − 𝑥𝑖𝑗𝑑𝑚𝑘) ∗ 𝑀′ ≤ 𝑡𝑗𝑘𝑑 − 𝑠𝑗𝑑           ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁′, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾,   ∀𝑑 ∈ 𝐷   (9) 

𝑡𝑖𝑘𝑑 + 𝜃𝑖𝑗𝑑𝑚 ∗ 𝑡𝑖𝑘𝑑 + 𝜔𝑖𝑗𝑑𝑚 + (1 − 𝑥𝑖𝑗𝑑𝑚𝑘) ∗ 𝑀′ ≥ 𝑡𝑗𝑘𝑑 − 𝑠𝑗𝑑           ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁′, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾,   ∀𝑑 ∈ 𝐷  (10) 

𝑡𝑖𝑘𝑑 + (∑ (𝜃𝑖0𝑑𝑚 ∗ 𝑡𝑖𝑘𝑑 + 𝜔𝑖0𝑑𝑚 ∗ 𝑥𝑖0𝑑𝑚𝑘)) ∗ 𝑤𝑖𝑑

𝑚𝑖𝑗

𝑚=1 ≤ 𝑇 ∗ 𝑤𝑖𝑑                   ∀𝑖 ∈ 𝑁′, ∀𝑘 ∈ 𝐾,   ∀𝑑 ∈ 𝐷                          (11) 

𝑡𝑖𝑘𝑑 + (∑ (𝜃𝑖0𝑑𝑚 ∗ 𝑡𝑖𝑘𝑑 + 𝜔𝑖0𝑑𝑚 ∗ 𝑥𝑖0𝑑𝑚𝑘)) ∗ 𝑤𝑖𝑑

𝑚𝑖𝑗

𝑚=1 ≥ 0                            ∀𝑖 ∈ 𝑁′, ∀𝑘 ∈ 𝐾,   ∀𝑑 ∈ 𝐷                          (12) 

−𝐿 + 𝑇 ∗ (𝑤𝑖𝑑 + 𝑤𝑖𝑑′ − 2) ≤ 𝑡𝑖𝑘𝑑 − 𝑡𝑖𝑘𝑑′ ≤ 𝐿 − 𝑇 ∗ (𝑤𝑖𝑑 + 𝑤𝑖𝑑′ − 2)      ∀𝑖 ∈ 𝑁′, ∀𝑘 ∈ 𝐾, ∀𝑑, 𝑑′ ∈ 𝐷|𝑑 ≠ 𝑑′          (13) 

departure time of vehicle k from customer i to customer j in time slot m of 

period d. 
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  𝑏𝑝𝑖𝑗𝑚−1 ∗ 𝑥𝑖𝑗𝑑𝑚𝑘 ≤ 𝑡𝑖𝑗𝑑𝑚𝑘 ≤ 𝑏𝑝𝑖𝑗𝑚 ∗ 𝑥𝑖𝑗𝑑𝑚𝑘                           ∀𝑖, 𝑗 ∈ 𝑁, ∀ 2 ≤ 𝑚 ≤ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾,   ∀𝑑 ∈ 𝐷                 (14) 

0 ≤ 𝑡𝑖𝑗𝑑1𝑘 ≤ 𝑏𝑝𝑖𝑗1 ∗ 𝑥𝑖𝑗𝑑1𝑘                                                                             ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾,   ∀𝑑 ∈ 𝐷                          (15) 

𝑡𝑖𝑘𝑑 ≥ 0                                                                                                           ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾,   ∀𝑑 ∈ 𝐷                             (16) 

𝑡𝑖𝑗𝑑𝑚𝑘 ≥ 0                                                                                                       ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾,   ∀𝑑 ∈ 𝐷        (17) 

𝑥𝑖𝑗𝑑𝑚𝑘 ∈ {0,1}                                                                                                 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾,   ∀𝑑 ∈ 𝐷        (18) 

𝑧𝑖𝑘𝑑 ∈ {0,1}                                                                                                     ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾,   ∀𝑑 ∈ 𝐷                             (19) 

Eq. 1 defines the objective function, which minimizes the 

overall travel time for all vehicles across every day. Eq. 2, 

3 ensure that every vehicle must visit the depot each day 

and start their routes at time zero. Eq. 4 ensures each 

customer is visited by only one vehicle on all days 

requiring service and Eq. 5 enforces the vehicle capacity 

constraint, limiting loads to Q units for each vehicle per 

day. Eq. 6, specifies that each visited customer must have 

only one predecessor and one successor. Eq. 7 maintains 

driver consistency, requiring the same driver for each 

customer across all service days. Eq. 8 defines the 

departure time of the given vehicle visiting each customer 

on requested day. Eq. 9, 10 determine the departure times 

of successive customers visited on each route and prohibit 

waiting at customer locations. Eq. 9 also serves as sub-

tour elimination constraints in the individual daily routes. 

Eq. 10 could be eliminated to permit drivers to wait at a 

location before proceeding to the next customer. The 

vehicle tour-length limit is defined by Eq. 11, 12. Eq. 13 

bounds the arrival time consistency, limiting the 

maximum difference between visit times for every 

customer across any pair of days to L time units. Eq. 14, 

15 constrain departure times between consecutive 

customers to fall within the appropriate time slot of the 

piecewise travel time function. The decision variable 

domains are defined in Eq. 16 to Eq. 19. 

4. Solution Methodology 

We design a hybrid metaheuristic that embeds a local 

search stage in a templated-based LNS algorithm. Similar 

to (Xu & Cai, 2018) our template consists of all customers 

who demand service in one period or more. First, an 

initial template generation procedure generates a feasible 

template meeting both capacity and tour-length 

limitations. Arrival time consistency isn’t considered in 

generating initial template. Then, the LNS algorithm starts 

with the initially generated template, and a pair of 

remove-repair operators is selected randomly. The 

number of removed customers is selected randomly from 

the predefined interval in each iteration of LNS. The 

selected pair of remove and repair operators destroys the 

template by removing the specified number of customers 

from the template and re-inserting them into the partial 

template routes respectively, creating a new template 

solution. In the repair operators, feasibility checking for 

template routes considers only artificial capacity limit. 

Because verifying tour-length feasibility with time-

dependent travel times is computationally expensive, and 

because the resulting template might still produce 

infeasible daily routes after resolution, we omit this check 

during the template phase. Also artificial capacity concept 

is defined similar to (Kovacs, Parragh, et al., 2014) to 

resolve and obtain daily solutions from generated 

templates in shorter time. The artificial capacity limit Qₐ  

is chosen randomly within the range [Q, Qₐ -UB], where 

Q represents the actual capacity and Qₐ -UB is the 

predefined upper bound. Qa-UB is calculated as the sum 

of maximum customer demand across all periods divided 

by the maximum number of routes required based on 

capacities among all periods. Eq. 20 illustrates how Qa-

UB is computed. 

𝑄𝑎 − 𝑈𝐵 = ∑ 𝑚𝑎𝑥∀𝑑∈𝐷{𝑞𝑖𝑑}𝑛
𝑖=1 /

𝑚𝑎𝑥∀𝑑∈𝐷 {∑
𝑞𝑖𝑑

𝑄
𝑛
𝑖=1 }                                          (20) 

Then, the sum of all travel times and the maximum 

divergence in arrival times (l_max) are approximated for 

the new solution, and simulated annealing determines 

whether to accept it. If accepted, the approximate l_max 

is verified against the threshold (i.e. l_max_constant * L). 

If below the threshold, the template is resolved into daily 

routes to verify feasibility against actual capacity and 

tour-length constraints. If template is feasible and 

approximate l-max is lower than L, then l-max is 

calculated exactly for resolved daily routes to check 

arrival time consistency. Else, if the routes are marginally 

feasible, the general improvement procedure executes to 

simultaneously reduce l_max and travel times. Else 

general repair procedures (including load- and time-repair 

operators) are performed to convert the infeasible daily 

routes to feasible ones. Subsequently, if the feasible 

solution satisfies arrival time consistency, its travel time is 

evaluated for potential selection as the best-found 

solution; otherwise, general improvement is applied to 

enhance the feasible solution satisfying all constraints. At 

this time, the first stage of generating a new template and 

choosing an accepted template as the appropriate one to 

repair and performing improvement is finished and the 

second stage is started. The second stage includes 

performing a local search procedure on the new template 

obtained from chosen repair operator of LNS. Local 

search is done for specific neighborhood structures of a 

template considering special requirements for decreasing 

neighborhood search space and computational times. As 

the obtained solution of local search may not satisfy the 

constraints on vehicle capacity and tour-length, the repair 

and general improvement procedures is performed similar 

to the first stage to first, convert the obtained solution to a 

feasible one and then improve it.  Local search and 
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general improvement procedures are described below in 

details. We refer to the proposed template-based hybrid 

LNS approach as THLNS. 

 

Algorithm 1. Pseudo code of the proposed THLNS 

Input: l_max_constant, l_max_penalty, ol_penalty, ot_penalty, FC, n_e_s, pworst, Qa-UB, travel time functions, initial 

feasible template, l_max_penalty_accept, local_search_counter_limit, repair and remove operators, wt^, c 

Output: best_solution, best_found_objective, l_max of best solution 
local_search_counter = 0 

iteration = 0 

current template = initial feasible template 

while local_search_counter <= local_search_counter_limit: 

        if iteration % 50 = = 0 and local_search_counter = = 0: 

                l_max_constant += 0.2 

        iteration += 1 

        if iteration > 2000: 

                choose q randomly from [min (0.2* 𝑛, 30),  min (0.4* 𝑛, 60)] 
       else: 
             choose q randomly from [min (0.1* 𝑛, 30),  min (0.2* 𝑛, 60)] 

        choose y randomly from [0,1] 

       Qa = Q + y * (Qa-UB – Q) 

        select a pair of remove and repair operators randomly  

        apply selected pair on current template to obtain a candidate template 

        resolve candidate template and calculate objective and l_max approximately 

        if l_max > L: 

                cand objective with penalty = candidate objective + (l_max – L) * l_max_penalty_accept 

        else: 

                cand objective with penalty = candidate objective 

        if (accept && l_max <= l_max_constant * L) || (iteration > 2000 && l_max <= l_max_constant * L): 

                check feasibility status of the candidate template 

                if l_max <= L and status = = “feasible”: 

                        calculate new objective and l_max exactly   

                        update best_feasible_objective 

                else: 

                        perform First Stage on the candidate template 

                 perform Local Search (The Second Stage) on the candidate template to obtain a new template 

                 resolve the new template and check feasibility status 

                 perform First Stage on the new template 

end while 

return best_solution, best_found_objective, l_max of best solution 

4.1. LNS Components 

4.1.1. Initial template generation 

An initial feasible template is generated with respect to 

capacity and tour-length constraints. First, all customers 

are unassigned at the empty solution. Initial template 

generation takes the empty solution and uses a greedy 

heuristic method for sequentially adding customers in 

feasible positions with a minimum added travel time 

across all routes. Each position is checked for feasibility 

by resolving the template to daily routes and checking 

feasibility on each day. Then, the increase in travel time 

for each position is computed for each day and added to 

obtain total inserting cost for each position. The daily 

routes are feasible, if they satisfy load capacity and tour-

length limits. Arrival time consistency is not considered in 

initial template generation. When no feasible placement 

exists in current routes, a new empty route is added to 

assign other customers. The template generation is 

complete when all customers are assigned to a template 

route. 

4.1.2. Remove and repair operators 

We used three remove and five repair operators as 

follows. Removal and repair operators include random, 

worst, and related for removals and greedy, and regret 

(four versions) for repairs. Appendix B explains each 

operator in details.  
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4.1.3. Acceptance criterion 

The algorithm employs simulated annealing to determine 

if a new template τ producing solution s should replace 

the existing incumbent template τ. The new template τ is 

adopted when its associated solution yields a better 

(lower) objective value f ( s ')  than the current incumbent 

solution, f ( s ) . We calculate the l_max of candidate 

template’s corresponding solution approximately. If 

l_max > L, then the penalty is also added to candidate 

objective and f ( s ')  (candidate objective with penalty) is 

computed as follows: 

𝑓(𝑠′) = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 + (𝑙_𝑚𝑎𝑥 − 𝐿) ∗
                                    𝑙_max _𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑎𝑐𝑐𝑒𝑝𝑡            (21) 

l_max_penalty_accept in Eq. 21 is the penalty assigned to 

each unit of arrival time consistency violation and defined 

as follows: 

(
∑ ∑ 𝑤𝑖𝑑

𝑑
𝑑=1

𝑛
𝑖=1

𝐷∗𝑛
) ∗ (

𝑓(𝑠)

max{1,𝑙_𝑚𝑎𝑥−𝐿}
)/ (max∀𝑑∈𝐷 {

𝑀𝑆𝑇𝑐𝑜𝑠𝑡+∑ 𝑠𝑖𝑑
𝑛
𝑖=1 +min

∀𝑖∈𝑁′{𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒[0,𝑖]}

𝑇
} + max∀𝑑∈𝐷 {∑

𝑞𝑖𝑑

𝑄

𝑛
𝑖=1 })                        (22) 

In Eq. 22 f(s) and l_max were calculated for initial 

feasible template exactly. The 𝑀𝑆𝑇𝑐𝑜𝑠𝑡 is the cost of 

minimum spanning tree of the customers requesting 

demand on the given day. Distance [0, i] is the Euclidean 

distance of depot to customer i. In Eq. 22, 

l_max_penalty_accept is calculated according to 

characteristics of each problem instance. Thus, it is 

computed for each problem independently and is used as 

input parameter for the solution approach. This way, we 

reduce the number of parameters needed to be tuned 

before running algorithm. It is defined in a way that the 

more difficult to satisfy arrival time consistency in the 

problem the less acceptance penalty will be assigned for 

violation. 

The algorithm permits acceptance of worse solutions with 

probability  𝑒
−(𝑓(𝑠′)−𝑓(𝑠))

𝑡^  where 𝑡^represents the current 

temperature which is initially set to: 

𝑡^ = − (
𝑤

𝑡^

ln 0.5
) ∗ 𝑓(𝑆)                                                   (23) 

We configure 𝑡^ such that solutions worse by wt^ % have 

a 50% acceptance probability, with wt^ being a tunable 

parameter. 𝑓(𝑆) is the initial feasible template objective 

which is computed approximately. The geometric cooling 

is applied to decrease the temperature, expressed as  
𝑡^ = 𝑡^ ∗ 𝑐, where c is the cooling rate parameter. We 

used the same values for parameters as the same applied 

in (Kovacs, Parragh, et al., 2014) (wt^=0.01, c=0.9999). 

4.1.4. Selection and stopping criterion 

During every iteration, the algorithm randomly chooses a 

pair of removal and repair operators. The THLNS 

terminates when reaching the predefined local search 

iteration limit (local_search_iteration_limit). 

4.2. The first stage 

Algorithm 2. Details of the first stage used in algorithm 1 

if status = = “feasible”: 

        perform General Improvement on candidate template and obtain new solution 

        compute l_max and objective of new solution exactly 

        if l_max of new solution <= L: 

                update best feasible objective 

else: 

        perform Load and Tour-Length Time Repairs procedure to obtain new feasible template 

        resolve new feasible template to obtain new solution 

        compute l_max and objective of new solution exactly 

        if l_max <= L: 

                update best feasible objective 

        else:  

                perform General Improvement on candidate template and obtain new solution 

                compute l_max and objective of new solution exactly 

                if l_max of new solution <= L: 

                        update best feasible objective 

4.2.1. Load and Tour-Length Time Repairs 

First, we repair the template to make it load-feasible. For 

routes violating their capacity limits, we shift candidate 

points to other routes while preserving load-feasibility 

constraints. All relocations of a point must maintain route 

(driver) consistency across all days, choosing insertion 

positions that minimize overall travel time throughout the 

planning horizon. Travel times are computed using 

estimated travel time functions. The shift must not worsen 

the new route’s overload. The procedure favors minimal 
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template perturbation, because the current template has 

been accepted as new incumbent template in LNS or 

locally optimized by the local search stage. Thus, we 

prioritize: (1) single-shift repairs to execute relocations 

that resolve route violations through single-shift 

corrections and (2) shifts minimizing total travel time. If 

no appropriate points are found, we implement the shift 

yielding the minimal total cost: 

 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 + 

                 𝑜𝑙_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∗   𝑡𝑜𝑡𝑎𝑙 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑                (24) 

Then, the repair process of this route is complete. Total 

overload is determined by summing daily overloads 

across all routes. ol_penalty represents the overload 

penalty factor. Again, total travel times are computed 

using estimated travel time functions. We then seek to 

find points capable of resolving the route through one 

more relocation. Iterations continue until achieving load-

feasibility. When no valid shifts exist, the solution creates 

a new empty route to be replicated daily. Time feasibility 

is then addressed through a process comparable to load 

repair: for each route violating time constraints, carefully 

selected points are shifted to other routes without creating 

new capacity violations or increasing overtime on the 

destination route.  

Here, the total cost is computed similarly as follows: 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 + 

                     𝑜𝑡_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∗   𝑡𝑜𝑡𝑎𝑙 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒             (25) 

We approximate overtime using estimated travel times for 

each route, then total overtime is obtained by adding 

overtime of all routes over all days. Total travel time is 

also computed the same as load repair and ot_penalty is 

the penalty coefficient per overtime. 

4.2.2. General improvement 

As mentioned before, the general improvement procedure 

is performed on solutions that satisfy both capacity and 

tour-length limitations. The main structure is the same as 

the local search procedure, i.e., three operations 

introduced above are applied during every iteration and 

the solution minimizing the total cost across three 

neighborhoods is determined, but there are some 

differences. First, three operations are applied only on the 

same route to maintain the driver consistency of the 

current solution. Moreover, feasibility checking is 

performed with respect to tour-length constraints and only 

feasible movements are evaluated to obtain an improved 

feasible solution. It is worth noting that because 

operations are only applied on the same route, capacity 

constraints cannot be violated and thus need not be 

checked. Thus, total cost change is only consists of travel 

time change of the operation in the selected day and the 

change of total time difference excess. Also, no filtering is 

done and all feasible movements of operations are 

evaluated. Another difference is that operations are 

performed on daily routes and are compared among all 

routes of all periods. Finally, as indicated in (Kovacs, 

Parragh, et al., 2014), the reverse operation is restricted to 

apply on sequences with maximum length of three nodes 

here to avoid large increases in l-max and also to help 

solve larger instances in relatively reduced computational 

time. All other details of general improvement are the 

same as local search. 

4.3. Local search (the second stage) 

We use three well-known neighborhood search operators 

to define the neighborhood search structures. Each of 

these structures is searched to improve the total cost of the 

given template solution which is used as the lowest cost in 

each iteration and is initialized with C0. (Xu & Cai, 2018) 

used a near concept to restrict the neighborhood search 

structures. In this concept if an operator could not create 

connections between a predefined fraction of near 

customers, this operator would be skipped and not be 

evaluated (Xu & Cai, 2018). The near concept was only 

based on distances between customers. As we study the 

problem under time-dependent conditions here, we apply 

a different filtering method to restrict the search space for 

each operator.  

4.3.1. Filtering mechanism 

Estimation methods were proposed in (Gmira et al., 2021; 

Ichoua et al., 2003) to approximately evaluate 

neighboring solutions for solving the TDVRPTW using 

the TS algorithm. In (Ichoua et al., 2003), interpolation 

was used to approximate the travel time of new solutions 

in the neighborhood. In the approximate evaluation used 

in (Gmira et al., 2021), the delay in the departure time of 

the subsequent node (which is affected by the operation) 

is calculated and multiplied by its penalty value. This 

penalty is itself derived from the delay propagated to the 

next node when the current node’s departure is delayed by 

one unit. We employ this delay concept as a filtering 

mechanism for each operation.  In Fig. 1, nodes 5 and 0 

represent the subsequent affected nodes along routes a 

and b, respectively, after applying the reverse operation. 

The following filtering condition is applied: 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠   
                                                                             ≥ 𝐹𝐶 ∗ 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒 𝑛𝑜𝑑𝑒𝑠   (26)

Each node’s departure time delay is the difference 

between its departure time after and before applying the 

operation. By summing the delays at nodes 5 and 0, we 

obtain the total delay. Early departure times mean the 
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departure times of these two nodes in the current solution 

before applying the operation. If the inequality defined in 

Eq. 26 holds, then this reverse operation move will be 

skipped and will not be evaluated. Otherwise, the cost 

change caused by the operation is evaluated. In this way, 

we skip the operations without significant potential to 

improve the solution and reduce the computational time. 

We realized that FC = -0.1 would be a good value to 

sufficiently reduce the search space for solving large 

instances in reasonable times. 

We compute changes in: (1) travel time (Ct), (2) overtime 

(Cot), and (3) overload (Col) on each day to obtain the cost 

change. However, because of time-varying travel times, 

the calculation of Ct and Cot is not straightforward as done 

in (Xu & Cai, 2018). Whereas (Xu & Cai, 2018) used 

distance-based calculations, we compute changes in time-

dependent travel times per operation on each day. 

Estimated travel time functions are computed to 

approximately calculate the change in travel times. These 

estimated functions obtain the travel time with the 

distance between nodes divided by the relevant speed of 

the time interval in which the departure time is positioned. 

Summing Ct across all days yields Ctt..The change of 

overtime for each day (Cot) is also calculated based on Ct 

of each affected route and then total overtime change 

(Ctot) is calculated similarly. Calculating the change in 

total overload (Ctol) is computationally inexpensive and 

direct, providing a cost change without change in total 

time difference excess (CcwTotd) as CcwTotd = Ctt + 

ol_penalty * Ctol + ot_penalty * Ctot = total cost change 

(Tcc) – l_max_penalty * Ctotd, in which Ctotd denotes the 

change in total time difference violation. Ol_penalty, 

ot_penalty, and l_max_penalty are penalty factors 

associated to load, tour-length and time difference 

violations. We need to determine Ctotd to calculate Tcc. 

Given the time-intensive nature of Ctotd computation, we 

instead compute operation_cost = C0 – l_max_penalty * 

t_otd_initial + CcwTotd, in which t_otd_initial and C0 are 

the total time difference violation and total cost of current 

template respectively. If operation_ cost ≥ C0, since the 

template’s total time difference violation remains non-

negative after the operation, the new template’s cost 

cannot be lower than C0. Therefore, Ctotd computation is 

unnecessary. However, if this condition isn’t met, we 

compute Ctotd to determine Tcc. It is worth to note that Ctotd 

is also computed using estimated travel times to keep the 

computational time as short as possible. As noted in 

(Gmira et al., 2021; Ichoua et al., 2003) a predefined 

number of better solutions regarding approximated 

evaluations were kept and then the total cost of these 

solutions were computed exactly and the best solution 

was obtained. The input parameter showing the number of 

better solutions to keep for exact evaluation is indicated as 

n_e_s in our algorithm. In early stages of designing our 

algorithm we realized that n_e_s = 30 seems appropriate 

to keep the operations exact enough and simultaneously 

decreasing computational time. Three neighborhood 

structures are generated by three operators namely, 

relocation, exchange and reverse operators. Each of these 

operators can be performed within a single route or across 

multiple routes. The relocation operation moves a point to 

a different position, while the exchange operator 

interchanges the positions of two points, finally, Reverse 

operator reverses parts of the selected routes. In order to 

prevent increasing in reverse operations of local searches 

in larger instances, the reverse is restricted to apply on 

parts with maximum length of eight nodes. This value 

showed satisfying results in our preliminary stages of 

designing algorithm regarding computational efficiency 

and solution optimality. During every local search 

iteration, these three neighborhood structures of a 

template are searched through implementation of the three 

operations. In order to more decrease the computational 

time of local search in solving large instances, the local 

search iteration count is limited to eight iterations before 

finding an arrival-time consistent solution and if a 

consistent solution is found, this limit will decrease to 

three iterations. The lowest-cost template solution found 

across all three neighborhoods is determined. If the total 

cost of this template is lower than the current template 

and iteration limit is not reached, the search continues 

with new template as the current template. Otherwise, 

local search is complete. Fig. 1 shows how the three 

operations are applied on template routes
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Fig 1. Three types of operations used in Local Search 
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4.4. Departure-time adjustment 

(Kovacs, Parragh, et al., 2014) proposed the exact and 

heuristic methods for adjusting the departure times of 

vehicles from depot. They indicated that delaying vehicle 

departure times from depot can considerably improve 

arrival time consistency without changing in total travel 

times. (Kovacs, Golden, et al., 2015) embedded a new 

sophisticated heuristic for adjusting the departure times in 

their proposed LNS. These approaches are presented for 

ConVRP in which travel times are assumed to have 

constant values not dependent on departure times. Thus, 

delaying departures from the depot doesn’t have any 

impact on travel times. The heuristic approach presented 

in (Kovacs, Golden, et al., 2015) cannot be used directly 

for adjusting departure times in ConTDVRP, so we 

modify and extend this heuristic approach to be used in 

our problem. Algorithm A.2 in appendix A indicates the 

pseudocode of their approach. (More details of their 

algorithm are explained in (Kovacs, Golden, et al., 2015)). 

According to the heuristic approach, the maximum push 

forward pf (j,k) and pull backward pb (j,k) of customer j’s 

route on the relevant day(s) is determined in relation to all 

other customers k sharing that route. In ConTDVRP, 

delaying departure time of a route from depot affects 

travel times between customers of the route. So, the 

computation cannot be straightforwardly done as in 

(Kovacs, Golden, et al., 2015), because delaying 

departure times of a route from depot may not lead to the 

same delay in arrival times of customers visited in the 

route. Thus, we modify their algorithm by proposing an 

iterative method for computation of pf (j,k) and pb(j,k) 

values in ConVRP with time-dependent travel times. 

Algorithm 3 shows the pseudocode of our proposed 

iterative approach. We implement an enhanced version of 

the THLNS approach in which when the obtained solution 

fails to satisfy arrival time consistency constraint, the 

extended heuristic for adjusting departure times is 

executed to check if it can improve l-max to find feasible 

solution. In the next section, we solve each problem 

instance by two versions of the proposed THLNS

Algorithm 3. Pseudocode of the proposed iterative approach to compute pf (j,k) in Algorithm A.2 

Input: customers j and k, arrival times of all customers in days, solution routes, day, customer j’s route on the given day, 

current delayed departure of routes in all days, speed profile (SP) with corresponding breakpoints (bp), α 

Output: delay value in departure time (dt) of customer j’s route on the given day 

if customer j’s route on the given day is existed in current delayed departure of routes: 

        candidate dt of customer j’s route on the given day = its former dt + (last bp of SP- its former dt)/2 

else: 

       candidate dt of customer j’s route on the given day = last bp of SP/2 

candidate dt list = empty list 
add candidate dt to candidate dt list 

while True: 

      set all departure times to zero 
      set departure time of customer j’s route on the given day to the candidate dt 

      if customer j’s route is feasible after setting its departure time on the given day: 

              compute arrival times of customers j and k in all days 

              compute the arrival time difference of customers j and k (ATD_of_j, ATD_of_k) 

              if ATD_of_j < ATD_of_k: 

                     if || candidate dt list || <=1 

                            candidate dt = candidate dt – (candidate dt – former dt) / 2 

                            add candidate dt to candidate dt list 

                     elseif absolute (candidate dt – the last but one element of candidate dt list) > α: 

                            candidate dt=candidate dt -absolute (candidate dt – a last but one element of candidate dt list) /2 

                            add candidate dt to candidate dt list 

                     else: 

                             break 

              else:  

                     if || candidate dt list || <=1 

                            candidate dt = candidate dt + (last bp of SP – candidate dt) / 2 

                            add candidate dt to candidate dt list 

                 elseif absolute (candidate dt – the last but one element of candidate dt list) > α: 

                       candidate dt=candidate dt +absolute (a last but one element of candidate dt list -candidate dt) /2 

                            add candidate dt to candidate dt list 

                 else: 

                            break  

       else: 

            if || candidate dt list || <=1 
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                     candidate dt = candidate dt – (candidate dt – former departure time) / 2 

                     add candidate dt to candidate dt list 

            elseif abs (candidate dt – the last but one element of candidate dt list) > α: 

                     candidate dt = candidate dt – absolute (candidate dt – the last but one element of candidate dt list) /2 

                     add candidate dt to candidate dt list 

               else: 

                     break 

end while 

return absolute (candidate dt – former dt of customer j’s route on the given day)  

We found that α = 0.01 and ϵ  = 0.01 are proper values to 

converge fast and exactly. The calculation of pb (j,k) can 

be done similarly using analogous logic. According to 

(Kovacs, Golden, et al., 2015), calculation of pb (j,k) is 

done when pushing forward is not possible. Then, the 

previously pushed departure times become candidates to 

see if they can be pulled backward. Tour-length feasibility 

remains guaranteed because: the former feasible departure 

times will be decreased in this case and also the FIFO 

property holds on, and it is not needed to check the 

feasibility after setting the departure time on the given 

day. 

5. Computational Experiments  

In this section, time-dependent travel time functions were 

computed in MATLAB 2020, while the proposed 

approach and all benchmark algorithms were 

implemented in Python 3.11. All experiments were 

conducted on a system featuring an Intel Core i7 2.6 GHz 

CPU and 16 GB of RAM. We extend the ConVRP 

benchmark instances introduced by (Groër et al., 2009) 

and generate new instances to analyze the efficiency of 

the presented approach in solving ConTDVRP. They 

created a straightforward method for randomly producing 

a ConVRP benchmark derived from the classical VRP 

benchmarks, generating a unified five-day ConVRP 

benchmark from problems 1-12 with p = 0.7 daily service 

probability. In generating these problems, they defined the 

travel times (in minutes) between any two customers as 

identical to their Euclidean distance. (Groër et al., 2009) 

reported l-max of each problem obtained by their 

proposed algorithm. Then, later research used these l-max 

values as the arrival time difference limit (L) in solving 

these instances. Table B.1 of Appendix B represents 

characteristics of the ConVRP large instances. We 

developed their benchmark instances by introducing three 

speed profiles. These profiles are derived from (Figliozzi, 

2012) which for the first time tried to define standard 

TDVRPTW instances that can be used repetitively to 

evaluate other TDVRPTW solution approaches. These 

benchmark instances incorporated two peak congestion 

intervals within the depot’s operating hours. The depot 

operational time (T) was partitioned into five equal time 

intervals, with specific travel speeds defined for each 

interval. Since our problem lacks time windows, we adopt 

their three speed profiles which presented for TDVRPTW 

with soft time windows because in this case vehicle would 

travel the same distance with the same average speed as in 

the classical VRP instances until depot closing time with 

speed variability in periods. Therefore, these profiles can 

be used to generate ConTDVRP instances without time 

windows. Similar to (Figliozzi, 2012), the depot 

operational time (i.e. [0,T]) is partitioned into five equal 

intervals and the associated travel speeds are defined for 

each profile as follows: 

𝑃𝑟𝑜𝑓𝑖𝑙𝑒_1 = [1.1, 0.85, 1.1, 0.85, 1.1]  
𝑃𝑟𝑜𝑓𝑖𝑙𝑒_2 = [1.2, 0.8,   1,     0.8, 1.2]                       (27) 

𝑃𝑟𝑜𝑓𝑖𝑙𝑒_3 = [1.2, 0.7, 1.2, 0.7, 1.2]  

For example, for the tenth problem of ConVRP instances 

with T=200, the working time is divided to the five equal 

periods as [0, 40), [40, 80), [80, 120), [120, 160), [160, 

200]. Therefore, three instances are generated regarding 

the tenth ConVRP instance and above three profiles. 

Finally, we have 36 instances of ConTDVRP by 

extending 12 ConVRP instances. Similar to former 

ConVRP research, we assumed the l-max values reported 

by (Groër et al., 2009) as l-max limit (L) values. The ch-3 

problem with profile 2 is chosen as the middle instance to 

perform design experiments. We tune four parameters 

including l-max-penalty, ot-penalty, ol-penalty and l-max-

constant by Taguchi method. Three levels are tested per 

parameter and L-9 array is used to perform 9 experiments 

with proposed levels. Each experiment is repeated five 

runs on ch-3 with profile 2. The response variable is 

computed by Eq. 28 and defined such that the relative 

percentage violation of l-max in compare to L is added to 

the best-found travel time as penalty. 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 ∗ (1 + 𝑙_max _𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛/𝐿) 

                                                                                    (28) 

Table B.2 of Appendix B shows the results of tunning 

parameters and Figs. B.1.a-B.1.b display the main effect 

plots for Means and SN ratios respectively. Then the best 

levels of parameters are determined based on SN ratios as 

follows: l-max-penalty = 75, ot-penalty = 10, ol-penalty = 

10 and l-max-constant = 1.75. These parameter settings 

are used in performing all numerical experiments of this 

section. Totally, 12 instances are solved with proposed 

THLNS for each speed profile and solving each instance 

is repeated five runs. Table 3 shows the obtained results. 

In this table ch-1 to ch-12 indicates 12 benchmark 

instances of ConVRP. There are five columns reported for 

each speed profile. Avg.TT and Avg l-max indicates 

averages of the travel time (in minutes) and l-max of each 
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instance over five runs. Similarly, Min TT and Min l-max 

shows minimum travel time and minimum l-max of each 

problem among five runs respectively. Avg CPU time 

represents the average processor runtime (in seconds) for 

solving each instance. As shown in the Avg. TT column 

of Table 3, the average travel time across all instances 

remains nearly unchanged between Profile 1 (6,978.7) and 

Profile 2 (6,930.5), with a marginal decrease of 0.69%. 

However, it increases significantly by 4.98% from Profile 

2 (6,930.5) to Profile 3 (7,275.45). Average l-max 

increases by about 5.39% from profiles 1 to 2 and 

decreases only 1.22% from profiles 2 to 3. The average 

CPU time increases considerably from profiles 1 to 2 and 

2 to 3 (3.78% and 9.1% respectively). it indicates that 

obtaining solutions with satisfying l-max becomes 

difficult by increasing the speed variation between 

periods. (from profiles 1 to 2) and obtaining solutions 

with less travel time becomes difficult by more increasing 

in speed variation (from profiles 2 to 3). Also, the CPU 

runtime of the proposed algorithm increases with greater 

variations in the speed profile. 

 

 

Table 3 

Results for ConTDVRP instances solved by THLNS without departure-time adjustment 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also solve above instances by including extended 

heuristic for adjusting departure times in the proposed 

approach. The obtained results are represented in Tables 

4-6. 

Table 4 

Obtained results of proposed THLNS with departure-time adjustment for profile 1 

ID 

Profile 1 (k, d) = departure time of route k in day d (in minutes after working start time) and 

departure times of all remaining routes of other days equals zero (i.e. the starting time of 
depot). 

Avg. 

TT 

  Avg 

l-max 

Min 

TT 

Min 

l-max 

Avg CPU 

time 

Ch-1 2067.65 25.17 1925.2 20.65 283.16 (5,2) = 14.59,  (4,2) = 4.9,  (1,1) = 11.53,  (1,3) = 11.53 

Ch-2 3602.25 31.17 3586.21 27.51 585.08 (10,3) = 34.61,  (3,4) = 23.2,  (4,1) = 0.2 

Ch-3 3207.14 20.32 3179.08 18.08 1952.31 (2,2) = 9.89,  (7,1) = 5.13,  (2,3) = 9.93,  (4,3) = 0.67, (6,3) = 2.04 

Ch-4 4922.25 26.28 4661.18 25.05 5990.06 (1,2) = 16.23,  (11,5) = 8.29,  (4,3) = 7.77,  (8,4) = 2.55 

Ch-5 6616.72 23.85 6362.17 22.58 15846.19 (4,4) = 4.13,  (2,1) = 9.23,  (11,2) = 2.97 

Ch-6 3945.99 60.06 3800.1 58.87 103.59 (3,5) = 25.45,  (1,3) = 2.67,  (6,4) = 27.26 

Ch-7 6791.98 68.48 6277.42 62.93 275.75 (1,5) = 22.8 

Ch-8 6879.16 68.62 6810.64 63.42 910.92 (9,5) = 3.7 

ID 

Profile 1 Profile 2 Profile 3 

Avg. 

TT 

  Avg 

l-max 

Min 

TT 

Min 

l-max 

Avg 

CPU 
time 

Avg. 

TT 

Avg 

l-max 

Min 

TT 

Min 

 l-max 

Avg 

CPU 
time 

Avg. 

TT 

Avg 

l-max 

Min 

TT 

Min 

l-max 

Avg 

CPU 
time 

Ch-1 2560.33 30.19 2514.29 23.04 256.07 2587.35 29.01 2330.31 23.63 275.16 2607.39 30.22 2364.03 25.62 310.70 

Ch-2 4231.41 29.45 4081.86 28 529.61 4277.20 31.92 4131.51 30.44 549.12 4195.17 47.77 3996.67 29.83 857.01 

Ch-3 4180.08 22.50 4099.3 22.21 2198.47 4074.68 30.95 3938.46 22.37 3198.40 4380.86 27.32 4330.75 21.54 3159.52 

Ch-4 5934.86 29.59 5825.97 26.44 8789.10 6134.98 26.92 5811 26.79 7793.79 6427.19 27.01 6141.46 26.38 9295.81 

Ch-5 8710.42 25.71 8370.79 24.04 16020.71 8036.07 25.04 7634.67 24.13 19765.97 8990.23 24.48 8641.11 23.49 18564.67 

Ch-6 4564.68 60.48 4497.72 56.94 90.17 4799.10 55.71 4694.14 48.68 117.95 5147.91 55.46 5054.69 53.87 120.29 

Ch-7 7621.47 77.43 7349.64 72.5 291.50 7872.98 77.77 7613.68 72.47 322.75 8036.68 71.72 7784.81 68.24 280.48 

Ch-8 8409.34 69.96 8324.01 65.05 931.68 7979.71 72.19 7533.1 71.76 1103.91 8406.35 69.53 8240.35 68.32 927.72 

Ch-9 11937.39 74.29 11812.1 66.7 2562.50 11947.33 81.90 11609.58 72.53 2212.37 12405.31 92.60 12098.53 74.6 3569.95 

Ch-10 14924.51 78.52 14864.02 70.01 18868.65 15070.18 85.02 14733.72 79.02 16994.68 15623.62 68.86 15321.01 60.09 20545.73 

Ch-11 5965.49 15.36 5677.58 14.67 4614.21 5871.00 17.50 5623.39 15.65 5585.79 6482.56 17.68 6203.2 15.61 5118.72 

Ch-12 4704.39 18.41 4691.65 17.04 2708.59 4515.39 26.62 4362.67 11.78 2129.74 4602.07 21.08 4356.71 17.05 2762.57 

Average 6978.7 44.32 6,842.41 40.55 4,821.77 6,930.5 46.71 6,668.02 41.6 5004.14 7,275.45 46.14 7044.44 40.39 5,459.43 
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Ch-9 10899.54 92.06 9472.26 73.61 2459.83 
(3,4) = 108.51,  (12,2) = 57.12,  (12,4) = 45.72,  (12,5) = 57.12, (5,1) = 48.79 (5,2) = 26.53,  

(5,3) = 71.64,  (5,5) = 48.79,  (9,1) = 1.09, (9,2) = 28.6 (9,3) = 41, (9,5) = 75.18 

Ch-10 12262.19 51.71 12026.84 49.19 16464.46 (17,5) = 22.6,  (1,3) = 15.45,  (11,3) = 23.94,  (8,1) = 30.73, (12,2) = 23.21 , (9,5) = 13.31 

Ch-11 4712.95 15.54 4570.08 14.93 4524.55 (6,5) = 2.22,  (2,4) = 7.21,  (1,1) = 6.13,  (4,2) = 5.04 

Ch-12 3676.80 24.84 3441.66 17.46 2038.83 (3,2) = 6.55,  (2,4) = 0.49 

Average 5,798.72 42.34 5,509.4 37.86 4,286.23  

 

Table 5 

 Obtained results of proposed THLNS with departure-time adjustment for profile 2 

ID 

Profile 2 (k, d) = departure time of route k in day d (in minutes after working start time) and 

departure times of all remaining routes of other days equals zero. (i.e. the starting time of 

depot). 
Avg. 

TT 

  Avg 

l-max 

Min 

TT 

Min 

l-max 

Avg CPU 

time 

Ch-1 2284.17 31.50 2064.85 23.81 274.79 (3,1) = 3.74,  (2,2) = 3.41,  (1,5) = 6.34,  (4,5) = 7.62 

Ch-2 3429.78 30.39 3303.21 24.19 628.42 (3,4) = 21.2,  (7,2) = 3.23,  (8,1) = 5.38,  (4,2) = 18.11 

Ch-3 3413.94 36.02 3311.27 22.09 3016.03 (5,1) = 5.27,  (4,3) = 1.2,  (3,2) = 2.42,  (1,2) = 17.28, (2,1) = 1.4 

Ch-4 4983.21 26.20 4652.63 25.81 6712.92 (11,5) = 13.46 

Ch-5 6677.46 24.11 6339.33 22.69 16593.30 (18,1) = 13.89,  (3,3) = 20.12,  (11,2) = 2.28,  (14,2) = 9.54 

Ch-6 3900.32 50.86 3792.55 49.98 129.15 (5,5) = 16.57,  (4,4) = 10.05 

Ch-7 6295.96 69.11 6244.67 62.53 330.78 (6,4) = 19.27,  (10,5) = 23.43,  (1,3) = 28.96,  (1,5) = 50.44 

Ch-8 6825.32 65.56 6710.29 61.75 1144.77 (7,5) = 28.01,  (1,1) = 2.06 

Ch-9 10447.45 96.70 9435.13 79.52 2599.83 (9,4) = 5.76 

Ch-10 12623.81 53.00 12260.82 50.65 12611.39 
(14,5) = 33.48,  (17,4) = 35.68,  (11,2) = 32.29,  (6,1) = 19.61, (10,3) = 20.11 (2,3) = 45.27,  

(16,1) = 23.32,  (9,1) = 20.93,  (8,5) = 24.3, (12,3) = 2.58 (2,1) = 2.61, (12,1) = 42.83 

Ch-11 5251.63 26.10 4775.68 13.95 3826.13 (1,2) = 11.4,  (5,2) = 5.33,  (2,2) = 5.18,  (4,2) = 7.4, (4,4) = 6.49 

Ch-12 3674.09 16.01 3376.92 14.45 2018.39 (4,5) = 0.69 

Average 5,817.26 43.8 5,522.28 37.62 4,157.16  

 

Table 6 

Obtained results of proposed THLNS with departure-time adjustment for profile 3 

ID 

Profile 3 (k, d) = departure time of route k in day d (in minutes after working start time) and 

departure times of all remaining routes of other days equals zero. (i.e. the starting time of 

depot). 
Avg. 
TT 

  Avg 
l-max 

Min 
TT 

Min 
l-max 

Avg CPU 
time 

Ch-1 2099.07 26.38 1976.7 23.98 398.24 (1,1) = 13.36,  (4,5) = 3.86,  (4,1) = 2.86,  (3,4) = 5.69 

Ch-2 3532.49 45.35 3206.66 25.94 796.13 (7,2) = 1.7 

Ch-3 3318.93 29.77 3271.9 20.44 3394.12 (7,4) = 2.41,  (4,3) = 11.83,  (2,4) = 6.9,  (4,4) = 12.85,  (3,2) = 3.83 

Ch-4 4952.92 25.74 4825.05 25.42 8198.00 (4,2) = 15.68,  (8,4) = 7.46,  (9,5) = 4.24 

Ch-5 6659.22 22.22 6119.33 19.39 17225.56 (17,5) = 13.93,  (2,2) = 7.71,  (14,2) = 10.65 

Ch-6 3983.76 57.25 3833.09 51.78 136.45 (2,5) = 34.23,  (1,2) = 6.24 

Ch-7 6753.92 69.28 6685.31 65.93 234.39 
(10,4) = 131.25,  (3,2) = 81.69,  (5,3) = 75.23,  (12,2) = 8.53, (12,3) = 10.07, (12,4) = 10.07, 

(12,5) = 10.07 

Ch-8 7001.64 59.81 6916.04 55.24 1082.88 (6,3) = 43.75,  (5,1) = 15.39,  (2,5) = 56.37 

Ch-9 10341.50 73.69 9916.52 63.24 4162.14 (9,4) = 36.94,  (13,2) = 36.66,  (10,3) = 15.36 

Ch-10 12794.15 56.98 12697.02 54.35 15393.22 (16,4) = 20.59,  (4,3) = 7.1,  (11,2) = 1.23,  (19,5) = 12.41 

Ch-11 5354.50 22.88 4743.74 15.01 4962.14 (2,5) = 10.65,  (5,5) = 8.21,  (3,4) = 0.52 

Ch-12 3585.17 25.85 3374.15 13.77 2226.94 (5,5) = 13.76,  (7,2) = 8.87,  (6,2) = 5.55,  (1,4) = 3.33, (2,5) = 8.31 

Average 5864.77 42.93 5630.46 36.21 4850.85  

As shown in Tables 3-6 the average travel time of all 

instances decreases for all profiles by including departure 

time adjustment in proposed approach. The average l-max 

and average CPU time of all instances also decreases for 

all profiles. The average travel time of profiles 1 to 3 

between all instances decreases by 16.9%, 16.06%, and 
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19.39% respectively compared to the baseline THLNS 

without adjusting departure times. It seems an interesting 

result, because although adjusting departure times are 

performed to decrease only l-max value without 

considering travel times, but it simultaneously achieves 

significant reductions in travel times for all defined speed 

profiles. Similarly, the average l-max decreases by 4.47%, 

6.23%, 6.96% respectively which shows that although the 

departure-time adjustment is not performed for l-max-

feasible solutions, it already can decrease the average l-

max of best-found solutions. Also, there is one instance 

for each profile in which THLNS without departure time 

adjustment cannot find arrival time consistent solution 

among five runs of the algorithm (i.e. Min l-max > L), but 

the proposed approach including departure-time 

adjustment can find arrival time consistent solutions of all 

instances for each defined profile. Average CPU times of 

all instances decreases by 11.1%, 16.93%, 11.15% for 

profiles 1-3. It is an expected result, because by adjusting 

departure times, algorithm can find consistent solution 

earlier and then iteration count limit of local search in the 

algorithm reduces from 8 to 3 which can greatly reduce 

the computational time of local search. 

All instances are also solved with constant travel times in 

which the speed equals one. Similarly, we perform five 

runs per instance. The results are collected in Table B.3 of 

Appendix B. The results demonstrate that the algorithm 

have found consistent solution for instances with tight 

time-consistency constraints (small L values) and constant 

speed profile which may not find consistent solutions in 

time-dependent profiles for them. Figure 2 compares the 

results for each instance across the constant profile and 

three other profiles. The results show that the constant 

profile generally yields lower average travel time, l-max, 

and CPU runtime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Small instances were presented in (Groër et al., 2009) to 

solve ConVRP to optimality. Similarly, we extend these 

small problems with predefined speed profiles for 

evaluating the MIP model. Table B.4 of Appendix B 

indicates the detailed information of these small instances. 

Finding optimal solutions for these instances may take 

many days. To address this, we supposed the above 

extended problems as our medium-sized instances and 

created five smaller ConVRP instances (indicated as 6-1 

to 6-5) by retaining only the first half nodes of instances 

12-1 to 12-5 while keeping all other parameters 

unchanged. Table 7 compares the optimal solutions for 

new small instances (under Profiles 1–3) with the results 

of five runs from THLNS. Here, TT* represents the 

optimal travel times for each profile, while the Avg gap 

measures the percentage variation across Avg TT and 

TT*. 
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Table 7 

 Comparing the results of THLNS without departure-time adjustment to CPLEX optimal solutions for new small instances 

ID Profile Type 

THLNS CPLEX 
Avg gap 

(%) Avg. 
TT 

Avg 
l-max 

Min 
TT 

Min 
l-max 

Avg CPU time 
(sec) 

TT* CPU Time (sec) 

6-1 

Profile_1 101.65 4.69 100.6 3.47 0.75 87.97 585.86 15.55 

Profile_2 107.45 3.34 107.45 3.34 0.11 89.63 327.47 19.88 

Profile_3 105.62 3.48 105.62 3.48 0.69 88.74 423.83 19.02 

6-2 

Profile_1 58.4 4.76 58.4 4.76 0.05 50.397 9.19 15.88 

Profile_2 58.75 4.53 58.75 4.53 0.05 50.755 2.11 15.75 

Profile_3 58.8 4.76 58.8 4.76 0.07 50.798 19.64 15.75 

6-3 

Profile_1 90.3 4.89 90.3 4.89 0.09 76.303 310.41 18.34 

Profile_2 92.22 4.75 90.93 3.91 0.75 78.136 679.25 18.02 

20.67 Profile_3 94.76 4.71 94.76 4.71 0.12 78.529 516.3 20.67 

6-4 

Profile_1 136.06 0.85 136.06 0.85 0.07 115.554 2450.02 17.75 

Profile_2 137.98 0.89 137.98 0.89 0.07 117.757 524.56 17.17 

Profile_3 136.77 0.66 136.77 0.66 0.07 116.849 243.64 17.05 

19.91 

6-5 

Profile_1 84.34 2.31 84.34 2.31 0.1 70.338 1801.47 19.91 

Profile_2 86.57 2.00 85.9 0.93 0.15 71.903 363.14 20.4 

Profile_3 89.42 1.01 85.99 0.58 0.16 71.986 2312.95 24.22 

Average 95.94 3.175 95.51 2.938 0.22 81.043 704.656 18.58 

Table 8 demonstrates the numerical results of running 

medium instances with THLNS for profiles 1-3. The MIP 

model of these instances is implemented by CPLEX 

solver. The maximum allowed runtime is configured as 

3600 seconds for all instances. The gap column measures 

the relative difference between Avg TT and Upper Bound 

if available. 

Table 8 

 Comparison of THLNS without departure-time adjustment and CPLEX on medium instances 

ID Profile Type 

THLNS CPLEX 
Avg gap 

(%) Avg. 

TT 

Avg 

l-max 

Min 

TT 

Min 

l-max 

Avg CPU time 

(sec) 

Upper 

Bound 

Lower 

Bound 

CPU Time 

(sec) 

10-1 

Profile_1 134.8027 2.8449 132.0457 2.5986 0.304 173.2276 69.2414 3600 -22.18 

Profile_2 121.4004 3.1904 109.7841 2.6533 0.352 156.478 65.9568 3600 -22.42 

Profile_3 127.7065 3.9018 124.4387 2.6333 0.326 166.3702 65.69 3600 -23.24 

10-2 

Profile_1 133.2339 2.1935 128.8691 1.6192 0.328 NA 59.7555 3600 NA 

Profile_2 126.2172 3.8888 126.2172 3.8888 0.524 140.1082 54.584 3600 -9.91 

Profile_3 123.0142 3.8292 113.6534 2.6925 0.548 159.0368 49.6378 3600 -22.65 

10-3 

Profile_1 144.7637 3.2168 144.5736 2.0669 0.444 132.4553 60.6938 3600 9.29 

Profile_2 139.1806 4.4981 138.7734 4.0838 0.626 184.3733 57.1707 3600 -24.51 

Profile_3 141.4415 4.0518 138.6834 2.6675 0.45 171.6666 55.634 3600 -17.61 

10-4 

Profile_1 146.3757 3.8678 145.2353 3.8678 0.304 193.3243 69.137 3600 -24.28 

Profile_2 142.3056 4.4032 140.0943 4.4032 0.338 186.4076 63.5727 3600 -23.66 

Profile_3 143.4217 3.4040 140.1200 1.7143 0.284 167.9169 64.7899 3600 -14.59 

10-5 

Profile_1 133.8742 2.7648 129.2655 0.6190 0.446 134.1546 66.1048 3600 -0.21 

Profile_2 129.4069 3.6138 121.9890 1.6550 1.24 149.5773 64.5501 3600 -13.48 

Profile_3 126.4124 3.3760 124.3068 1.5796 1.102 140.2731 59.5455 3600 -9.88 

12-1 

Profile_1 165.3900 3.6287 161.8618 3.3329 0.814 NA 82.4684 3600 NA 

Profile_2 155.5854 4.1498 144.4618 3.9031 0.64 363.8623 73.7669 3600 -57.24 

Profile_3 162.2788 4.0004 155.7395 3.5272 0.604 NA 72.1691 
 

3600 NA 

12-2 

Profile_1 125.0532 3.4863 123.0339 2.1266 0.426 130.067 55.3939 3600 -3.85 

Profile_2 113.4390 3.1311 107.8172 2.7000 0.74 140.6775 49.9921 3600 -19.36 

Profile_3 116.8819 4.4716 116.6014 3.7408 1.386 NA 47.9792 3600 NA 

12-3 

Profile_1 155.1394 2.5853 149.1467 1.0809 0.626 181.3129 55.0591 3600 -14.44 

Profile_2 136.9676 4.4560 128.9389 3.4452 2.718 NA 50.0187 3600 NA 

Profile_3 138.7748 2.8330 134.4852 2.5428 0.958 198.6782 48.7897 3600 -30.15 

12-4 

Profile_1 169.0764 3.4706 165.2609 2.8511 0.664 NA 69.4519 3600 NA 

Profile_2 168.2808 4.4154 154.8830 4.0701 1.37 180.526 64.1517 3600 -6.78 

Profile_3 156.316 4.5511 155.0342 4.2365 3.132 246.2437 63.6587 3600 -36.52 

12-5 

Profile_1 141.5695 3.6904 138.8055 3.0832 1.156 NA 54.77 3600 NA 

Profile_2 137.3213 3.5858 131.9158 3.0775 1.072 NA 54.8066 3600 NA 

Profile_3 133.2511 3.6156 125.4192 2.5375 1.088 NA 49.5064 3600 NA 
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We adapted the three approaches presented in literature 

for ConVRP including TALNS (Kovacs, Parragh, et al., 

2014), LNS (Kovacs, Golden, et al., 2015) and VNS (Xu 

& Cai, 2018) via replacing the constant travel times by 

piece-wise linear travel time functions and solved the 

extended large instances for profiles 1 to 3. All of these 

approaches are implemented using their tuned parameter 

values from the main work. Each instance is solved five 

times and average observed l-max and travel time values 

are reported. Table 9 compares the performance between 

these approaches for profile 3. To standardize 

comparisons, we use the average CPU time from Table 3 

(Profile 3) as the runtime limit for all algorithms per 

instance. (Similarly, Tables B.5 and B.6 in Appendix B 

compare these results for profiles 1 and 2.)  Since VNS 

does not consider departure-time adjustment, and since 

the departure-time adjustment methods of the other two 

approaches cannot be applied directly to ConTDVRP, we 

compare the base versions of THLNS, TALNS (Kovacs, 

Parragh, et al., 2014), and LNS (Kovacs, Golden, et al., 

2015) (all without departure-time adjustment) for a fair 

comparison. An approach is superior if it yields a 

consistent solution with the lowest Avg TT (where Avg l-

max ≤ L) or the lowest values for both metrics. Superior 

results are bolded; otherwise, the best-performing metric 

is highlighted in bold. THLNS outperforms others in five 

instances, TALNS in four, and neither dominates in Ch-1, 

Ch-3, or Ch-11. (Table B.6 shows the same result for 

Profile 2, while Table B.5 demonstrates the superiority of 

THLNS in seven instances for Profile 1.) For Profile 3, 

the proposed method yielded 11.82%, 12.21%, and 

34.52% lower average travel times than TALNS, LNS, 

and VNS, respectively. The corresponding improvements 

for Profiles 1 and 2 were also significant: 11.83%, 9.43%, 

35.91% and 16.48%, 10.18%, 36.57%. Thus, THLNS 

performs best under identical computational limits. 

 

Table 9 

 Comparison of THLNS (without departure-time adjustment) with three literature approaches for large instances (Profile 3) 

ID 

THLNS 
TALNS (Kovacs, 

Parragh, et al., 2014) 

LNS (Kovacs, Golden, 

et al., 2015) 
VNS (Xu & Cai, 2018) 

l-max  

Limit (L) 

CPU Runtime 

Limit (sec) Avg TT 

(min) 

Avg 

l-max 

Avg TT 

(min) 

Avg 

l-max 

Avg TT 

(min) 

Avg 

l-max 

Avg TT 

(min) 

Avg 

 l-max 

Ch-1 2607.39 30.22 3127.84 64.02 2522.70 76.60 3773.79 118.57 24.38 310.70 

Ch-2 4195.17 47.77 5992.32 87.24 5740.27 196.75 6621.35 108.55 34.26 857.01 

Ch-3 4380.86 27.32 5460.48 72.87 3530.80 106.99 6505.84 88.60 22.87 3159.52 

Ch-4 6427.19 27.01 7241.14 51.51 8645.66 260.79 10323.26 80.35 27.53 9295.81 

Ch-5 8990.23 24.48 9822.75 56.82 11254.77 253.73 13168.70 77.33 26.93 18564.67 

Ch-6 5147.91 55.46 4361.78 63.36 5493.52 162.23 6546.80 87.68 63.47 120.29 

Ch-7 8036.68 71.72 7294.19 74.04 8510.25 127.84 10192.87 60.60 83.96 280.48 

Ch-8 8406.35 69.53 9653.05 70.92 8478.89 170.75 12790.37 128.73 73.04 927.72 

Ch-9 12405.31 92.60 12378.57 64.45 13164.54 172.11 19040.19 104.61 106.43 3569.95 

Ch-10 15623.62 68.86 16489.42 58.92 17089 172.25 24603.10 115.26 60.17 20545.73 

Ch-11 6482.56 17.68 7312.16 163.45 5313.46 52.75 7312.16 163.45 16.1 5118.72 

Ch-12 4602.07 21.08 6729.97 88.75 6544.39 256.04 8228.81 78.79 17.58 2762.57 

Average 7044.44 40.39 7988.64 76.36 8024.02 167.40 10758.94 101.04 46.39 

 
5459.43 

 

To examine the impact of varying L parameters on the 

performances of THLNS with and without departure time 

adjustment, we selected instance ch-3 and increased the L 

values by 0% to 80% with 20% step, then each algorithm 

variant executed three runs per L value and profile. It 

should be noted that because the algorithm may find a 

consistent solution earlier by increasing L values, we 

don’t decrease the iteration count limit of local search 

after finding the first consistent solution and the local 

search continues with 8 iterations to the end of approach. 

This approach neutralizes the effect of decreasing L 

values on the obtained travel time and CPU times with 

respect to local search iterations and we have a fair 

comparison. Figs.3 and 4 show the obtained results of 

above changing on the proposed approach without and 

with departure time adjustment respectively. We selected 

ch-1 to analyze the effects of increasing 

local_search_counter_limit on solution metrics of each 

profile. This limit was increased from 10 to 90 counts. 

Fig. 5 indicates the obtained results. The FC parameter 

range which impacts on filtering neighborhood search 

space of a template was varied from -0.1 to 0.3 for ch-1 

and ch-8 with profile 3. Results are shown in Figs. 6 and 

7.  
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As shown in Figs. 3 and 4, the average runtime indicates a 

decreasing trend approximately as L increases for both 

versions of the proposed approach. Although the approach 

is modified and local search iterations don’t change to 

have a fair comparison in this case, CPU time decreases in 

both versions for all profiles because by increasing L 

value the candidate solutions found by LNS component 

can be accepted and chosen earlier, so performing the first 

and second stages of the proposed approach can be started 

faster. Average l-max of the solution in the first version of 

THLNS (i.e. without adjusting departure times) increases 

for profile 1. For profiles 2, 3 in the first version of 

algorithm, average l-max exceeds the limit L, but when 

the limit increases by 20 % (i.e. 1.2 L), average l-max of 

both profiles becomes very close to the 1.2 L limit. It 

shows that in profiles 2, 3 with higher speed variation, 

when the l_max limit is increased by 20%, the algorithm 

can find solutions with l-max values that are very close to 

or under the l-max limit. After that by more increasing of 

l-max, both profiles indicate similar trend as the first 

profile. As expected, in the second version of the 

algorithm with adjusting departure times, profiles 

demonstrate different behaviors and l-max indicates an 

increasing trend for profile 2 as well as profile 3 

approximately. It indicates that adjusting departure time 

leads to the solutions with satisfying or very close to l-

max limit for profiles 1, 2 and has been effective on 

decreasing remarkable values of l-max. The average 

travel time doesn’t indicate a monophonic and constant 

trend for any profile in the two versions of the algorithm. 

With the local search limit fixed at 10 (to ensure 

consistent feasible solutions within reasonable time), 

increasing l-max limit has negligible impact on travel 

times. The proposed algorithm is designed such that 

obtaining solutions with less travel times is expected by 

increasing l-max limit and local search counts 

simultaneously. Fig. 5 shows that average CPU time of 

the first version for all profiles is increased by increasing 

local search counts as expected. Average l-max is 

decreased in all profiles which indicates that increasing 

local search counts has great impact on obtaining 

consistent solutions of all profiles specially for profiles 2, 

3 with higher degrees of speed variation. Also, the 

average total travel time of profile 1 shows a decreasing 

trend approximately but other profiles don’t indicate a 

specific trend. It implies that increasing local search count 

in profile 1 can simultaneously result in finding solutions 

with less travel times and less l-max with the given l-max 

limit (L), but for profiles 2, 3 it should be required to 

increase l-max limit in addition to perform more numbers 

of local searches so that consistent solutions with less 

total travel times can be found. Figs. 6 and 7 show that by 

increasing FC parameter in the first version of the 

algorithm, the average CPU time increases with similar 

trend for both instances of ch-1 and ch-8 in profile 3. The 

average l-max first decreases greatly by increasing FC to 

0 in ch-1 and then continue decreasing until FC=0.1 and 

increasing FC above 0.1 doesn’t decrease l-max anymore. 

In ch-8 which has very higher l-max limit (L=73.04), the 

algorithm has found consistent solution for all FC values 

and increasing FC doesn’t have impact on decreasing l-

max anymore because the proposed algorithm designed 

such that inconsistent solutions are penalized and once it 

reaches a consistent solution it doesn’t give any reward to 

decrease l-max values anymore. The average travel time 

shows an approximately increasing trend with increasing 

FC for both instances of ch-1 and ch-8. This reveals an 

important result: the FC parameter can decrease the travel 

time of obtained solutions and computational time of 

algorithm simultaneously if properly set. FC=-0.1 has the 

minimum average travel time as well as CPU time among 

other values. 

5.1. Managerial insight 

The current research provides an efficient approach for 

managers to obtain consistent solutions in real-world 

cases where travel times can fluctuate because of 

changing factors like traffic congestion in urban 

environments. The research presents an approach which 

incorporates a filtering mechanism as well as estimating 

travel times to reduce the computational times, so 

managers can use it to find solutions which 

simultaneously focus on customer satisfaction via 

consistency considerations and cost efficiency by 

maintaining moderate travel times in real-world 
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environments like urban regions with reduced 

computational time.  

Results indicated that by incorporating dynamic 

conditions of real-world practice through modeling time-

dependent travel times, finding consistent solutions 

becomes more difficult. This suggests managers should 

account for dynamic conditions by implementing time-

dependent travel times, enabling them to: (1) satisfy 

customer consistency requirements while (2) maintaining 

lower travel times in practice. 

The incorporation of the departure-time adjustment 

procedure into the algorithm reduced travel times and 

improved consistency without increasing computational 

time. Moreover, thanks to the specialized design of 

THLNS, the proposed procedure further reduced 

computational time, as the algorithm could identify 

consistent solutions earlier. The results demonstrate that 

the proposed approach with departure-time adjustment 

could find consistent solutions for all ConVRP instances 

in the literature with introduced time-dependent travel 

times. Managers can apply this adjustment to large-scale 

cases in practice to meet customer consistency 

requirements more efficiently in real urban environments. 

6. Conclusion  

In recent years, the primary focus of VRP has shifted 

from fleet cost optimization to greater emphasis on 

customer-related factors. Concentrating more on customer 

satisfaction through improved service levels and quality is 

crucial to remaining competitive in today's business 

environment. Providing consistent services, using the 

same provider at roughly the same times during 

customers’ demanding periods, is a key aspect of high-

quality service in many applications such as home 

healthcare services, parcel delivery and retail distribution 

systems. It can help improve customer loyalty and 

maintain long-term relationships with the company. The 

ConVRP represents the initial VRP variant that places 

primary emphasis on ensuring customer satisfaction. All 

previous research on the ConVRP considered 

deterministic, time-independent travel times in the 

transportation network. These models may fail to reflect 

real-world scenarios, where travel times depend on 

departure times due to time-varying factors like traffic 

congestion, especially in urban environments. Thus, they 

cannot ensure arrival time consistency but can only 

guarantee driver consistency. Moreover, these models’ 

total travel time estimates may not reflect reality, leading 

to suboptimal or even infeasible solutions in practice. 

This study is the first to model time-dependent travel 

times in the ConVRP by integrating TDVRP and 

ConVRP frameworks, enhancing practicality. A template-

based hybrid approach was proposed combining VNS 

within a LNS framework. The method incorporates an 

efficient search-space filtering mechanism and travel-time 

estimation to identify consistent solutions with reduced 

computational effort. Additionally, a modified 

heuristic was developed to adjust depot departure 

times, improving arrival-time consistency. Results 

demonstrated that the proposed THLNS algorithm finds 

consistent solutions within reasonable computational 

times. The small ConVRP instances of the literature were 

also run by THLNS and CPLEX with 3600 seconds 

runtime limit. These results indicated the superiority of 

the proposed approach for finding consistent solutions 

with far lower computation times. The proposed approach 

was also compared to three established methods from the 

ConVRP literature. The results demonstrate its 

superiority, yielding consistent solutions with 13.38%, 

10.61%, and 35.67% lower average travel times than the 

alternative methods, within equal computation times. The 

results of sensitivity analysis indicated that the CPU time 

was decreased and l-max generally increased with 

increasing parameter L. By increasing local search 

counter, the CPU time was increased but average l-max 

decreased for all profiles. The average travel time 

demonstrated a decreasing trend for profile 1. The results 

of increasing FC parameter which filters the solution 

space showed that average l-max was decreased greatly 

by a little increase in FC. Increasing FC simultaneously 

increased the travel time and CPU time. This indicated the 

efficiency of filtering mechanism for skipping low-

potential solutions in the proposed approach. 

Future research should focus on a multi-objective model 

that optimizes cost (travel time), service consistency, and 

sustainability, incorporates live traffic data to handle 

unpredictable traffic patterns dynamically, and robust 

optimization or stochastic programming to deal with 

uncertainty in customer demands or service times, uses 

machine learning to predict travel time variability based 

on historical or real-time data and integrates green 

logistics with consistency. 
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Appendix A. 
Algorithm A.1. Travel time calculation procedure (Ichoua, Gendreau, & Potvin, 2003). 

𝑡 = 𝑡0 

𝑑 = 𝑑𝑖𝑗  

𝑡′ = 𝑡 + (
𝑑

𝜈𝑐𝑇𝑘

) 

𝑤ℎ𝑖𝑙𝑒 𝑡′ > 𝑡𝑘̅ 

       𝑑 = 𝑑 − 𝜈𝑐𝑇𝑘
∗ (𝑡𝑘̅ − 𝑡) 

        𝑡 = 𝑡𝑘̅ 

        𝑡′ = 𝑡 + (
𝑑

𝜈𝑐𝑇𝑘+1

) 

        𝑘 = 𝑘 + 1 

return 𝑡′ −  𝑡0 

 

Algorithm A.2. Adjustment of vehicle departure times (Kovacs, Golden, Hartl, & Parragh, 2015). 

 

𝑤ℎ𝑖𝑙𝑒 max 𝑃𝐹 >  𝜖 𝑜𝑟 max 𝑃𝐵 > 𝜖 

       𝑖𝑚𝑎𝑥 = 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑇𝐷 

       𝐵𝐶 = {𝑖𝑚𝑎𝑥} #𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑠𝑒𝑡 

       max 𝑃𝐹 = max 𝐴𝑇𝐷(𝑠) 

       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝐵𝐶 

              Max 𝑃𝐹 = min {max 𝑃𝐹, 𝑔𝑒𝑡𝑀𝑎𝑥𝑃𝐹(𝑗, 𝐵𝐶, 𝑠)} 

       𝑒𝑛𝑑 𝑓𝑜𝑟 

       𝑖𝑓 max 𝑃𝐹 >  𝜖  𝑡ℎ𝑒𝑛  
               𝑎𝑝𝑝𝑙𝑦 𝑃𝐹(𝑚𝑎𝑥𝑃𝐹, 𝐵𝐶, 𝑠) 

       𝑒𝑙𝑠𝑒 #𝑝𝑢𝑠ℎ𝑖𝑛𝑔 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 ⇒   𝑡𝑟𝑦 𝑡𝑜 𝑝𝑢𝑙𝑙 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠  
               𝐵𝐶 = {𝑖𝑚𝑎𝑥} 

                max 𝑃𝐵 = max 𝐴𝑇𝐷(𝑠) 
                𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝐵𝐶  𝑑𝑜 
                       max 𝑃𝐵 = min {max 𝑃𝐵, 𝑔𝑒𝑡𝑀𝑎𝑥𝑃𝐵(𝑗, 𝐵𝐶, 𝑠)} 
               𝑒𝑛𝑑 𝑓𝑜𝑟  
               𝑖𝑓 max 𝑃𝐵 >  𝜖  𝑡ℎ𝑒𝑛  
                        𝑎𝑝𝑝𝑙𝑦 𝑃𝐵(𝑚𝑎𝑥𝑃𝐵, 𝐵𝐶, 𝑠) 
              𝑒𝑛𝑑 𝑖𝑓 
       𝑒𝑛𝑑 𝑖𝑓 
𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 
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Appendix B. 

 Remove Operators 

 Random Removal 

The random removal operator randomly chooses 

customers and removes them from the template routes. 

This process repeats until q customers have been 

removed. 

 Worst Removal 

     The worst removal operator iteratively identifies 

customers contributing most to total travel time, and 

removes them to enable cheaper reinsertion positions. 

First, all existing customers of the template are sorted in 

decreasing order in list C based on the saving obtained by 

temporarily removing them from the template. In every 

iteration, customer 𝑖 =  𝐶 [𝑦^𝑝 ∗  |𝐶|] is removed. 

Where y is a random number ∈ [0,1) and p controls the 

impact of randomization. The saving values are updated 

and one customer is removed in every iteration until q 

customers have been removed (Kovacs, Parragh, & Hartl, 

2014). 

 Related Removal 

The related removal operator is based on the fact that it is 

easier to interchange customers within a solution when 

they are somehow related (Kovacs et al., 2014). The 

relatedness R(i, j) between two customers i and j, 

combines distance and demand relatedness measures.  

Distance relatedness measures the Euclidean distance of 

two customers and demand relatedness is the absolute 

difference between maximum demands of two given 

customers among all days. Smaller R(i, j) values indicate 

higher relatedness. The procedure is initialized by 

removing a randomly chosen customer from the template 

and inserting it into the set of removed customers D. In 

each iteration, one customer is chosen randomly from D 

to calculate the R(i, j) values. Similar to worst removal, 

this operator also incorporates randomization to obtain a 

certain degree of diversification. Therefore, all R(i, j) 

values are sorted in list C in increasing order and 

customer 𝑖 =  𝐶 [𝑦^𝑝 ∗  |𝐶|] is removed from the 

template and added to D. The process continues until q 

customers are removed. 

 Repair Operators 

 Greedy Repair  

Similar to initial template generation, the greedy repair 

operator consecutively inserts customers using a similar 

approach. For each unassigned customer, each feasible 

insertion position is checked and the customer with lowest 

insertion cost is assigned to their cheapest feasible 

position. Feasibility is checked only for capacity 

constraints based on an artificial capacity limit, selected 

each LNS iteration. 

 Regret Repairs 

Similar to the greedy approach, the regret heuristic inserts 

customers one after another by checking every feasible 

insertion position but it includes a look ahead component 

denoted as regret. This value quantifies potential 

opportunity costs from delayed insertion (Kovacs et al., 

2014). In the basic variant of the regret repair, the 

customer with the largest difference between inserting 

into their best position at best route and inserting into the 

best position at second-best route is inserted in every 

iteration. This approach extends to multiple routes (q > 2), 

enabling earlier identification of insertion difficulties. Let 

∆𝑓𝑖
𝑞
 denotes the travel time change for inserting customer 

i at his cheapest position in his q-cheapest route. If it is 

not possible to insert a customer into a route, ∆𝑓𝑖
𝑞
is set to 

infinity. In every iteration, the customer i to be inserted is 

given by eq. B.1: 

𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈𝑁′ {∑ (∆𝑓𝑖
ℎ − ∆𝑓𝑖

1)
min(𝑞,𝑚)
ℎ=2 }                   

(B. 1) 

Parameter q defines the number of routes considered in 

the current version of regret and m denotes the number of 

currently available routes. As in the greedy heuristic, an 

empty route is added whenever it is not possible to insert 

further customers in existing routes. We implement four 

regret heuristics, each with a different setting for q with 

𝑞 ∈  (2, 3, 4, 𝑚).

 

 

 
 

Fig A.1. An example of travel speed and travel time functions  (Ichoua, Gendreau, & Potvin, 

2003). 
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Table B.1 
Characteristics of large ConVRP instances 

ID Instance name 

Number of 

customer nodes 
(n) 

Capacity (Q) 
Tour-length 

limit (T) 

l-max limit 

(L) 

Number of available 

vehicles (k) 

Number of 

periods (d) 

Ch-1 Christofides_1_5_0.7 50 160 unlimited 24.38 Unlimited (= n) 5 

Ch-2 Christofides_2_5_0.7 75 140 unlimited 34.26 Unlimited (= n) 5 

Ch-3 Christofides_3_5_0.7 100 200 unlimited 22.87 Unlimited (= n) 5 

Ch-4 Christofides_4_5_0.7 150 200 unlimited 27.53 Unlimited (= n) 5 

Ch-5 Christofides_5_5_0.7 199 200 unlimited 26.93 Unlimited (= n) 5 

Ch-6 Christofides_6_5_0.7 50 160 200 63.47 Unlimited (= n) 5 

Ch-7 Christofides_7_5_0.7 75 140 160 83.96 Unlimited (= n) 5 

Ch-8 Christofides_8_5_0.7 100 200 230 73.04 Unlimited (= n) 5 

Ch-9 Christofides_9_5_0.7 150 200 200 106.43 Unlimited (= n) 5 

Ch-10 Christofides_10_5_0.7 199 200 200 60.17 Unlimited (= n) 5 

Ch-11 Christofides_11_5_0.7 120 200 unlimited 16.1 Unlimited (= n) 5 

Ch-12 Christofides_12_5_0.7 100 200 unlimited 17.58 Unlimited (= n) 5 

 
Table B.2 

 Experimental results from the L-9 Taguchi array for ch-3 with profile 2 

l-max-constant l-max-penalty ol-penalty ot-penalty Response 

1.75 50 2 2 6347.84 

1.75 75 5 5 4906.32 

1.75 100 10 10 5055.29 

2 50 5 10 6227.94 

2 75 10 2 5017.70 

2 100 2 5 6492.72 

2.25 50 10 5 6305.13 

2.25 75 2 10 5278.98 

2.25 100 5 2 6181.74 

Table B.3 

 Results of solving instances with proposed THLNS assuming constant travel times 

ID 
Constant Travel Times 

Avg. TT Avg l-max Min TT Min l-max Avg CPU time 

Ch-1 2495.59 26.58 2315.68 20.08 276.82 

Ch-2 4310.05 34.14 4080.82 34.03 557.46 

Ch-3 4247.77 22.67 4048.58 22.36 1632.53 

Ch-4 5951.96 26.49 5796.74 25.30 6423.04 

Ch-5 7925.52 21.84 7678.22 19.82 15699.15 

Ch-6 4568.71 61.94 4437.97 61.11 76.93 

Ch-7 7657.18 79.05 7596.72 79.05 206.35 

Ch-8 8043.09 71.97 7984.51 70.69 734.92 

Ch-9 12041.16 68.67 11857.75 57.11 2357.66 

Ch-10 15670.42 59.78 15271.56 59.53 14876.48 

Ch-11 5816.02 15.45 5574.57 15 4440.34 

Ch-12 4433.47 17.13 4261.69 16.93 1748.34 

Average 6,930.078 42.1425 6,742.0675 40.084 4,085.835 

 

Table B.4 

 Characteristics of small ConVRP instances (equivalent to medium ConTDVRP instances) 

ID 

Number of 

customer nodes 

(n) 

Capacity (Q) 
Tour-length 

limit (T) 

l-max 

limit 

(L) 

Number of 

available vehicles 

(k) 

Number of 
periods (d) 

10-1 10 15 35 5 Unlimited (= n) 3 

10-2 10 15 35 5 Unlimited (= n) 3 

10-3 10 15 35 5 Unlimited (= n) 3 

10-4 10 15 35 5 Unlimited (= n) 3 

10-5 10 15 35 5 Unlimited (= n) 3 

12-1 12 15 35 5 Unlimited (= n) 3 

12-2 12 15 35 5 Unlimited (= n) 3 

12-3 12 15 35 5 Unlimited (= n) 3 

12-4 12 15 35 5 Unlimited (= n) 3 

12-5 12 15 35 5 Unlimited (= n) 3 
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Table B.5 
Comparison of THLNS (without departure-time adjustment) with three literature approaches for large instances (Profile 1) 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 
 

Table B. 6 
Comparison of THLNS (without departure-time adjustment) with three literature approaches for large instances (Profile 2) 

ID 

THLNS TALNS LNS  VNS  
l-max  

Limit (L) 

CPU Runtime 

Limit (sec) 
Avg TT 

(min) 

Avg 

l-max 

Avg TT 

(min) 

Avg 

l-max 

Avg TT 

(min) 

Avg 

l-max 

Avg TT 

(min) 

Avg 

 l-max 

Ch-1 2587.35 29.01 3087.40 118.06 2328.61 99.62 3690.64 101.07 24.38 275.16 

Ch-2 4277.20 31.92 5492.65 122.69 5738.27 196.75 6783.17 115.89 34.26 549.12 

Ch-3 4074.68 30.95 5757.98 69.50 3732.82 69.94 6487.98 98.40 22.87 3198.40 

Ch-4 6134.98 26.92 8075.09 77.68 5006.74 69.12 9729.58 62.78 27.53 7793.79 

Ch-5 8036.07 25.04 11105.01 140.06 11087.99 253.73 13303.76 75.54 26.93 19765.97 

Ch-6 4799.10 55.71 4330.64 52.00 5664.84 169.70 6349.13 61.66 63.47 117.95 

Ch-7 7872.98 77.77 7569.44 81.19 8601.56 126.42 11138.10 92.12 83.96 322.75 

Ch-8 7979.71 72.19 8141.54 65.97 8235.21 172.28 12551.51 164.43 73.04 1103.91 

Ch-9 11947.33 81.90 11685.37 104.03 13491.57 168.99 18869.96 115.73 106.43 2212.37 

Ch-10 15070.18 85.02 20001.64 59.93 16269.80 171.27 24351.97 147.53 60.17 16994.68 

Ch-11 5871.00 17.50 7465.18 173.06 5762.62 177.96 9432.26 85.69 16.1 5585.79 

Ch-12 4515.39 26.62 6860.35 116.41 6676.90 256.04 8422.92 105.81 17.58 2129.74 

Average 6930.498 46.7125 8297.691 98.38167 7716.411 160.985 10925.92 102.2208 46.39 5004.14 

 

 

ID 

THLNS TALNS LNS  VNS 
l-max  

Limit (L) 

CPU Runtime 

Limit (sec) 
Avg TT 

(min) 

Avg 

l-max 

Avg TT 

(min) 

Avg 

l-max 

Avg TT 

(min) 

Avg 

l-max 

Avg TT 

(min) 

Avg 

 l-max 

Ch-1 2560.33 30.19 3109.53 74.14 2418.66 31.04 3769.12 109.68 24.38 256.07 

Ch-2 4231.41 29.45 5536.10 79.71 5736.34 196.45 6720.81 79.21 34.26 529.61 

Ch-3 4180.08 22.50 5219.33 175.48 3507.22 89.98 6603.23 58.39 22.87 2198.47 

Ch-4 5934.86 29.59 8001.31 73.20 5560.97 68.76 10254.21 92.14 27.53 8789.10 

Ch-5 8710.42 25.71 10094.21 61.18 11261.98 258.62 13394.86 87.37 26.93 16020.71 

Ch-6 4564.68 60.48 4449.57 52.01 4467.21 143.83 5844.57 74.24 63.47 90.17 

Ch-7 7621.47 77.43 7992.55 68.59 8691.78 123.75 10834.17 114.93 83.96 291.50 

Ch-8 8409.34 69.96 8176.93 62.43 7870.28 152.87 12881.56 97.88 73.04 931.68 

Ch-9 11937.39 74.29 11560.77 80.11 12763.96 166.59 19596.85 74.43 106.43 2562.50 

Ch-10 14924.51 78.52 16860.92 104.45 16158.36 174.93 23643.36 126.56 60.17 18868.65 

Ch-11 5965.49 15.36 7336.60 90.46 7349.04 326.99 8692.46 82.10 16.1 4614.21 

Ch-12 4704.39 18.41 6641.10 162.38 6673.24 265.75 8430.13 120.72 17.58 2708.59 

Average 6978.698 44.32417 7914.91 90.345 7704.92 166.63 10888.78 93.1375 46.39 4,821.77 

 
a b 

Fig B.1. Main Effects Plots for the Means and Signal-to-Noise (SN) ratios derived from Table B.2 


