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Abstract

Customer satisfaction attracts increasing attention in competitive environments. The consistent
vehicle routing problem (ConVRP), introduced in recent years, incorporates customer satisfaction
into VRP. In ConVRP, vehicle routes must be designed for multiple periods, and each customer
must be visited by the same driver at roughly the same time on each period. Previous ConVRP
research models travel times as constant and based only on distance. This is unrealistic for urban
areas, where travel times vary dynamically with factors like congestion and time of day. The time-
dependent VRP (TDVRP) incorporates time-varying travel times. In this paper, the ConVRP is
considered with time-dependent travel times to integrate the TDVRP and ConVRP models. A
mixed-integer linear programming (MILP) model is proposed for the new problem, termed the
consistent TDVRP (ConTDVRP). We extend the ConVRP benchmark instances from the literature
by incorporating time-dependent travel times. The model is solved using a solver for small-scale
instances. Since the new problem -an extension of the two aforementioned models- is NP-hard, we
propose a template-based hybrid large neighborhood search (THLNS) algorithm that incorporates
variable neighborhood search (VNS) to solve it. An iterative procedure is also presented to modify
a heuristic departure-time adjustment in the literature to be used with time-dependent travel times.
Computational experiments and sensitivity analysis are performed on new extended instances to
evaluate the efficiency of the proposed algorithm. Three presented methods in ConVRP literature
are adapted to solve ConTDVRP and the results of proposed approach compared with them for
three time-dependent speed profiles on extended instances. The results demonstrate that the
proposed method not only achieves consistent solutions with reduced computation time but also
delivers solutions with 13.38%, 10.61%, and 35.67% lower average travel times compared to the
three alternative methods. Departure-time adjustment also results in 17.48% lower average travel
times and 5.91% better time consistency across all benchmark instances and speed profiles.
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1. Introduction

The classical vehicle routing problem (VRP), studied for
over 65 years, aims to minimize the total cost or distance
traveled by a homogeneous fleet under given constraints.
While traditionally focused on fleet efficiency, recent
research has shifted toward customer-related factors like
service quality and satisfaction. Businesses now prioritize
consistent service delivery—often more valuable than
marginal cost savings—as a key competitive advantage,
especially in parcel delivery industries where reliability
enhances perceived service quality. This leads to the
introduction of the consistent vehicle routing problem
(ConVRP) (Groér, Golden, & Wasil, 2009).

In the ConVVRP framework, consistency constraints ensure
that the same driver visits the same customers (named
driver consistency) at roughly the same times across
different planning periods (named arrival time
consistency). Driver (or service provider) consistency
improves service quality in home
healthcare, where assigning the same personnel to patients
enhances care through better communication between
staff and patients, which in turn reduces service time.
Similarly, in other applications like small-package
delivery or transportation for the elderly and disabled
people, limiting customers per driver eliminates the need
to learn new routes oradjust to new customers. This
increases driver productivity, service quality, and finally
leads to greater customer satisfaction. In business
applications—such as wholesale-to-retail distribution,
reverse logistics (pickup and delivery), and restaurant
supply chain food distribution—as well as personal
customer services like home healthcare, consistent arrival
times enable customers to plan service receptions more
efficiently and foster long-term relationships with the
company. This builds customer loyalty and enhances
satisfaction.

This study presents the first integration of time-dependent
VRP (TDVRP) with the ConVRP, which focuses on
customer satisfaction. Unlike prior ConVRP research,
which relied on unrealistic constant travel times, this
research uses time-dependent functions to accurately
reflect real-world variables like traffic congestion. This
allows for precise calculation of customer arrival times,
ensuring both driver and visit-time consistency to enhance
practical applicability and customer satisfaction. While
this approach better balances service quality and
operational costs, it also increases computational
complexity due to the dynamic travel time calculations.
We propose a novel hybrid approach called template-
based hybrid LNS (THLNS), which integrates variable
neighborhood search (VNS) into a large neighborhood
search (LNS) framework, preserving the template
concept. The proposed approach employs a novel search
space filtering mechanism to skip the evaluation of
unpromising solutions and estimates time-dependent
travel times to deliver consistent satisfactory solutions
with reduced computational time. We investigate the
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impact of modeling time-dependent travel times on

ConVRP’s performance metrics. Prior studies have

proposed departure-time adjustment heuristics to improve

arrival time consistency (measured by I-max index). We
modify an existing sophisticated heuristic (Kovacs,

Golden, Hartl, & Parragh, 2015) by incorporating time-

dependent travel times.

The LNS metaheuristic and its adaptive counterpart, the

ALNS, have been effectively used to solve numerous

VRP variants, especially the ConVRP. (Voigt, 2025)

classify ALNS operators using unified terminology,

evaluate their performance and provide guidelines for
future use. Existing ConVRP heuristic approaches have
predominantly employed the template concept to maintain
driver consistency and satisfy precedence principle,
typically implementing LNS frameworks. While VNS has
demonstrated strong performance for ConVVRP in terms of
solution quality (Xu & Cai, 2018). We conduct an
extensive evaluation comparing our method with state-of-
the-art approaches, regarding the runtime and solution
quality metrics using newly developed benchmark
instances. This study makes following main contributions:

e Develops a model for the new problem and proposes
an efficient solution approach by integrating the most
effective existing ConVRP methods.

e Incorporates time-dependent travel time estimation
functions and introduces a novel search space
filtering  technique to  significantly  reduce
computational requirements.

e Adapts an existing heuristic for departure-time
adjustment to accommodate time-dependent travel
times.

The article’s structure is as follows: Section 2 presents an
in-depth review of relevant ConVRP and TDVRP
literature to identify research gaps. Section 3 describes the
new problem along with key assumptions and notation,
then formulates it as a mixed-integer linear programming
(MILP) model. Section 4 presents our proposed solution
framework and the modified departure-time adjustment
heuristic. Section 5 presents computational experiments
analyzing the approach’s efficiency through comparisons
with CPLEX solver solutions and existing ConVRP
methods, including sensitivity analyses on generated
benchmark instances. Finally, Section 6 presents
concluding remarks along with suggestions for future
studies.

2. Literature Review

This study bridges the ConVRP and TDVRP frameworks
to enhance the practical applicability of ConVRP models.
We systematically review both literatures to identify the
critical research gap at their intersection.

2.1. ConVRP Related Research

As an extension of the classical VRP, the ConVRP falls
into the category of NP-hard problems. Since its
introduction, various versions suitable for different real-



Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137
Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search ...

world applications have been explored in previous
studies. (Kovacs, Golden, Hartl, & Parragh, 2014)
conducted a systematic review of wvehicle routing
problems incorporating consistency considerations. Due
to the problem’s high complexity, researchers have
proposed different approaches to derive near-optimal
solutions of high quality within acceptable computation
times, with most employing metaheuristics or hybrid
heuristic methods. A few numbers of studies have
developed specialized exact methods to determine optimal
solutions for larger-scale problems more effectively
(Goeke, Roberti, & Schneider, 2019; Subramanyam &
Gounaris, 2016, 2018).

(Shaw, 1998) first proposed LNS algorithm to solve VRP.
Since then, the LNS and its adaptive version (ALNS
(Ropke & Pisinger, 2006)) has effectively solved many
VRP variants specially the ConVRP. (Groér et al., 2009)
developed a mixed-integer programming (MIP) model
and a record-to-record heuristic (ConRTR) for the
ConVRP. The key feature of their approach is enforcing
the precedence principle to ensure consistent customer
sequencing across days. Their two-step method involves
creating template routes from "frequent customers" (those
with multi-day demand) and building daily routes by
adjusting these templates, adding or removing "non-
frequent customers” with single-day demand. They
generated new test instances from classic VRP
benchmarks and evaluated their algorithm by comparing
its results against a non-consistent version of the RTR
method. (Tarantilis, Stavropoulou, & Repoussis,
2012) introduced a template-based tabu search (TTS)
algorithm for the ConVRP. Similar to ConRTR, TTS
operates at both master and daily levels: it first generates
template routes, then resolves and improves daily routes.
Template feasibility is evaluated by checking the
feasibility of corresponding daily routes. Finally, a tabu
search is applied to each daily route to further improve
them through neighborhood search.(Kovacs, Parragh, &
Hartl, 2014) developed a template-based adaptive large
neighborhood search (TALNS) for the ConVRP. The
algorithm iteratively improves an initial template using
adaptively selected removal and repair operators,
accepting new templates via simulated annealing. A key
insight was their heuristic for optimizing depot departure
times, which proved critical in avoiding significant costs
when stricter service time consistency was required.(Xu
& Cai, 2018) developed a VNS algorithm for the
ConVRP. Their two-step method first uses a "shaking"
procedure to diversify the search with a template (which
may be infeasible), and then a local search to optimize it.
They used three neighborhood structures (relocation,
exchange, reverse) and a "near points" technique to
improve efficiency by skipping unpromising operations.
Infeasible templates were evaluated with penalty costs for
violations. The second step was only performed on
higher-quality templates to achieve feasibility and further
improve the solution.
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(Feillet, Garaix, Lehuédé, Péton, & Quadri,
2014) introduced "time classes" as a new measure for
time consistency, grouping customers with service start
times within a defined sensitivity threshold. The objective
is to minimize the total number of time classes,
formulated as a graph coloring problem. Their model
generalizes the ConVRP (Groér et al., 2009), which
corresponds to the special case of a single time class. The

authors  solved the model using a LNS
method.(Smilowitz, Nowak, & Jiang, 2013) examined
how  workforce  management  strategies  affect

transportation firms' competitive positioning. The study
established two workforce management metrics: (1)
driver-customer consistency, quantified by repeated
service encounters, and (2) driver-area consistency,
measured by frequency of serving specific geographic
zones. (Yu, Hu, & Wu, 2024) proposed a ConVRP
framework that integrates two Kkey objectives: 1.
Workload Equity: Enforcing a maximum daily workload
difference between drivers. 2. Route
Consistency: Promoting the use of familiar routes by
applying reduced costs for travel time on them. They
developed an ALNS algorithm with new operators to
solve this problem. The algorithm uses remove and repair
operators to generate new solutions. For feasible solutions
that meet all constraints, departure schedules are further
adjusted to enhance time consistency. (Mancini,
Gansterer, & Hartl, 2021) investigated a collaborative
ConVRP where multiple companies share customers to
maximize collective profit. Their model enforces service
consistency by requiring the same company (but not
necessarily the same driver) to serve a customer
throughout the period. They formulated the problem with
a mathematical model enhanced by valid inequalities and
developed a matheuristic (MH) to solve large instances,
evaluating its performance against an iterative local
search (ILS) method

(Kovacs, Golden, et al., 2015) introduced the generalized
ConVRP (GenConVRP), which limits the number of
drivers per customer and penalizes service time
variations. Departing from template-based methods, they
employed a flexible LNS applied directly to all daily
routes. Their algorithm also incorporated adjustable route
departure times to improve arrival time consistency and
used a greedy method to reduce the I-max. (Luo, Qin,
Che, & Lim, 2015) studied a multi-period VRP with time
windows (VRPTW) where customer visits are limited to a
few vehicles. They formulated a MIP model and solved it
using a three-step heuristic: first generating initial
solutions via decomposition, then minimizing fleet size
with a tree-search repair mechanism, and finally applying
TS to reduce total travel distance.

(Kovacs, Parragh, & Hartl, 2015) later proposed a multi-
objective  GenConVRP  (MoGenConVRP), treating
routing costs, driver consistency, and arrival time
consistency as conflicting objectives. They developed
exact e -constraint algorithms and a multi-directional
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large neighborhood search that combined multi-
directional local search (MDLS) with LNS to solve large-
scale instances. (Lian, Milburn, & Rardin, 2016)
enhanced the MDLS method for the multi-objective
ConVRP. Their approach integrated LNS to identify non-
dominated solutions iteratively, under the assumption that
all vehicles depart the depot at time zero in every period.
(Sungur, Ren, Ordofiez, Dessouky, & Zhong, 2010)
addressed a stochastic courier delivery problem (CDP)
with uncertain demands and service times. Using
stochastic and robust optimization, their goal was to
maximize coverage and efficiency rather than enforce
fixed assignments. Their approach generated a master
schedule for overall planning and adaptable daily plans
optimized for coverage, route consistency, travel cost, and
on-time delivery. They developed a two-part heuristic and
a TS algorithm to solve large-scale instances. (Alvarez,
Cordeau, & Jans, 2024) addressed a ConVRP with
uncertain customer presence and demand. Using a two-
stage stochastic model, their approach first plans routes
while penalizing consistency violations. In the second
stage, it minimizes actual routing and penalty costs after
uncertainties are realized. They solved the problem via
sample average approximation (SAA), employing exact
algorithms to handle sampled scenarios iteratively.
(Subramanyam & Gounaris, 2016) proposed a branch-
and-cut algorithm for the consistent traveling salesman
problem (ConTSP), a special case of the ConVRP with a
single uncapacitated vehicle. This was the first exact
solution method for consistency-based routing problems.
Their approach, which included three MIP models
compared via branch-and-cut, can serve as either a
component in metaheuristic hybrids or an exact
decomposition method for the ConVRP. (Subramanyam
& Gounaris, 2018) developed an exact method for the
ConTSP that incorporates vehicle waiting times. Their
approach decomposed the problem into periodic time-
windowed TSPs within a branch-and-bound framework,
accounting for AM/PM time windows and variable depot
departure schedules.(Goeke et al., 2019) introduced the
first exact solution method for the ConVRP. They found
standard column generation ineffective due to weak linear
relaxations caused by consistency constraints. Instead,
their novel approach used column generation with
variables representing a vehicle’s complete multi-period
route sequence. A modified Clarke-Wright algorithm
(Clarke & Wright, 1964) generated initial solutions, while
LNS provided upper bounds for larger instances. Driver
consistency was prioritized before addressing arrival time
consistency.

(Braekers & Kovacs, 2016) studied a dial-a-ride problem
(DARP) with driver consistency for specialized transit

Table 1
The related literature of ConVRP

services. Their model included precedence constraints
between pickup and drop-off locations. They proposed
two formulations and solved them using a branch-and-cut
approach enhanced with techniques to reduce model size
and strengthen constraints. (Ulmer, Nowak, Mattfeld, &
Kaminski, 2020) studied a dynamic, stochastic multi-
period routing problem where driver-customer familiarity
reduces service times after initial contact. Daily revealed
demands necessitate sequential decisions modeled as a
Markov decision process (MDP). The goal was to
evaluate the strategic benefit of long-term driver-customer
relationships. (Jost, Jungwirth, Kolisch, & Schiffels,
2022) tackled a specialized transportation problem for
football players with prioritized passenger demands. They
introduced an iterative, template-based heuristic to
maximize demand priority and routing consistency. An
€ -constraint mechanism balanced these objectives under
fleet capacity constraints

(zhen, Lv, Wang, Ma, & Xu, 2020) introduced a new
variant combining ConVRP with the VRP with
simultaneous pick-up and delivery (VRPSPD), termed
ConVRPSPD (or ConVRPSDC). They formulated it as a
MIP and solved medium to large instances using
template-based methods: RTR travel, LNS-enhanced local
search (LSVNS), and TTS. (Stavropoulou, 2022) studied
a heterogeneous fleet ConVRP that jointly optimizes fleet
composition and consistent routing to minimize total costs
(fixed and variable) under vehicle availability constraints.
A hierarchical tabu search (HTS) algorithm was used,
where the upper level selects the fleet mix and the lower
level employs variable neighborhood descent (VND) to
optimize routes. (Stavropoulou, Repoussis, & Tarantilis,
2019) studied a VRP combining profit maximization and
service consistency. The model included mandatory
regular customers and optional profitable customers.
Routes were designed to maximize profit under capacity,
tour-length, and time consistency constraints, using an
adaptive TS algorithm with long and short-term memory
for effective exploration.

(Nolz, Absi, Feillet, & Seragiotto, 2022) introduced the
CEVRP-BCM, integrating electric vehicle routing with
backhauls, charging, and consistency. Their hybrid
approach combined template-based ALNS with constraint
programming for charging and quadratic optimization for
pickups/deliveries. A backhaul policy mandated deliveries
before pickups. The objective function penalized
violations of arrival time and driver consistency,
promoting equitable service. The TALNS method used
worst-case demands to generate templates.

Authors Solution Method Objective Function

@ Travel Time| Fleet |Consistency| Constraints
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Hybrid

Metaheuristic

Heuristic

Exact

Characteristics

Constant

Time-Dependent

Heterogeneous

Homogeneous

Driver

Arrival Time

Tour-Length

Capacity

(Groér et al.,
2009)

Minimizing total travel time in all periods

(Sungur et al.,
2010)

Maximizing the count of served customers
and minimizing travel time and
lateness/earliness penalties

yTarantilis et

Minimizing total travel time in all periods

al., 2012¢
L Minimizing the total distance and
(Smilowitz et L .
al. 2013) . maximizing the driver-to-customer and . ] . ]
) driver-to-service region familiarity
(Kovacs,
Parragh, etal.,| e Minimizing total travel time in all periods . ] ] L L ]
2014)
. Minimize total travel time across all periods
(Feillet et al., o . .
2014) U by limiting the maximum count of time U o . o
classes per customer
Kovacs, L . .
( Minimizing the weighted aggregation of
Golden, et al., . . . . . . .
overall travel time and I-max
2015)
(Luoetal., First minimizing the utilized fleet size then
[ ] . ) L[] [ ] [ ] L] [ ]
2015) minimizing the overall travel time
(Kovacs, Minimizing the vector of overall travel
Parragh, etal.,| e e | time, maximum count of assigned drivers o o . . . .
2015) across all customers and I-max
Minimizing the vector of total distance
(Lian etal., traveled, maximum number of drivers per
L] ) ) A L[] [ ] [ ] L] L] [ ]
2016) customer and maximum arrival time
difference
(Subramanyam
& Gounaris, e | Minimizing total travel time in all periods o .
2016)
(Braekers & Minimizing the total travel cost in all
L] L] . L] [ ] [ ] L] [ ]
Kovacs, 2016) periods
(Xu & Cai, . . .
U Minimizing total travel time in all periods U . U . . U
2018)
(Subramanyam
& Gounaris, e | Minimizing total travel time in all periods U . .
2018)
(Stavropoulou Maximizing the overall obtained profit
L] [ ] [ ] [ ] L] L] [ ]
et al., 2019) minus the overall travel cost
(Goeke et al., L L .
U e | Minimizing total travel time in all periods U . U . . U
2019)
(Zhen et al., . L .
U Minimizing total travel time in all periods U . U . . U
2020)
(Ulmer et al., . Minimizing expected cost including service . . .
2020) and routing costs in all periods
(Mancini et al., Maximizing the overall revenue minus the
L[] ) ) L] [ ] [ ] L] L] [ ]
2021) overall travel cost in all periods
(Jost et al., . Maximizing the priorities of players then ] ] U . U
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2022) minimizing total travel time in all periods
(Stavropoulou, Minimizing the total cost including vehicles
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
2022) fixed costs and routing cost
(Nolz et al Minimizing the total cost including fixed
2022) v U costs, travel time and consistency violation U U . . U U .
costs
(Yuetal Minimizing the overall travel time
2024) h . including the time discounts resulted from . . . . . . .
traveling familiar routes in all periods
Sum of the penalty costs of driver
(Alvarez et al., . consistency violation and expected routing . . . .
2024) costs and penalty costs of non-serving
customers in all scenarios
This study o Minimizing total travel time in all periods . . o o o . . o

2.2. Relevant Literature on TDVRP

The study of TDVRP has its own rich history since its
initial introduction. (Gendreau, Ghiani, & Guerriero,
2015) performed the systematic review of TDVRP,
establishing key classification frameworks. (Adamo,
Gendreau, Ghiani, & Guerriero, 2024) later synthesized
methodological advances in TDVRP (2015-2022),
highlighting emerging machine learning applications and
unresolved challenges in routing.

(Beasley, 1981) first presented a time-dependent travel
time model with an algorithm for a two-interval planning
period including distinct travel times. (Ahn & Shin, 1991)
studied the time-dependent VRP with time windows
(TDVRPTW), introducing the key concept of arrival time
monotonicity. This property simplifies computations,
enables efficient feasibility checks, and reduces the
computational burden. Their work demonstrated that with
this property, solving the TDVRPTW is only marginally
harder than the standard VRPTW. (Malandraki & Daskin,
1992) formulated MILP models for the time-dependent
TSP and VRP using step-function travel times. They
proposed nearest-neighbor heuristics for both problems
and a cutting-plane method for the TDTSP. Their
heuristics were also adaptable to continuous travel time
functions. (Hill & Benton, 1992) introduced a modeling
framework employing node-based time-varying step
functions for speed, with edge travel times computed from
the mean speed of adjacent nodes. (Fleischmann, Gietz, &
Gnutzmann, 2004) studied a static TDVRP, introducing a
parametric method to smooth travel time functions under
the first-in-first-out (FIFO) principle. They also proposed
a route-based time window concept to derive feasibility
conditions for path concatenation operations.

(Jung & Haghani, 2001) developed a genetic algorithm
(GA) for a dynamic TDVRP where new demands and
changing travel times occur after vehicle departure. They
categorized vehicles as used or unused. (Haghani & Jung,
2005), in later work, established solution lower bounds
and provided simulation results on a large network. Early
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models, however, violated the FIFO principle by allowing
later departures to sometimes result in earlier arrivals.
(Ichoua, Gendreau, & Potvin, 2003) introduced the
foundational IGP speed model for TDVRPs, which
guarantees FIFO compliance by using interval-specific
travel speeds. Key contributions include a method
(Algorithm A.1 in Appendix A) to compute FIFO-
preserving travel time functions (illustrated in Fig. A.1 in
Appendix A), dynamic speed adjustments at interval
boundaries, and a parallel TS algorithm with an
approximated evaluation for computational efficiency.
Validated on Solomon benchmarks (Solomon, 1987), the
IGP model has become a cornerstone in TDVRP research.
(Donati, Montemanni, Casagrande, Rizzoli, &
Gambardella, 2008) solved the TDVRPTW using a
multiple ant colony system (MACS). The approach
employed two hierarchical colonies: ACS-VEI to
minimize the number of vehicles and ACS-TIME to
minimize travel time. They evaluated the algorithm on
modified Solomon benchmarks (Solomon, 1987) against
five speed models across four time intervals. (Hashimoto,
Yagiura, & Ibaraki, 2008) solved the TDVRPTW with an
iterative local search that uses dynamic programming
(DP) to efficiently optimize route schedules and a filtering
mechanism to prune low-potential neighborhoods. (C. Liu
et al., 2020) developed an enhanced ant colony algorithm
(ACA) for the same problem, incorporating congestion
avoidance through modified pheromone updates to
prevent congested routes. (Balseiro, Loiseau, & Ramonet,
2011) developed a hybrid ant colony optimization (ACO)
for TDVRPTW that combats infeasible solutions by
integrating insertion heuristics. It used three constructive
heuristics for initialization and a local search phase
employing  Fleischmann’s route time  windows
(Fleischmann et al., 2004) to efficiently verify feasibility
during customer sequence insertions. (Maden, Eglese, &
Black, 2010) studied TDVRPTW with departure-time
scheduling, using a parallel insertion method and TS
algorithm, validated on a UK distribution case. (Figliozzi,
2012) provided a general framework for generating
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TDVRP instances and a heuristic for hard/soft time
windows, employing a generalized nearest neighbor
heuristic (GNNH). (Gmira, Gendreau, Lodi, & Potvin,
2021) developed a TS method for TDVRPTW with
segment-based speeds including an approximate
evaluation method and time-dependent Dijkstra’s
algorithm, testing it on NEWLET benchmarks with up to
200 nodes. (Ticha, Absi, Feillet, & Quilliot, 2017).
(Dabia, Ropke, Van Woensel, & De Kok, 2013)
introduced the first exact branch-and-price algorithm for
TDVRPTW, using column generation and a labeling
algorithm for the time-dependent pricing subproblem.
(Soler, Albiach, & Martinez, 2009) transformed
TDVRPTW into an equivalent asymmetric capacitated
VRP (ACVRP) via graph reduction techniques. (Sun,
Veelenturf, Dabia, & Van Woensel, 2018) studied
profitable TDVRPTW with precedence constraints,
developing a modified labeling algorithm and generating
new benchmarks. (Sun, Veelenturf, Hewitt, & Van
Woensel, 2018) in subsequent work, proposed an exact
branch-and-price method for the time-dependent pickup
and delivery problem with time windows (TDPDPTW)
with profits.

The green vehicle routing problem (GVRP) is a recent
variant of the VRP, closely related to the TDVRP. lIts
primary objective is to incorporate environmental aspects,
such as minimizing greenhouse gas (GHG) emissions.
The classic version of the GVRP assumes constant travel
speeds for vehicles. (Sharafi & Bashiri, 2016) developed
two MIP models for the GVRP that include social factors,
such as fair workload distribution for drivers. They also
proposed a genetic algorithm for large-scale problems.
(Manavizadeh, Farrokhi-Asl, & WT Lim, 2020) proposed
a mathematical model for the GVRP that incorporates a
bi-fuel mixed fleet and refueling options using a
comprehensive  fuel consumption function. They
linearized the model and introduced valid inequalities to
calculate the fuel consumption of the bi-fuel vehicles. The
model's validity was demonstrated by solving a small-
scale example. (Shahrabi, Nasiri, & Al-e, 2024) proposed
a sustainable VRP model integrated with cross-docking to
enhance efficiency. The model minimizes costs, GHG
emissions, maximum driver working hours (for social
equity), and ensures high product freshness. A hybrid
GA-MIP algorithm was developed for large instances,
with results validated against CPLEX and a case study.
Several studies have been conducted on time-dependent
GVRP (TDGVRP). (Alinaghian & Naderipour, 2016)
created a detailed fuel model and solved the problem with
an enhanced firefly algorithm. (Soysal & Cimen, 2017)
modeled congestion and solved their problem by
converting it into a TSP solved with restricted dynamic
programming (RDP). (Fan, Zhang, Tian, Lv, & Fan,
2021) used trigonometric speed functions and a hybrid
GA for a time-dependent problem with time windows. (Y.
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Liu et al,, 2023) also addressed this with an ALNS
heuristic featuring a time discretization search (TDS).
(Ulsrud, Vandvik, Ormevik, Fagerholt, & Meisel, 2022)
developed a MIP model and ALNS for weather-dependent
vessel routing, allowing for unmet or delayed demand.
(Mancini, 2017) studied TDVRP without time windows,
proposing a two-step heuristic method. The first step
generates initial solutions using a multi-start random
constructive heuristic (MRCH), then the second step
includes these solutions in a set partitioning problem
formula. (Huang, Zhao, Van Woensel, & Gross, 2017)
introduced the TDVRP considering path flexibility
(TDVRP-PF), including decisions for selecting the proper
path in TDVRP. They modeled TDVRP-PF under both
traffic situations with deterministic and stochastic
congestion conditions.

(R. Zhang, Guo, & Wang, 2020) studied a time-dependent
electric vehicle routing problem with time windows
(TDEVRPTW) that includes congestion tolls for peak
travel. They formulated it as a MIP model and solved it
using an ALNS algorithm. (Lu, Chen, Hao, & He, 2020)
studied TDEVRP, enhancing route planning for vehicles
by optimizing departure schedules and speeds across all
route segments using an iterative VNS (IVVNS) algorithm
that combines VND for node sequencing with specialized
optimization for departure times and speed variables.
(Xiong, Xu, Yan, Guo, & Zhang, 2024) enhanced electric
vehicle routing models with drivetrain loss considerations
under traffic congestion, using real-time congestion
coefficients and presented an ALNS with capacity-aware
initial solutions.

(Pan, Zhang, & Lim, 2021) introduced the multi-trip
TDVRPTW (MTTDVRPTW). They solved it using a
hybrid ALNS-VND algorithm, which featured a segment-
based method to efficiently check route feasibility, (Zhao,
Poon, Tan, & Zhang, 2024) presented a GA hybridized
with time-dependent split algorithm (TD-SPA) for
MTTDVRP. The TD-SPA was devised to split a tour into
multiple routes and GA was used to generate these tours.
Monotone queue optimization (MQO) was used to speed-
up the TD-SPA.

(Kok, Hans, & Schutten, 2012) tested congestion
protocols using Dijkstra’s algorithm and an RDP
heuristic. (T. Zhang, Chaovalitwongse, & Zhang, 2014)
developed a hybrid ACS and TS algorithm for a time-
dependent vehicle routing problem with simultaneous
pickup and delivery (TDVRPSPD). (Rincon-Garcia,
Waterson, Cherrett, & Salazar-Arrieta, 2020) used an
LNS algorithm with a scheduling component to adhere to
driving time regulations. (Cai, Lv, Xiao, & Xu, 2021)
presented a linearized model for connected and automated
vehicle (CAV) routing, solved with a particle swarm
optimization (PSO) enhanced by VNS. (Jie, Liu, & Sun,
2022) incorporated stochastic factors (such as weather and
traffic conditions) into TDVRP with soft time windows,
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solving it with a hybrid sweep algorithm and improved
PSO (IPSO). (Zhou, Li, Bian, & Zhang, 2024) introduced
two-echelon TDVRP with simultaneous pickup-delivery

and satellite synchronization (2E-TDVRPSPDSS), solved
by a memetic algorithm (MA) featuring self-adaptive
operators and specialized local search.

Table 2
An overview of the most significant literature of TDVRP
8B 2 ¢
o L °
Solution Method Model ;E E g Fleet Constraints
£33
Objective Function
Authors .
o Characteristics 5 § § - g
o =} o k=) o
2| 8|5 s Ele|3| 8 5| g| €| & E
o = [) [$] < k5 prd = S - 8
| > < > c S < | 2 o 2 0 o =
T (<3} [} Ll > ] - = = 5 IS ©
I |5 Aa 5| < o g 3 o g
= p4 L I = =
(Malandraki & . .
. U Minimizing total travel time U o U o .
Daskin, 1992)
Minimizing the weighted
(Ichoua et al., aggregation of the overall travel
L] i ) ) ) L] L] [ ] L] L]
2003) time and delay time in serving
all customers
. Minimizing overall travel time
(Fleischmann et .
. and the fraction of customers ° . . .
al., 2004) N . .
with time window violations
Minimizing the total cost
(Haghani & including vehicle fixed costs,
L] A L] [ ] L[] L[] [ ] L]
Jung, 2005) routing costs and penalty cost
of time window violations
Minimizing total travel time
(Soler et al., . . .
U including transportation and o o o o o .
2009) S
waiting times
o First minimizing the route
(Figliozzi, S
U number then minimizing the o o o o o .
2012) .
overall travel time
(Dabia et al., L .
] Minimizing overall travel time . ] ] U ] J
2013)
(Alinaghian &
Naderipour, U Minimizing fuel consumption o | o . U .
2016)
(Sun,
Veelenturf, Maximizing the earned profit
) L] L] ) ) L] [ ] L] [ ] L]
Dabia, et al., minus the overall travel time
2018)
Sun, . .
( Maximizing the earned profit
Veelenturf, . -
) U minus the sum of travel time . . . . . .
Hewitt, et al., .
and fixed costs
2018)
(Panetal., Minimizing total distance
L] L] [ ] [ ] L] [ ] L]
2021) traveled
(Caietal., Minimizing fuel consumption
L] ° [ ] [ ] [ ] [ ]
2021) and greenhouse gas generation
(Gmira et al., Minimizing total travel time
L] ° [ ] [ ] [ ] [ ] [ ]
2021) including transportation,
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waiting and service times
Minimizing the total cost
(Fan et al., including fixed costs, fuel
L[] [ ] [ ] [ ] [ ] [ ]
2021) consumption and penalty costs
of time windows violations
Minimizing the total cost
including the vessels travel
(Ulsrud et al., g .
2022) U costs plus the cost of renting U .
new vessels and penalty costs
of back-ordering some demands
Minimizing total cost including
(ieetal, 2022)| o distance traveled costs, fixed . . . . R
h costs and penalty costs of time
window violations
(Y. Liuetal., Minimizing greenhouse gas
L] . [ ] [ ] L] [ ] L]
2023) generations
Minimizing the sum of fixed
(Zhao et al., .
. cost and overall travel time . . . .
2024)
costs
(Xiong et al., L .
U Minimizing fuel consumption U o U o
2024)
Minimizing the sum of fixed
(Zhou et al., costs, routing costs, loading,
L] . i [ ] [ ] L] [ ] L]
2024) inventory and fuel consumption
costs

As shown in Table 1, all existing ConVRP research
assumes constant travel times, and none has considered
time-dependent travel times in their models. Additionally,
Table 2 reveals that the existing TDVRP literature has not
yet explored consistency considerations for customers.
This indicates a significant research gap in the ConVRP
literature, where all studies assume constant travel
times—an assumption far removed from real-world
applications. Moreover, most ConVRP studies do not
allow flexible depot departure times—a feature
demonstrated in the literature to enhance arrival time
consistency. To address this gap, we incorporate both
time-dependent travel times and flexible vehicle departure
times into the ConVRP model, with constant travel times
becoming a special case of the newly proposed model.

3. Problem Description and Mathematical Modeling

In this section, we extend the ConVRP by assuming time-
dependent travel times instead of distance or constant
times used in all previous studies of ConVVRP. We call the
new problem as consistent time-dependent vehicle routing
problem (ConTDVRP). The ConTDVRP is characterized
as follows. We have a fleet of at most k identical vehicles
positioned at a single depot, each with a fixed capacity Q.
These vehicles must depart from and return to the depot
after completing their routes. The problem spans d days
(or periods) with each customer requiring service on
a specific pre-determined day(s) and can be served at
most once per day from any vehicle. All routes must
finish by time T. The service time and demand for each
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customer on their requested day are known in advance
with specific values. The same driver services each
customer at approximately the same time each day
throughout the planning period, ensuring the maximum
difference between the latest and earliest arrival times
(called I-max) never exceeds the permitted maximum L.
In this problem, initial vehicle departure from the depot is
synchronized to occur at time zero, (i.e., from the start of
working day) and vehicles are prohibited from idle
waiting at customer sites. The travel time between any
two locations is derived from time-dependent speed
profiles which is a piece-wise linear function. The
model’s objective function seeks to minimize total travel
time (including travel times and service times) across all
routes in all days of the planning period. One application
of this problem is providing services to disabled and
elderly people because consistency between service
providers and customers (driver consistency) is important
in these cases. Additionally, consistency in service times
for these customers (arrival time consistency) must be
maintained, which is why arrival time consistency is
defined as a constraint in the model. The other
assumptions of modelling the new problem are described
in details as follows:

* All demands in all periods must be fully met.

* The number of available vehicles is unlimited (matching
the total count of customers in the proposed model).

* There are no time windows for customer demands.

» The speed profiles between two nodes are time-
dependent and defined as stepwise functions for every
pair of nodes in the entire network.
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» The continuous piece-wise linear travel time functions
associated with each pair of nodes are derived from the
time-dependent stepwise speed functions; therefore, the
FIFO property always holds.

* While traveling, a vehicle’s speed changes along the
remaining edge distance when the time interval of the
speed profile changes.

* All customers have delivery demands.

* The fastest routes connecting all nodes are precomputed
for the entire network and do not change.

Notation

The following notation is used in the mathematical modeling of ConTDVRP:

Sets
D={1.2,....,d}
K={12,....,k}

={12,.....my} VijeEN

N={012,....,n}
N' ={1,2,....,n}
Parameters

bpijm

d

k

L

MI

mi}'

n

Q

ia

Sia

T

wig € {0,1}

9ijdm

period d.

Wijam

period d.

Decision Variables

ijami

tikd
Xijamk € {0,1}

Description

set of planning periods.

set of available vehicles in the fleet.

set of time slots in the travel time function for edge (i,j).
set of customer nodes plus depot. (where depot is node 0).
set of customers.

breakpoint of time slot m in the travel time function for edge (i,j).
count of planning periods.
count of available vehicles.
maximum arrival time difference across all customers.
a big positive value.
the count of breakpoints in the travel time function for edge (i j).
count of customers.
maximum capacity of each vehicle.
demand of customer i in period d.
service time of customer i in period d.
latest allowed return time to depot (maximum tour-length).
VieN',vd €D 1 if customer i requests demand in period d, 0 otherwise.
Vi,j € N,vd € D,vm € M;; gradient of the travel time function for edge (i,j) in time slot m of

Vi,j €N, Vm € M;;

Vi,j EN

VieN',Vvd €D
VieN',vd €D

Vi,j € N,vd € D,vm € M;; intercept of the travel time function for edge (i,j) in time slot m of

Vi,j EN, Vd €D,
vm € M;;, Vk € K
VieEN, Vk €K, Vd €D
Vi,j €N, Vd €D,

vm € M;;,Vk € K

departure time of vehicle k from customer i to customer j in time slot m of
period d.

departure time of vehicle k from customer i in period d.
1 if vehicle k travels from i to j in time slot m of period d, O otherwise.

Zia € {0,1} Vi EN, Vk € K, vd € D  1ifvehicle k visits customer i in period d equals 1, 0 otherwise.
MILP Model
OF = Min ¥, X% o Xke1 D= 1Zmu Oijam * tijamk T Wijam * Xijamk €Y)]
Zoga = 1 vk €K, Vd €D 2)
toxg = 0 vk €K, Vd €D 3)
Y k=1 Zika = Wig VieN',Vd €D 4
iz Gid * Zika < Q Vk €K, Vd €D (5)
"o By Xijamk = Lieo Tty Xjiamk = Zjka VjEN,Vk €K, Vd € D (6)
Wig + Wig' — 2 < Zigg — Zigg' < —Wig + Wi — 2) VieN', Vk €K, vd,d' € D|d #d’ (7)
tied = 20 T2y tijami VieN', VkeK, vd €D )

tika + Ql]dm * tigg + Wijam — (1
tika + Oijam * tika + Wijam + (1

e
tika + (X2

"
tika + (X2

1Bioam * tia + Wioam * Xioami)) * Wig S T * Wiy
1Bioam * tika + Wioam * Xioamk)) * Wig = 0

—L+Tx*Wgq+wyg —2) Stigg — tigg’ SL—T x (Wiqg + wigr — 2)

ViEN, VjEN', vm € M;;
VieN, VjeEN', Yvm e M,

VkEK, VdeD (9)
i, Vk €K, vd € D (10)

VieN', VkeK, vdeED (11D
VieN', VkeK, Vvd €D (12)
VieN', Vk €K, vd,d' € D|d # d’ (13)

!
— Xijamk) * M’ < tixg — Sja

I
— Xijamk) * M' 2 tjrg = Sjq

l]’
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bpijm—1 * Xijamk < tijamk < DDijm * Xijamk
0 < tija1k < bPij1 * Xijark
tijamk = 0
Xijamk € {0,1}
Zikq € {0,1}
Eq. 1 defines the objective function, which minimizes the
overall travel time for all vehicles across every day. Eq. 2,
3 ensure that every vehicle must visit the depot each day
and start their routes at time zero. Eq. 4 ensures each
customer is visited by only one vehicle on all days
requiring service and Eq. 5 enforces the vehicle capacity
constraint, limiting loads to Q units for each vehicle per
day. Eq. 6, specifies that each visited customer must have
only one predecessor and one successor. Eq. 7 maintains
driver consistency, requiring the same driver for each
customer across all service days. Eg. 8 defines the
departure time of the given vehicle visiting each customer
on requested day. Eq. 9, 10 determine the departure times
of successive customers visited on each route and prohibit
waiting at customer locations. Eqg. 9 also serves as sub-
tour elimination constraints in the individual daily routes.
Eqg. 10 could be eliminated to permit drivers to wait at a
location before proceeding to the next customer. The
vehicle tour-length limit is defined by Eq. 11, 12. Eq. 13
bounds the arrival time consistency, limiting the
maximum difference between visit times for every
customer across any pair of days to L time units. Eq. 14,
15 constrain departure times between consecutive
customers to fall within the appropriate time slot of the
piecewise travel time function. The decision variable
domains are defined in Eq. 16 to Eq. 19.

4. Solution Methodology

We design a hybrid metaheuristic that embeds a local
search stage in a templated-based LNS algorithm. Similar
to (Xu & Cai, 2018) our template consists of all customers
who demand service in one period or more. First, an
initial template generation procedure generates a feasible
template meeting both capacity and tour-length
limitations. Arrival time consistency isn’t considered in
generating initial template. Then, the LNS algorithm starts
with the initially generated template, and a pair of
remove-repair operators is selected randomly. The
number of removed customers is selected randomly from
the predefined interval in each iteration of LNS. The
selected pair of remove and repair operators destroys the
template by removing the specified number of customers
from the template and re-inserting them into the partial
template routes respectively, creating a new template
solution. In the repair operators, feasibility checking for
template routes considers only artificial capacity limit.
Because verifying tour-length feasibility with time-
dependent travel times is computationally expensive, and
because the resulting template might still produce

VijEN,V2<m< My Vke€K, Vd €D (14)
Vi,jEN, Vk€K, Vd €D (15)
VieN, Yk €K, Vd €D (16)
Vi,jEN, Yme M ,VkeK, vdeD  (17)
Vi,jEN, Vme M;,Vk €K, vdeD  (18)
VieN, VkeK, vd €D (19)
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infeasible daily routes after resolution, we omit this check
during the template phase. Also artificial capacity concept
is defined similar to (Kovacs, Parragh, et al., 2014) to
resolve and obtain daily solutions from generated
templates in shorter time. The artificial capacity limit Q,
is chosen randomly within the range [Q, Q. -UB], where
Q represents the actual capacity and Q, -UB is the
predefined upper bound. Q,-UB is calculated as the sum
of maximum customer demand across all periods divided
by the maximum number of routes required based on
capacities among all periods. Eqg. 20 illustrates how Q-
UB is computed.

Qa —UB = ;?zgzﬂ
MaXygep {Zi:l 0 (20)

Then, the sum of all travel times and the maximum
divergence in arrival times (I_max) are approximated for
the new solution, and simulated annealing determines
whether to accept it. If accepted, the approximate |_max
is verified against the threshold (i.e. |_max_constant * L).
If below the threshold, the template is resolved into daily
routes to verify feasibility against actual capacity and
tour-length constraints. If template is feasible and
approximate I-max is lower than L, then I-max is
calculated exactly for resolved daily routes to check
arrival time consistency. Else, if the routes are marginally
feasible, the general improvement procedure executes to
simultaneously reduce | _max and travel times. Else
general repair procedures (including load- and time-repair
operators) are performed to convert the infeasible daily
routes to feasible ones. Subsequently, if the feasible
solution satisfies arrival time consistency, its travel time is
evaluated for potential selection as the best-found
solution; otherwise, general improvement is applied to
enhance the feasible solution satisfying all constraints. At
this time, the first stage of generating a new template and
choosing an accepted template as the appropriate one to
repair and performing improvement is finished and the
second stage is started. The second stage includes
performing a local search procedure on the new template
obtained from chosen repair operator of LNS. Local
search is done for specific neighborhood structures of a
template considering special requirements for decreasing
neighborhood search space and computational times. As
the obtained solution of local search may not satisfy the
constraints on vehicle capacity and tour-length, the repair
and general improvement procedures is performed similar
to the first stage to first, convert the obtained solution to a
feasible one and then improve it. Local search and

aXyaepiqial/
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general improvement procedures are described below in
details. We refer to the proposed template-based hybrid
LNS approach as THLNS.

Algorithm 1. Pseudo code of the proposed THLNS

Input: |_max_constant, |_max_penalty, ol_penalty, ot_penalty, FC, n_e_s, pworst, Qa-UB, travel time functions, initial
feasible template, |_max_penalty accept, local_search_counter_limit, repair and remove operators, Wi, €
Output: best_solution, best_found_objective, |_max of best solution

local_search_counter =0
iteration=0
current template = initial feasible template

while local_search_counter <= local_search_counter_limit:
if iteration % 50 = = 0 and local_search_counter = = 0:

|_max_constant += 0.2
iteration +=1
if iteration > 2000:

choose g randomly from [min (0.2* n, 30), min (0.4* n, 60)]

else:

choose g randomly from [min (0.1* n, 30), min (0.2* n, 60)]

choose y randomly from [0,1]
Qa=Q+y*(Qs-UB-Q)

select a pair of remove and repair operators randomly

apply selected pair on current template to obtain a candidate template
resolve candidate template and calculate objective and |_max approximately

if |_max > L.

cand objective with penalty = candidate objective + (I_max — L) * |_max_penalty_accept

else:

cand objective with penalty = candidate objective

if (accept && |_max <=1_max_constant * L) || (iteration > 2000 && |_max <=1_max_constant * L):

check feasibility status of the candidate template

if |_max <= L and status = = “feasible”:
calculate new objective and I_max exactly
update best_feasible_objective

else:

perform First Stage on the candidate template

perform Local Search (The Second Stage) on the candidate template to obtain a new template
resolve the new template and check feasibility status

perform First Stage on the new template
end while

return best_solution, best_found_objective, |_max of best solution

4.1. LNS Components
4.1.1. Initial template generation

An initial feasible template is generated with respect to
capacity and tour-length constraints. First, all customers
are unassigned at the empty solution. Initial template
generation takes the empty solution and uses a greedy
heuristic method for sequentially adding customers in
feasible positions with a minimum added travel time
across all routes. Each position is checked for feasibility
by resolving the template to daily routes and checking
feasibility on each day. Then, the increase in travel time
for each position is computed for each day and added to
obtain total inserting cost for each position. The daily
routes are feasible, if they satisfy load capacity and tour-
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length limits. Arrival time consistency is not considered in
initial template generation. When no feasible placement
exists in current routes, a new empty route is added to
assign other customers. The template generation is
complete when all customers are assigned to a template
route.

4.1.2. Remove and repair operators

We used three remove and five repair operators as
follows. Removal and repair operators include random,
worst, and related for removals and greedy, and regret
(four versions) for repairs. Appendix B explains each
operator in details.
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4.1.3. Acceptance criterion I|_max > L, then the penalty is also added to candidate
objective and f(s') (candidate objective with penalty) is

The algorithm empl imulated annealing t termin
e algo employs simulated annealing to dete e computed as follows:

if a new template T producing solution s should replace
the existing incumbent template t. The new template t is f(s") = candidate objective + (I_max — L) *

adopted when its associated solution yields a better [_max _penalty_accept 21D
(lower) objective value f(s') than the current incumbent
solution, f(s). We calculate the | _max of candidate
template’s corresponding solution approximately. If

|_max_penalty_accept in Eq. 21 is the penalty assigned to
each unit of arrival time consistency violation and defined

as follows:
Z?:12§=1Wid f(s) MSTeost+Yieq Sig+ming,; v {distance[0,i]} n did
(Eolim) IO (max,qep " + maxyae (S, 24 (22)
In Eq. 22 f(s) and |_max were calculated for initial £ = _(1:8As)*f(s) (23)

feasible template exactly. The MST,,s is the cost of
minimum spanning tree of the customers requesting
demand on the given day. Distance [0, i] is the Euclidean
distance of depot to customer i. In Eg. 22,
|_max_penalty_accept is calculated according to
characteristics of each problem instance. Thus, it is
computed for each problem independently and is used as .
input parameter for the solution approach. This way, we gsed the same values for parameters_as the s:ame applied
reduce the number of parameters needed to be tuned in (Kovacs, Parragh, etal., 2014) (w-=0.01, ¢=0.9999).
before running algorithm. It is defined in a way that the 4.1.4. Selection and stopping criterion
more difficult to satisfy arrival time consistency in the
sirglb;gg:q lthe less acceptance penalty will be assigned for pair | of removal and _repair operato_rs. The THLNS
The algorithm permits acceptance of worse solutions with Ferml_nates_ \{vhen reaching jche prede_ﬁngd local search
—(=F() iteration limit (local_search_iteration_limit).
probability e ¢ where t"represents the current
temperature which is initially set to:

We configure t" such that solutions worse by wi % have
a 50% acceptance probability, with w being a tunable
parameter. f(S) is the initial feasible template objective
which is computed approximately. The geometric cooling
is applied to decrease the temperature, expressed as
t" =1t" xc, where c is the cooling rate parameter. We

During every iteration, the algorithm randomly chooses a

4.2. The first stage

Algorithm 2. Details of the first stage used in algorithm 1
if status = = “feasible™:
perform General Improvement on candidate template and obtain new solution
compute |_max and objective of new solution exactly
if I_max of new solution <= L.
update best feasible objective
else:
perform Load and Tour-Length Time Repairs procedure to obtain new feasible template
resolve new feasible template to obtain new solution
compute |_max and objective of new solution exactly
if _max <=L:
update best feasible objective
else:
perform General Improvement on candidate template and obtain new solution
compute |_max and objective of new solution exactly
if I_max of new solution <= L.:
update best feasible objective
(driver) consistency across all days, choosing insertion
positions that minimize overall travel time throughout the
planning horizon. Travel times are computed using
estimated travel time functions. The shift must not worsen
the new route’s overload. The procedure favors minimal

4.2.1. Load and Tour-Length Time Repairs

First, we repair the template to make it load-feasible. For
routes violating their capacity limits, we shift candidate
points to other routes while preserving load-feasibility
constraints. All relocations of a point must maintain route
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template perturbation, because the current template has
been accepted as new incumbent template in LNS or
locally optimized by the local search stage. Thus, we
prioritize: (1) single-shift repairs to execute relocations
that resolve route violations through single-shift
corrections and (2) shifts minimizing total travel time. If
no appropriate points are found, we implement the shift
yielding the minimal total cost:

Total cost = total travel time +
ol_penalty » total overload (24)

Then, the repair process of this route is complete. Total
overload is determined by summing daily overloads
across all routes. ol _penalty represents the overload
penalty factor. Again, total travel times are computed
using estimated travel time functions. We then seek to
find points capable of resolving the route through one
more relocation. Iterations continue until achieving load-
feasibility. When no valid shifts exist, the solution creates
a new empty route to be replicated daily. Time feasibility
is then addressed through a process comparable to load
repair: for each route violating time constraints, carefully
selected points are shifted to other routes without creating
new capacity violations or increasing overtime on the
destination route.
Here, the total cost is computed similarly as follows:
Total cost = total travel time +

ot_penalty * total overtime (25)
We approximate overtime using estimated travel times for
each route, then total overtime is obtained by adding
overtime of all routes over all days. Total travel time is
also computed the same as load repair and ot_penalty is
the penalty coefficient per overtime.

4.2.2. General improvement

As mentioned before, the general improvement procedure
is performed on solutions that satisfy both capacity and
tour-length limitations. The main structure is the same as
the local search procedure, i.e., three operations
introduced above are applied during every iteration and
the solution minimizing the total cost across three
neighborhoods is determined, but there are some
differences. First, three operations are applied only on the
same route to maintain the driver consistency of the
current solution. Moreover, feasibility checking is
performed with respect to tour-length constraints and only
feasible movements are evaluated to obtain an improved
feasible solution. It is worth noting that because
operations are only applied on the same route, capacity

constraints cannot be violated and thus need not be
checked. Thus, total cost change is only consists of travel
time change of the operation in the selected day and the
change of total time difference excess. Also, no filtering is
done and all feasible movements of operations are
evaluated. Another difference is that operations are
performed on daily routes and are compared among all
routes of all periods. Finally, as indicated in (Kovacs,
Parragh, et al., 2014), the reverse operation is restricted to
apply on sequences with maximum length of three nodes
here to avoid large increases in I-max and also to help
solve larger instances in relatively reduced computational
time. All other details of general improvement are the
same as local search.

4.3. Local search (the second stage)

We use three well-known neighborhood search operators
to define the neighborhood search structures. Each of
these structures is searched to improve the total cost of the
given template solution which is used as the lowest cost in
each iteration and is initialized with Co. (Xu & Cai, 2018)
used a near concept to restrict the neighborhood search
structures. In this concept if an operator could not create
connections between a predefined fraction of near
customers, this operator would be skipped and not be
evaluated (Xu & Cai, 2018). The near concept was only
based on distances between customers. As we study the
problem under time-dependent conditions here, we apply
a different filtering method to restrict the search space for
each operator.

4.3.1. Filtering mechanism

Estimation methods were proposed in (Gmira et al., 2021;
Ichoua et al., 2003) to approximately evaluate
neighboring solutions for solving the TDVRPTW using
the TS algorithm. In (Ichoua et al., 2003), interpolation
was used to approximate the travel time of new solutions
in the neighborhood. In the approximate evaluation used
in (Gmira et al., 2021), the delay in the departure time of
the subsequent node (which is affected by the operation)
is calculated and multiplied by its penalty value. This
penalty is itself derived from the delay propagated to the
next node when the current node’s departure is delayed by
one unit. We employ this delay concept as a filtering
mechanism for each operation. In Fig. 1, nodes 5 and 0
represent the subsequent affected nodes along routes a
and b, respectively, after applying the reverse operation.
The following filtering condition is applied:

Total departure time delay of the subsequent af fected nodes
> FC * sum of the early departure times of these nodes (26)

Each node’s departure time delay is the difference
between its departure time after and before applying the

operation. By summing the delays at nodes 5 and 0, we
obtain the total delay. Early departure times mean the
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departure times of these two nodes in the current solution
before applying the operation. If the inequality defined in
Eqg. 26 holds, then this reverse operation move will be
skipped and will not be evaluated. Otherwise, the cost
change caused by the operation is evaluated. In this way,
we skip the operations without significant potential to
improve the solution and reduce the computational time.
We realized that FC = -0.1 would be a good value to
sufficiently reduce the search space for solving large
instances in reasonable times.

We compute changes in: (1) travel time (Cy), (2) overtime
(Co), and (3) overload (Cq) on each day to obtain the cost
change. However, because of time-varying travel times,
the calculation of C; and Cy is not straightforward as done
in (Xu & Cai, 2018). Whereas (Xu & Cai, 2018) used
distance-based calculations, we compute changes in time-
dependent travel times per operation on each day.
Estimated travel time functions are computed to
approximately calculate the change in travel times. These
estimated functions obtain the travel time with the
distance between nodes divided by the relevant speed of
the time interval in which the departure time is positioned.
Summing C; across all days yields Ci The change of
overtime for each day (Cq) is also calculated based on C;
of each affected route and then total overtime change
(Cior) is calculated similarly. Calculating the change in
total overload (Ci) is computationally inexpensive and
direct, providing a cost change without change in total
time difference excess (Cewrod) @5 Cewrod = Ci +
ol_penalty * Ciy + ot_penalty * Cy: = total cost change
(Tee) — I_max_penalty * Ciog, in Which Cig denotes the
change in total time difference violation. OIl_penalty,
ot _penalty, and | _max_ penalty are penalty factors
associated to load, tour-length and time difference
violations. We need to determine Cig to calculate Tec.
Given the time-intensive nature of Citq COmMputation, we
instead compute operation_cost = Co — |_max_penalty *
t_otd_initial + Cewrotg, in Which t_otd_initial and Co are
the total time difference violation and total cost of current
template respectively. If operation_ cost > Cy, since the
template’s total time difference violation remains non-
negative after the operation, the new template’s cost

cannot be lower than Co. Therefore, Ciwta COmMputation is
unnecessary. However, if this condition isn’t met, we
compute Ciorg to determine Tec. It is worth to note that Ciotg
is also computed using estimated travel times to keep the
computational time as short as possible. As noted in
(Gmira et al., 2021; Ichoua et al., 2003) a predefined
number of better solutions regarding approximated
evaluations were kept and then the total cost of these
solutions were computed exactly and the best solution
was obtained. The input parameter showing the number of
better solutions to keep for exact evaluation is indicated as
n_e s in our algorithm. In early stages of designing our
algorithm we realized that n_e_s = 30 seems appropriate
to keep the operations exact enough and simultaneously
decreasing computational time. Three neighborhood
structures are generated by three operators namely,
relocation, exchange and reverse operators. Each of these
operators can be performed within a single route or across
multiple routes. The relocation operation moves a point to
a different position, while the exchange operator
interchanges the positions of two points, finally, Reverse
operator reverses parts of the selected routes. In order to
prevent increasing in reverse operations of local searches
in larger instances, the reverse is restricted to apply on
parts with maximum length of eight nodes. This value
showed satisfying results in our preliminary stages of
designing algorithm regarding computational efficiency
and solution optimality. During every local search
iteration, these three neighborhood structures of a
template are searched through implementation of the three
operations. In order to more decrease the computational
time of local search in solving large instances, the local
search iteration count is limited to eight iterations before
finding an arrival-time consistent solution and if a
consistent solution is found, this limit will decrease to
three iterations. The lowest-cost template solution found
across all three neighborhoods is determined. If the total
cost of this template is lower than the current template
and iteration limit is not reached, the search continues
with new template as the current template. Otherwise,
local search is complete. Fig. 1 shows how the three
operations are applied on template  routes
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o]

Relocation Exchange
[o]l1[3fe|8][5[7][o0]
[o]a]s[s]e[3]7]o]
Reverse in the same route
lo]1][3]e6e|8]5]7]0] | o 9] 4]12| 2 [11]10] o |
Route ‘a’ Route ‘b’
o1 ]rofaf[s[7[o] [1e1[ o [ 4 f12[2[8[6[3]o0 ]

Reverse between two routes

Fig 1. Three types of operations used in Local Search
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4.4. Departure-time adjustment

(Kovacs, Parragh, et al., 2014) proposed the exact and
heuristic methods for adjusting the departure times of
vehicles from depot. They indicated that delaying vehicle
departure times from depot can considerably improve
arrival time consistency without changing in total travel
times. (Kovacs, Golden, et al., 2015) embedded a new
sophisticated heuristic for adjusting the departure times in
their proposed LNS. These approaches are presented for
ConVRP in which travel times are assumed to have
constant values not dependent on departure times. Thus,
delaying departures from the depot doesn’t have any
impact on travel times. The heuristic approach presented
in (Kovacs, Golden, et al., 2015) cannot be used directly
for adjusting departure times in ConTDVRP, so we
modify and extend this heuristic approach to be used in
our problem. Algorithm A.2 in appendix A indicates the
pseudocode of their approach. (More details of their
algorithm are explained in (Kovacs, Golden, et al., 2015)).
According to the heuristic approach, the maximum push

forward pf (j,k) and pull backward pb (j,k) of customer j’s
route on the relevant day(s) is determined in relation to all
other customers k sharing that route. In ConTDVRP,
delaying departure time of a route from depot affects
travel times between customers of the route. So, the
computation cannot be straightforwardly done as in
(Kovacs, Golden, et al., 2015), because delaying
departure times of a route from depot may not lead to the
same delay in arrival times of customers visited in the
route. Thus, we modify their algorithm by proposing an
iterative method for computation of pf (j,k) and pb(j,k)
values in ConVRP with time-dependent travel times.
Algorithm 3 shows the pseudocode of our proposed
iterative approach. We implement an enhanced version of
the THLNS approach in which when the obtained solution
fails to satisfy arrival time consistency constraint, the
extended heuristic for adjusting departure times is
executed to check if it can improve I-max to find feasible
solution. In the next section, we solve each problem
instance by two versions of the proposed THLNS

Algorithm 3. Pseudocode of the proposed iterative approach to compute pf (j,k) in Algorithm A.2

Input: customers j and k, arrival times of all customers in days, solution routes, day, customer j’s route on the given day,
current delayed departure of routes in all days, speed profile (SP) with corresponding breakpoints (bp), a
Output: delay value in departure time (dt) of customer j’s route on the given day
if customer j’s route on the given day is existed in current delayed departure of routes:
candidate dt of customer j’s route on the given day = its former dt + (last bp of SP- its former dt)/2

else:

candidate dt of customer j’s route on the given day = last bp of SP/2

candidate dt list = empty list
add candidate dt to candidate dt list
while True:

set all departure times to zero

set departure time of customer j’s route on the given day to the candidate dt
if customer j’s route is feasible after setting its departure time on the given day:

compute arrival times of customers j and k in all days

compute the arrival time difference of customers j and k (ATD_of _j, ATD_of k)

if ATD_of_j < ATD_of k:
if || candidate dt list || <=1

candidate dt = candidate dt — (candidate dt — former dt) / 2

add candidate dt to candidate dt list

elseif absolute (candidate dt — the last but one element of candidate dt list) > a:
candidate dt=candidate dt -absolute (candidate dt — a last but one element of candidate dt list) /2

add candidate dt to candidate dt list
else:
break
else:
if || candidate dt list || <=1

candidate dt = candidate dt + (last bp of SP — candidate dt) / 2

add candidate dt to candidate dt list

elseif absolute (candidate dt — the last but one element of candidate dt list) > o
candidate dt=candidate dt +absolute (a last but one element of candidate dt list -candidate dt) /2

add candidate dt to candidate dt list
else:
break
else:
if || candidate dt list || <=1
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candidate dt = candidate dt — (candidate dt — former departure time) / 2

add candidate dt to candidate dt list

elseif abs (candidate dt — the last but one element of candidate dt list) > a:
candidate dt = candidate dt — absolute (candidate dt — the last but one element of candidate dt list) /2

add candidate dt to candidate dt list
else:
break
end while

return absolute (candidate dt — former dt of customer j’s route on the given day)

We found that a = 0.01 and € = 0.01 are proper values to
converge fast and exactly. The calculation of pb (j,k) can
be done similarly using analogous logic. According to
(Kovacs, Golden, et al., 2015), calculation of pb (j,k) is
done when pushing forward is not possible. Then, the
previously pushed departure times become candidates to
see if they can be pulled backward. Tour-length feasibility
remains guaranteed because: the former feasible departure
times will be decreased in this case and also the FIFO
property holds on, and it is not needed to check the
feasibility after setting the departure time on the given
day.

5. Computational Experiments

In this section, time-dependent travel time functions were
computed in MATLAB 2020, while the proposed
approach and all benchmark algorithms  were
implemented in Python 3.11. All experiments were
conducted on a system featuring an Intel Core i7 2.6 GHz
CPU and 16 GB of RAM. We extend the ConVRP
benchmark instances introduced by (Groér et al., 2009)
and generate new instances to analyze the efficiency of
the presented approach in solving ConTDVRP. They
created a straightforward method for randomly producing
a ConVRP benchmark derived from the classical VRP
benchmarks, generating a unified five-day ConVRP
benchmark from problems 1-12 with p = 0.7 daily service
probability. In generating these problems, they defined the
travel times (in minutes) between any two customers as
identical to their Euclidean distance. (Groér et al., 2009)
reported I-max of each problem obtained by their
proposed algorithm. Then, later research used these I-max
values as the arrival time difference limit (L) in solving
these instances. Table B.1 of Appendix B represents
characteristics of the ConVRP large instances. We
developed their benchmark instances by introducing three
speed profiles. These profiles are derived from (Figliozzi,
2012) which for the first time tried to define standard
TDVRPTW instances that can be used repetitively to
evaluate other TDVRPTW solution approaches. These
benchmark instances incorporated two peak congestion
intervals within the depot’s operating hours. The depot
operational time (T) was partitioned into five equal time
intervals, with specific travel speeds defined for each
interval. Since our problem lacks time windows, we adopt
their three speed profiles which presented for TDVRPTW
with soft time windows because in this case vehicle would
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travel the same distance with the same average speed as in
the classical VRP instances until depot closing time with
speed variability in periods. Therefore, these profiles can
be used to generate ConTDVRP instances without time
windows. Similar to (Figliozzi, 2012), the depot
operational time (i.e. [0,T]) is partitioned into five equal
intervals and the associated travel speeds are defined for
each profile as follows:
Profile_1 = [1.1,0.85,1.1,0.85, 1.1]
Profile 2 =[1.2, 0.8, 1, 0.8, 1.2]
Profile_3 =[1.2, 0.7, 1.2, 0.7, 1.2]
For example, for the tenth problem of ConVRP instances
with T=200, the working time is divided to the five equal
periods as [0, 40), [40, 80), [80, 120), [120, 160), [160,
200]. Therefore, three instances are generated regarding
the tenth ConVRP instance and above three profiles.
Finally, we have 36 instances of ConTDVRP by
extending 12 ConVRP instances. Similar to former
ConVRP research, we assumed the I-max values reported
by (Groér et al., 2009) as I-max limit (L) values. The ch-3
problem with profile 2 is chosen as the middle instance to
perform design experiments. We tune four parameters
including I-max-penalty, ot-penalty, ol-penalty and I-max-
constant by Taguchi method. Three levels are tested per
parameter and L-9 array is used to perform 9 experiments
with proposed levels. Each experiment is repeated five
runs on ch-3 with profile 2. The response variable is
computed by Eq. 28 and defined such that the relative
percentage violation of I-max in compare to L is added to
the best-found travel time as penalty.
Response = Travel time * (1 + [_max _violation/L)
(28)
Table B.2 of Appendix B shows the results of tunning
parameters and Figs. B.1.a-B.1.b display the main effect
plots for Means and SN ratios respectively. Then the best
levels of parameters are determined based on SN ratios as
follows: I-max-penalty = 75, ot-penalty = 10, ol-penalty =
10 and I-max-constant = 1.75. These parameter settings
are used in performing all numerical experiments of this
section. Totally, 12 instances are solved with proposed
THLNS for each speed profile and solving each instance
is repeated five runs. Table 3 shows the obtained results.
In this table ch-1 to ch-12 indicates 12 benchmark
instances of ConVRP. There are five columns reported for
each speed profile. Avg.TT and Avg I|-max indicates
averages of the travel time (in minutes) and I-max of each

(27)
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instance over five runs. Similarly, Min TT and Min I-max
shows minimum travel time and minimum |-max of each
problem among five runs respectively. Avg CPU time
represents the average processor runtime (in seconds) for
solving each instance. As shown in the Avg. TT column
of Table 3, the average travel time across all instances
remains nearly unchanged between Profile 1 (6,978.7) and
Profile 2 (6,930.5), with a marginal decrease of 0.69%.
However, it increases significantly by 4.98% from Profile
2 (6,930.5) to Profile 3 (7,275.45). Average I-max
increases by about 5.39% from profiles 1 to 2 and
decreases only 1.22% from profiles 2 to 3. The average

CPU time increases considerably from profiles 1 to 2 and
2 to 3 (3.78% and 9.1% respectively). it indicates that
obtaining solutions with satisfying [-max becomes
difficult by increasing the speed variation between
periods. (from profiles 1 to 2) and obtaining solutions
with less travel time becomes difficult by more increasing
in speed variation (from profiles 2 to 3). Also, the CPU
runtime of the proposed algorithm increases with greater
variations in the speed profile.

Table 3
Results for ConTDVRP instances solved by THLNS without departure-time adjustment
Profile 1 Profile 2 Profile 3
D Avg. | Avg | Min | Min é‘;g Avg. | Avg | Min | Min CAI;IEJ Avg. | Avg | Min [ Min CA;E]J
TT |l-max| TT [l-max time TT |l-max l-max time TT |l-max| TT |l-max time

Ch-1 ]2560.33|30.19|2514.29|23.04 | 256.07 | 2587.35(29.01|2330.31|23.63| 275.16 |2607.39 [30.22|2364.03 |25.62| 310.70

Ch-2 |4231.41|29.45(4081.86| 28 | 529.61 |4277.20(31.92|4131.51|30.44 | 549.12 |4195.17 |47.77|3996.67 | 29.83| 857.01

Ch-3 ]4180.08|22.50| 4099.3 |22.21|2198.47 | 4074.68 | 30.95| 3938.46 | 22.37 | 3198.40 | 4380.86 | 27.32| 4330.75 | 21.54 | 3159.52

Ch-4 15934.86|29.59 |5825.97 | 26.44 |8789.10 | 6134.98 (26.92| 5811 |26.79|7793.79]6427.19 27.01|6141.46 |26.38|9295.81

Ch-5 ]8710.42|25.71|8370.79 | 24.04 (16020.71] 8036.07 | 25.04 | 7634.67 | 24.13 [19765.97] 8990.23 | 24.48 | 8641.11 | 23.49 |18564.67

Ch-6 |4564.68|60.48|4497.72|56.94| 90.17 |4799.10(55.71|4694.14|48.68 | 117.95 | 5147.91 |55.46 | 5054.69 |53.87 | 120.29

Ch-7 |7621.47|77.43|7349.64| 72.5 | 291.50 | 7872.98 | 77.77|7613.68 | 72.47 | 322.75 | 8036.68 | 71.72| 7784.81 |68.24 | 280.48

Ch-8 |8409.34|69.96|8324.01|65.05| 931.68 | 7979.71|72.19| 7533.1 |71.76|1103.91 | 8406.35 | 69.53 | 8240.35 | 68.32 | 927.72

Ch-9 ]11937.39|74.29(11812.1| 66.7 |2562.50 |11947.33/81.90|11609.58| 72.53 | 2212.37 |12405.31{92.60 |12098.53| 74.6 | 3569.95

Ch-10 |14924.51|78.52|14864.02| 70.01 |18868.65|15070.18| 85.02 [14733.72| 79.02 [16994.68]15623.62| 68.86 {15321.01| 60.09 [20545.73

Ch-11 ]5965.49|15.36|5677.58 | 14.67 | 4614.21 ] 5871.00|17.50 | 5623.39 | 15.65 | 5585.79 | 6482.56 | 17.68 | 6203.2 |15.61|5118.72

Ch-12 |4704.39|18.41|4691.65 |17.04|2708.59 | 4515.39|26.62 | 4362.67 | 11.78 | 2129.74 | 4602.07 | 21.08 | 4356.71 | 17.05 | 2762.57

Average| 6978.7 (44.32(6,842.41|40.55|4,821.77] 6,930.5 |46.71|6,668.02| 41.6 |5004.14 |7,275.45(46.14 | 7044.44 | 40.39|5,459.43

We also solve above instances by including extended
heuristic for adjusting departure times in the proposed

Table 4

approach. The obtained results are represented in Tables
4-6.

Obtained results of proposed THLNS with departure-time adjustment for profile 1

Avg. | Avg Min Min | Avg CPU

TT I-max TT I-max time depot).

Profile 1 (k, d) = departure time of route k in day d (in minutes after working start time) and
1D departure times of all remaining routes of other days equals zero (i.e. the starting time off

Ch-1 2067.65 | 25.17 | 1925.2 | 20.65 283.16

(5,2) = 1459, (4,2)=4.9, (1,1)=1153, (1,3)=1153

Ch-2 3602.25 | 31.17 | 3586.21 | 27.51 585.08

(10,3) = 34.61, (3,4)=23.2, (4,1)=0.2

Ch-3 3207.14 | 20.32 | 3179.08 | 18.08 | 1952.31

(2,2)=9.89, (7,1)=5.13, (2,3)=9.93, (4,3)=0.67, (6,3)=2.04

Ch-4 492225 | 26.28 | 4661.18 | 25.05 | 5990.06

(1,2)=16.23, (11,5)=8.29, (4,3)=7.77, (8,4)=2.55

Ch-5 6616.72 | 23.85 | 6362.17 | 22.58 | 15846.19

(44)=4.13, (21)=9.23, (11,2)=2.97

Ch-6 3945.99 | 60.06 | 3800.1 | 58.87 103.59

(3,5) = 25.45, (1,3)=2.67, (6,4) = 27.26

Ch-7 6791.98 | 68.48 | 6277.42 | 62.93 275.75

(1,5)=228

Ch-8 6879.16 | 68.62 | 6810.64 | 63.42 910.92

(9,5)=3.7
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] (34)= 10851, (12,2) = 5712, (124)=45.72, (12,5) =57.12, (5,1) = 48.79 (5,2) = 26.53,
Ch-9 | 10899.54) 92.06 | 9472.26 | 7361 | 2450.83 (53) = 7164, (55) = 48.79, (9,1) = 1.09, (9,2) = 28.6 (9,3) = 41, (9,5) = 75.18
Ch-10 |12262.19| 51.71 [12026.84 | 4919 | 1646446 | (17,5)=226, (1,3)= 1545, (11,3) =23.94, (8.1) =30.73, (12.2) = 23.21 , (95) = 13.31
ch-11 | 4712.05 | 15.54 | 457008 | 1493 | 452455 (65)=222, (24)=7.21, (1,1)=6.13, (42) = 5.04
Ch-12 | 3676.80 | 24.84 | 344166 | 17.46 | 2038.83 (32) =655, (24)= 049

Average | 5,798.72 | 42.34 | 5500.4 | 37.86 | 4,286.23
Table 5

Obtained results of proposed THLNS with departure-time adjustment for profile 2

Profile 2 (k, d) = departure time of route k in day d (in minutes after working start time) and
1D Avg. | Avg Min Min | Avg CPU departure times of all remaining routes ofd(égl;et; days equals zero. (i.e. the starting time of
TT I-max TT I-max time '
Ch-1 | 2284.17 | 31.50 | 2064.85 | 23.81 | 274.79 (31)=3.74, (2,2)=3.41, (1,5)=6.34, (45)=7.62
Ch-2 | 3429.78 | 30.39 | 3303.21 | 24.19 | 628.42 (34)=212, (7,2)=3.23, (8,1)=5.38, (4,2)=18.11
ch-3 | 3413.94 | 36.02 | 3311.27 | 22.09 | 3016.03 (51)=527, (43)=12, (32)=242, (1,2)=17.28, (2,1)=1.4
Ch-4 4983.21 | 26.20 | 4652.63 | 25.81 6712.92 (11,5) =13.46
Ch-5 | 6677.46 | 24.11 | 6339.33 | 22.69 | 16593.30 (18,1) = 13.89, (3,3) =20.12, (11,2)=2.28, (14,2) =9.54
Ch-6 | 3900.32 | 50.86 | 3792.55 | 49.98 | 129.15 (5,5) =16.57, (4,4) =10.05
Ch-7 6295.96 | 69.11 | 6244.67 | 62.53 330.78 (6,4) =19.27, (10,5) =23.43, (1,3) =28.96, (1,5) =50.44
Ch-8 6825.32 | 65.56 | 6710.29 | 61.75 114477 (7,5) =28.01, (1,1) =2.06
Ch-9 | 10447.45| 96.70 | 9435.13 | 79.52 | 2599.83 (9,4)=5.76
ch-10 |12623:81| 53.00 | 12260.82| 50.65 | 12611.39 (14(*%’?)33"2‘2;387('3?5 352.8.%3,(1(15;:25))::3224..23?’ (1(23 = ;%gl(z(i?:?’);sioéé(f)i) pyal
Ch-11 | 5251.63 | 26.10 | 4775.68 | 13.95 | 3826.13 (1,2) =114, (5,2)=5.33, (2,2)=5.18, (4,2)=7.4, (4,4) = 6.49
Ch-12 | 3674.09 | 16.01 | 3376.92 | 14.45 | 2018.39 (4,5)=0.69
Average | 5,817.26 | 43.8 |5522.28 | 37.62 | 4,157.16
Table 6

Obtained results of proposed THLNS with departure-time adjustment for profile 3

Profile 3 (k, d) = departure time of route k in day d (in minutes after working start time) and
ID Avg. | Avg Min Min | Avg CPU departure times of all remaining routes Ofd(;ﬂft; days equals zero. (i.e. the starting time of
TT I-max TT I-max time pob).
Ch-1 | 2099.07 | 26.38 | 1976.7 | 23.98 | 398.24 (1,1)=13.36, (4,5)=3.86, (4,1)=2.86, (3,4) =5.69
Ch-2 | 3532.49 | 45.35 | 3206.66 | 25.94 796.13 (72)=17
Ch-3 | 331893 | 29.77 | 3271.9 | 20.44 | 3394.12 (7.4)=2.41, (4,3)=11.83, (2,4)=6.9, (4,4) =12.85, (3,2)=3.83
Ch-4 4952.92 | 25.74 | 4825.05 | 25.42 8198.00 (4,2) =15.68, (8,4)=7.46, (9,5)=4.24
Ch-5 6659.22 | 22.22 | 6119.33 | 19.39 | 17225.56 (17,5)=13.93, (2,2)=7.71, (14,2) =10.65
Ch-6 | 3983.76 | 57.25 | 3833.09 | 51.78 136.45 (2,5)=34.23, (1,2)=6.24
ch-7 | 675392 | 69.28 | 668531 | 65.93 93439 (10,4) = 131.25, (3,2) =81.69, (5,3) = 75.23,_(12,2) =8.53, (12,3) =10.07, (12,4) = 10.07,
(12,5) = 10.07
ch-8 | 7001.64 | 59.81 | 6916.04 | 55.24 | 1082.88 (6,3) = 43.75, (5,1) = 15.39, (2,5) = 56.37
Ch-9 |10341.50| 73.69 | 9916.52 | 63.24 | 4162.14 (9,4) =36.94, (13,2) = 36.66, (10,3)=15.36
Ch-10 |12794.15| 56.98 | 12697.02| 54.35 | 15393.22 (16,4) = 20.59, (4,3)=7.1, (11,2) = 1.23, (19,5) = 12.41
Ch-11 | 5354.50 | 22.88 | 4743.74 | 15.01 | 4962.14 (2,5)=10.65, (5,5)=8.21, (3,4)=0.52
Ch-12 | 3585.17 | 25.85 | 3374.15 | 13.77 | 2226.94 (5,5)=13.76, (7,2) =8.87, (6,2) =5.55, (1,4)=3.33,(2,5)=8.31
Average | 5864.77 | 42.93 | 5630.46 | 36.21 | 4850.85

As shown in Tables 3-6 the average travel time of all
instances decreases for all profiles by including departure
time adjustment in proposed approach. The average I-max

and average CPU time of all instances also decreases for
all profiles. The average travel time of profiles 1 to 3
between all instances decreases by 16.9%, 16.06%, and
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19.39% respectively compared to the baseline THLNS
without adjusting departure times. It seems an interesting
result, because although adjusting departure times are
performed to decrease only I-max value without
considering travel times, but it simultaneously achieves
significant reductions in travel times for all defined speed
profiles. Similarly, the average I-max decreases by 4.47%,
6.23%, 6.96% respectively which shows that although the
departure-time adjustment is not performed for I-max-
feasible solutions, it already can decrease the average I-
max of best-found solutions. Also, there is one instance
for each profile in which THLNS without departure time
adjustment cannot find arrival time consistent solution
among five runs of the algorithm (i.e. Min I-max > L), but
the proposed approach including departure-time
adjustment can find arrival time consistent solutions of all
instances for each defined profile. Average CPU times of
all instances decreases by 11.1%, 16.93%, 11.15% for

Average total travel time (minutes)

profiles 1-3. It is an expected result, because by adjusting
departure times, algorithm can find consistent solution
earlier and then iteration count limit of local search in the
algorithm reduces from 8 to 3 which can greatly reduce
the computational time of local search.

All instances are also solved with constant travel times in
which the speed equals one. Similarly, we perform five
runs per instance. The results are collected in Table B.3 of
Appendix B. The results demonstrate that the algorithm
have found consistent solution for instances with tight
time-consistency constraints (small L values) and constant
speed profile which may not find consistent solutions in
time-dependent profiles for them. Figure 2 compares the
results for each instance across the constant profile and
three other profiles. The results show that the constant
profile generally yields lower average travel time, I-max,
and CPU runtime.

Average I-max
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Fig. 2. Comparison of the THLNS results between profiles

Small instances were presented in (Groér et al., 2009) to
solve ConVRP to optimality. Similarly, we extend these
small problems with predefined speed profiles for
evaluating the MIP model. Table B.4 of Appendix B
indicates the detailed information of these small instances.
Finding optimal solutions for these instances may take
many days. To address this, we supposed the above
extended problems as our medium-sized instances and
created five smaller ConVRP instances (indicated as 6-1
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to 6-5) by retaining only the first half nodes of instances
12-1 to 12-5 while keeping all other parameters
unchanged. Table 7 compares the optimal solutions for
new small instances (under Profiles 1-3) with the results
of five runs from THLNS. Here, TT* represents the
optimal travel times for each profile, while the Avg gap
measures the percentage variation across Avg TT and
TT*.
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Table 7
Comparing the results of THLNS without departure-time adjustment to CPLEX optimal solutions for new small instances
THLNS CPLEX Avg gap

ID Profile Type A-|y-|9 | ,?];,ng |\_I/|__|IE1 |.'\r/|n|2x Avg E:SIZEJ) time TT* CPU Time (sec) (%)
Profile_1 101.65 4.69 100.6 3.47 0.75 87.97 585.86 15.55
6-1 Profile_2 107.45 3.34 107.45 3.34 0.11 89.63 327.47 19.88
Profile_3 105.62 3.48 105.62 3.48 0.69 88.74 423.83 19.02
Profile_1 58.4 4,76 58.4 4,76 0.05 50.397 9.19 15.88
6-2 Profile_2 58.75 453 58.75 453 0.05 50.755 211 15.75
Profile_3 58.8 4,76 58.8 4,76 0.07 50.798 19.64 15.75
Profile_1 90.3 4.89 90.3 4.89 0.09 76.303 31041 18.34
6-3 Profile_2 92.22 4,75 90.93 3.91 0.75 78.136 679.25 18.02
Profile_3 94.76 471 94.76 471 0.12 78.529 516.3 20.67
Profile_1 136.06 0.85 136.06 0.85 0.07 115.554 2450.02 17.75
6-4 Profile_2 137.98 0.89 137.98 0.89 0.07 117.757 524.56 17.17
Profile_3 136.77 0.66 136.77 0.66 0.07 116.849 243.64 17.05
Profile_1 84.34 2.31 84.34 2.31 0.1 70.338 1801.47 19.91

6-5 Profile_2 86.57 2.00 85.9 0.93 0.15 71.903 363.14 20.4
Profile_3 89.42 1.01 85.99 0.58 0.16 71.986 2312.95 24.22
Average 95.94 3.175 95.51 2.938 0.22 81.043 704.656 18.58

3600 seconds for all instances. The gap column measures

Table 8 demonstrates the numerical results of running the relative difference between Avg TT and Upper Bound

medium instances with THLNS for profiles 1-3. The MIP

model of these instances is implemented by CPLEX if available.
solver. The maximum allowed runtime is configured as
Table 8
Comparison of THLNS without departure-time adjustment and CPLEX on medium instances
THLNS CPLEX
’ Avg gap
ID | Profile Type Avg. Avg Min Min  |Avg CPU time|]  Upper Lower | CPU Time (%)
TT l-max TT l-max (sec) Bound Bound (sec)
Profile_1 134.8027 2.8449 132.0457 2.5986 0.304 173.2276 |69.2414 3600 -22.18
10-1 Profile_2 121.4004 3.1904 109.7841 2.6533 0.352 156.478 |65.9568 3600 -22.42
Profile_3 127.7065 3.9018 124.4387 2.6333 0.326 166.3702 | 65.69 3600 -23.24
Profile_1 133.2339 2.1935 128.8691 1.6192 0.328 NA 59.7555 3600 NA
10-2 Profile_2 126.2172 | 3.8888 | 126.2172 | 3.8888 0.524 140.1082 | 54.584 3600 -9.91
Profile_3 123.0142 3.8292 113.6534 2.6925 0.548 159.0368 |49.6378 3600 -22.65
Profile_1 144.7637 3.2168 144.5736 2.0669 0.444 132.4553 |60.6938 3600 9.29
10-3 Profile_2 139.1806 | 4.4981 | 138.7734 | 4.0838 0.626 184.3733 |57.1707 3600 -24.51
Profile_3 141.4415 4.0518 138.6834 2.6675 0.45 171.6666 | 55.634 3600 -17.61
Profile_1 146.3757 3.8678 145.2353 3.8678 0.304 193.3243 | 69.137 3600 -24.28
10-4 Profile_2 142.3056 4.4032 140.0943 4.4032 0.338 186.4076 |63.5727 3600 -23.66
Profile_3 143.4217 3.4040 140.1200 1.7143 0.284 167.9169 |64.7899 3600 -14.59
Profile_1 133.8742 2.7648 129.2655 0.6190 0.446 134.1546 |66.1048 3600 -0.21
10-5 Profile_2 129.4069 3.6138 121.9890 1.6550 1.24 149.5773 |64.5501 3600 -13.48
Profile_3 126.4124 | 3.3760 | 124.3068 | 1.5796 1.102 140.2731 |59.5455 3600 -9.88
Profile_1 165.3900 3.6287 161.8618 3.3329 0.814 NA 82.4684 3600 NA
12-1 Profile_2 155.5854 4.1498 144.4618 3.9031 0.64 363.8623 | 73.7669 3600 -57.24
Profile_3 162.2788 | 4.0004 | 155.7395 | 3.5272 0.604 NA 72.1691 3600 NA
Profile_1 125.0532 3.4863 123.0339 2.1266 0.426 130.067 |55.3939 3600 -3.85
12-2 Profile_2 113.4390 | 3.1311 | 107.8172 | 2.7000 0.74 140.6775 |49.9921 3600 -19.36
Profile_3 116.8819 | 4.4716 | 116.6014 | 3.7408 1.386 NA 47.9792 3600 NA
Profile_1 155.1394 | 2.5853 | 149.1467 | 1.0809 0.626 181.3129 |55.0591 3600 -14.44
12-3 Profile_2 136.9676 | 4.4560 | 128.9389 | 3.4452 2.718 NA 50.0187 3600 NA
Profile_3 138.7748 | 2.8330 | 134.4852 | 2.5428 0.958 198.6782 |48.7897 3600 -30.15
Profile_1 169.0764 | 3.4706 | 165.2609 | 2.8511 0.664 NA 69.4519 3600 NA
12-4 | Profile_2 168.2808 | 4.4154 | 154.8830 | 4.0701 1.37 180.526 |64.1517 3600 -6.78
Profile_3 156.316 45511 | 155.0342 | 4.2365 3.132 246.2437 |63.6587 3600 -36.52
Profile_1 141.5695 3.6904 138.8055 3.0832 1.156 NA 54.77 3600 NA
12-5 Profile_2 137.3213 3.5858 131.9158 3.0775 1.072 NA 54.8066 3600 NA
Profile_3 133.2511 3.6156 125.4192 2.5375 1.088 NA 49.5064 3600 NA
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We adapted the three approaches presented in literature
for ConVRP including TALNS (Kovacs, Parragh, et al.,
2014), LNS (Kovacs, Golden, et al., 2015) and VNS (Xu
& Cai, 2018) via replacing the constant travel times by
piece-wise linear travel time functions and solved the
extended large instances for profiles 1 to 3. All of these
approaches are implemented using their tuned parameter
values from the main work. Each instance is solved five
times and average observed I-max and travel time values
are reported. Table 9 compares the performance between
these approaches for profile 3. To standardize
comparisons, we use the average CPU time from Table 3
(Profile 3) as the runtime limit for all algorithms per
instance. (Similarly, Tables B.5 and B.6 in Appendix B
compare these results for profiles 1 and 2.) Since VNS
does not consider departure-time adjustment, and since
the departure-time adjustment methods of the other two
approaches cannot be applied directly to ConTDVRP, we

Table 9

compare the base versions of THLNS, TALNS (Kovacs,
Parragh, et al., 2014), and LNS (Kovacs, Golden, et al.,
2015) (all without departure-time adjustment) for a fair
comparison. An approach is superior if it yields a
consistent solution with the lowest Avg TT (where Avg I-
max < L) or the lowest values for both metrics. Superior
results are bolded; otherwise, the best-performing metric
is highlighted in bold. THLNS outperforms others in five
instances, TALNS in four, and neither dominates in Ch-1,
Ch-3, or Ch-11. (Table B.6 shows the same result for
Profile 2, while Table B.5 demonstrates the superiority of
THLNS in seven instances for Profile 1.) For Profile 3,
the proposed method vyielded 11.82%, 12.21%, and
34.52% lower average travel times than TALNS, LNS,
and VNS, respectively. The corresponding improvements
for Profiles 1 and 2 were also significant: 11.83%, 9.43%,
35.91% and 16.48%, 10.18%, 36.57%. Thus, THLNS
performs best under identical computational limits.

Comparison of THLNS (without departure-time adjustment) with three literature approaches for large instances (Profile 3)

D THLNS Pf;rr'rAaléhN,Set(lafl(.),vggiVAf) HNS g;gl\./’agsalg;)lden, VNS (Xu & Cai, 2018) _I-max CP_U _Runtime
AvgTT Avg AvgTT Avg AvgTT Avg AvgTT Avg | Limit(L) | Limit (sec)
(min) I-max (min) |-max (min) |-max (min) I-max

Ch-1 2607.39 30.22 | 3127.84 | 64.02 | 252270 | 76.60 | 377379 | 11857 | 24.38 310.70
Ch-2 4195.17 4777 | 599232 | 87.24 | 574027 | 196.75 | 6621.35 | 108.55 | 34.26 857.01
Ch-3 4380.86 27.32 | 546048 | 72.87 | 3530.80 | 106.99 | 6505.84 | 88.60 22.87 3159.52
Ch-4 6427.19 27.01 | 724114 | 5151 | 864566 | 260.79 | 10323.26 | 80.35 27.53 9295.81

Ch-5 8990.23 2448 | 982275 | 56.82 | 11254.77 | 253.73 | 13168.70 | 77.33 26.93 18564.67
Ch-6 5147.91 55.46 | 4361.78 | 63.36 | 549352 | 162.23 | 6546.80 | 87.68 63.47 120.29
Ch-7 8036.68 7172 | 729419 | 74.04 | 8510.25 | 127.84 | 10192.87 | 60.60 83.96 280.48
Ch-8 8406.35 69.53 | 9653.05 | 70.92 | 8478.89 | 170.75 | 12790.37 | 128.73 | 73.04 927.72
Ch-9 12405.31 | 92.60 | 1237857 | 64.45 | 1316454 | 172.11 | 19040.19 | 104.61 | 106.43 3569.95

Ch-10 15623.62 | 68.86 | 16489.42 | 58.92 17089 | 172.25 | 24603.10 | 11526 | 60.17 20545.73
Ch-11 6482.56 1768 | 7312.16 | 163.45 | 531346 | 5275 | 731216 | 163.45 16.1 5118.72
Ch-12 4602.07 21.08 | 6729.97 | 88.75 | 654439 | 256.04 | 822881 | 78.79 17.58 2762.57
Average | 7044.44 4039 | 798864 | 76.36 | 8024.02 | 167.40 | 10758.94 | 101.04 | 46.39 5459.43

To examine the impact of varying L parameters on the
performances of THLNS with and without departure time
adjustment, we selected instance ch-3 and increased the L
values by 0% to 80% with 20% step, then each algorithm
variant executed three runs per L value and profile. It
should be noted that because the algorithm may find a
consistent solution earlier by increasing L values, we
don’t decrease the iteration count limit of local search
after finding the first consistent solution and the local
search continues with 8 iterations to the end of approach.
This approach neutralizes the effect of decreasing L
values on the obtained travel time and CPU times with
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respect to local search iterations and we have a fair
comparison. Figs.3 and 4 show the obtained results of
above changing on the proposed approach without and
with departure time adjustment respectively. We selected
ch-1 to analyze the effects of increasing
local_search_counter_limit on solution metrics of each
profile. This limit was increased from 10 to 90 counts.
Fig. 5 indicates the obtained results. The FC parameter
range which impacts on filtering neighborhood search
space of a template was varied from -0.1 to 0.3 for ch-1
and ch-8 with profile 3. Results are shown in Figs. 6 and
7.
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Fig. 4. Effect of changing L on results of ch-3 with departure-time adjustment
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Fig. 7. Effect of increasing FC parameter on results of ch-8 for profile 3 without departure-time adjustment

As shown in Figs. 3 and 4, the average runtime indicates a
decreasing trend approximately as L increases for both
versions of the proposed approach. Although the approach
is modified and local search iterations don’t change to
have a fair comparison in this case, CPU time decreases in
both versions for all profiles because by increasing L
value the candidate solutions found by LNS component
can be accepted and chosen earlier, so performing the first
and second stages of the proposed approach can be started
faster. Average I-max of the solution in the first version of
THLNS (i.e. without adjusting departure times) increases
for profile 1. For profiles 2, 3 in the first version of
algorithm, average I-max exceeds the limit L, but when
the limit increases by 20 % (i.e. 1.2 L), average I-max of
both profiles becomes very close to the 1.2 L limit. It
shows that in profiles 2, 3 with higher speed variation,
when the I_max limit is increased by 20%, the algorithm
can find solutions with I-max values that are very close to
or under the I-max limit. After that by more increasing of
I-max, both profiles indicate similar trend as the first
profile. As expected, in the second version of the
algorithm with adjusting departure times, profiles
demonstrate different behaviors and I-max indicates an
increasing trend for profile 2 as well as profile 3
approximately. It indicates that adjusting departure time
leads to the solutions with satisfying or very close to |-
max limit for profiles 1, 2 and has been effective on
decreasing remarkable values of I-max. The average
travel time doesn’t indicate a monophonic and constant
trend for any profile in the two versions of the algorithm.
With the local search limit fixed at 10 (to ensure
consistent feasible solutions within reasonable time),
increasing l-max limit has negligible impact on travel
times. The proposed algorithm is designed such that
obtaining solutions with less travel times is expected by
increasing I-max limit and local search counts
simultaneously. Fig. 5 shows that average CPU time of
the first version for all profiles is increased by increasing
local search counts as expected. Average I-max is
decreased in all profiles which indicates that increasing
local search counts has great impact on obtaining
consistent solutions of all profiles specially for profiles 2,
3 with higher degrees of speed variation. Also, the
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average total travel time of profile 1 shows a decreasing
trend approximately but other profiles don’t indicate a
specific trend. It implies that increasing local search count
in profile 1 can simultaneously result in finding solutions
with less travel times and less I-max with the given I-max
limit (L), but for profiles 2, 3 it should be required to
increase I-max limit in addition to perform more numbers
of local searches so that consistent solutions with less
total travel times can be found. Figs. 6 and 7 show that by
increasing FC parameter in the first version of the
algorithm, the average CPU time increases with similar
trend for both instances of ch-1 and ch-8 in profile 3. The
average I-max first decreases greatly by increasing FC to
0 in ch-1 and then continue decreasing until FC=0.1 and
increasing FC above 0.1 doesn’t decrease 1-max anymore.
In ch-8 which has very higher I-max limit (L=73.04), the
algorithm has found consistent solution for all FC values
and increasing FC doesn’t have impact on decreasing 1-
max anymore because the proposed algorithm designed
such that inconsistent solutions are penalized and once it
reaches a consistent solution it doesn’t give any reward to
decrease I-max values anymore. The average travel time
shows an approximately increasing trend with increasing
FC for both instances of ch-1 and ch-8. This reveals an
important result: the FC parameter can decrease the travel
time of obtained solutions and computational time of
algorithm simultaneously if properly set. FC=-0.1 has the
minimum average travel time as well as CPU time among
other values.

5.1. Managerial insight

The current research provides an efficient approach for
managers to obtain consistent solutions in real-world
cases where travel timescan fluctuate because of
changing factors like traffic congestion in urban
environments. The research presents an approach which
incorporates a filtering mechanism as well as estimating
travel times to reduce the computational times, so
managers can use it to find solutions which
simultaneously focus on customer satisfaction via
consistency considerations and cost efficiency by
maintaining moderate travel times in real-world
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environments like urban regions with reduced
computational time.
Results indicated that by incorporating dynamic

conditions of real-world practice through modeling time-
dependent travel times, finding consistent solutions
becomes more difficult. This suggests managers should
account for dynamic conditions by implementing time-
dependent travel times, enabling them to: (1) satisfy
customer consistency requirements while (2) maintaining
lower travel times in practice.

The incorporation of the departure-time adjustment
procedure into the algorithm reduced travel times and
improved consistency without increasing computational
time. Moreover, thanks to the specialized design of
THLNS, the proposed procedure further reduced
computational time, as the algorithm could identify
consistent solutions earlier. The results demonstrate that
the proposed approach with departure-time adjustment
could find consistent solutions for all ConVRP instances
in the literature with introduced time-dependent travel
times. Managers can apply this adjustment to large-scale
cases in practice to meet customer consistency
requirements more efficiently in real urban environments.

6. Conclusion

In recent years, the primary focus of VRP has shifted
from fleet cost optimization to greater emphasis on
customer-related factors. Concentrating more on customer
satisfaction through improved service levels and quality is
crucial to remaining competitive in today's business
environment. Providing consistent services, using the
same provider at roughly the same times during
customers’ demanding periods, is a key aspect of high-
quality service in many applications such as home
healthcare services, parcel delivery and retail distribution
systems. It can help improve customer loyalty and
maintain long-term relationships with the company. The
ConVRP represents the initial VRP variant that places
primary emphasis on ensuring customer satisfaction. All
previous research on the ConVRP considered
deterministic, time-independent travel times in the
transportation network. These models may fail to reflect
real-world scenarios, where travel times depend on
departure times due to time-varying factors like traffic
congestion, especially in urban environments. Thus, they
cannot ensure arrival time consistency but can only
guarantee driver consistency. Moreover, these models’
total travel time estimates may not reflect reality, leading
to suboptimal or even infeasible solutions in practice.

This study is the first to model time-dependent travel
times in the ConVRP by integrating TDVRP and
ConVRP frameworks, enhancing practicality. A template-
based hybrid approach was proposed combining VNS
within a LNS framework. The method incorporates an
efficient search-space filtering mechanism and travel-time
estimation to identify consistent solutions with reduced
computational effort. Additionally, a modified
heuristic was developed to adjust depot departure
times, improving  arrival-time  consistency.  Results
demonstrated that the proposed THLNS algorithm finds
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consistent solutions within reasonable computational
times. The small ConVRP instances of the literature were
also run by THLNS and CPLEX with 3600 seconds
runtime limit. These results indicated the superiority of
the proposed approach for finding consistent solutions
with far lower computation times. The proposed approach
was also compared to three established methods from the
ConVRP literature. The results demonstrate its
superiority, yielding consistent solutions with 13.38%,
10.61%, and 35.67% lower average travel times than the
alternative methods, within equal computation times. The
results of sensitivity analysis indicated that the CPU time
was decreased and I-max generally increased with
increasing parameter L. By increasing local search
counter, the CPU time was increased but average I-max
decreased for all profiles. The average travel time
demonstrated a decreasing trend for profile 1. The results
of increasing FC parameter which filters the solution
space showed that average I-max was decreased greatly
by a little increase in FC. Increasing FC simultaneously
increased the travel time and CPU time. This indicated the
efficiency of filtering mechanism for skipping low-
potential solutions in the proposed approach.

Future research should focus on a multi-objective model
that optimizes cost (travel time), service consistency, and
sustainability, incorporates live traffic data to handle
unpredictable traffic patterns dynamically, and robust
optimization or stochastic programming to deal with
uncertainty in customer demands or service times, uses
machine learning to predict travel time variability based
on historical or real-time data and integrates green
logistics with consistency.
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Algorithm A.1. Travel time calculation procedure (Ichoua, Gendreau, & Potvin, 2003).

tzto
d=dl]

d
)
cTg
while t' > &,
d=d—ve, * ()

t'=t+(

t=1t

t=t+(—)
VeTpyr

k=k+1

return t’ — t,

Algorithm A.2. Adjustment of vehicle departure times (Kovacs, Golden, Hartl, & Parragh, 2015).

while max PF > € or maxPB >¢€
imax
BC = {i™*} #blocking customers set
max PF = max ATD(s)
forallj € BC

Max PF = min{max PF, getMaxPF (j, BC,s)}
end for
if maxPF > € then

apply PF(maxPF,BC,s)

= the customer with the current maximum ATD

else #pushing forward is not possible = try to pull backwards

BC = {i™m*}
max PB = max ATD(s)
forallj € BC do

max PB = min{max PB, getMaxPB (j, BC, s)}

end for
if maxPB > € then
apply PB(maxPB, BC, s)
end if
end if
end while
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Fig A.1. An example of travel speed and travel time functions (Ichoua, Gendreau, & Potvin,

Appendix B.

e Remove Operators

e Random Removal
The random removal operator randomly chooses
customers and removes them from the template routes.
This process repeats until g customers have been
removed.

e Worst Removal

The worst removal operator iteratively identifies
customers contributing most to total travel time, and
removes them to enable cheaper reinsertion positions.
First, all existing customers of the template are sorted in
decreasing order in list C based on the saving obtained by
temporarily removing them from the template. In every
iteration, customer i = C[y*p * |C|]is removed.
Where y is a random number € [0,1) and p controls the
impact of randomization. The saving values are updated
and one customer is removed in every iteration until g
customers have been removed (Kovacs, Parragh, & Hartl,
2014).

e Related Removal
The related removal operator is based on the fact that it is
easier to interchange customers within a solution when
they are somehow related (Kovacs et al., 2014). The
relatedness R(i, j) between two customers i and j,
combines distance and demand relatedness measures.
Distance relatedness measures the Euclidean distance of
two customers and demand relatedness is the absolute
difference between maximum demands of two given
customers among all days. Smaller R(i, j) values indicate
higher relatedness. The procedure is initialized by
removing a randomly chosen customer from the template
and inserting it into the set of removed customers D. In
each iteration, one customer is chosen randomly from D
to calculate the R(i, j) values. Similar to worst removal,
this operator also incorporates randomization to obtain a
certain degree of diversification. Therefore, all R(i, j)
values are sorted in list C in increasing order and
customer i = C[y*p * |C|]is removed from the

2003).
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template and added to D. The process continues until g
customers are removed.

e Repair Operators

e Greedy Repair
Similar to initial template generation, the greedy repair
operator consecutively inserts customers using a similar
approach. For each unassigned customer, each feasible
insertion position is checked and the customer with lowest
insertion cost is assigned to their cheapest feasible
position. Feasibility is checked only for -capacity
constraints based on an artificial capacity limit, selected
each LNS iteration.

e Regret Repairs
Similar to the greedy approach, the regret heuristic inserts
customers one after another by checking every feasible
insertion position but it includes a look ahead component
denoted as regret. This value quantifies potential
opportunity costs from delayed insertion (Kovacs et al.,
2014). In the basic variant of the regret repair, the
customer with the largest difference between inserting
into their best position at best route and inserting into the
best position at second-best route is inserted in every
iteration. This approach extends to multiple routes (q > 2),
enabling earlier identification of insertion difficulties. Let
Af;" denotes the travel time change for inserting customer
i at his cheapest position in his g-cheapest route. If it is
not possible to insert a customer into a route, Af;%is set to
infinity. In every iteration, the customer i to be inserted is
given by eg. B.1:
i = argmax;cy {Zf:;(q'm)(Afih - Afil)}
(B.1)
Parameter q defines the number of routes considered in
the current version of regret and m denotes the number of
currently available routes. As in the greedy heuristic, an
empty route is added whenever it is not possible to insert
further customers in existing routes. We implement four
regret heuristics, each with a different setting for q with
q € (2,3,4,m).
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Table B.1
Characteristics of large ConVRP instances
D Instance name cu?tgnr?:fgg:jes Capacity (Q) To_ur-_length I-max limit Number_ of available Number of
") limit (T) L) vehicles (k) periods (d)
Ch-1 Christofides 1 5 0.7 50 160 unlimited 24.38 Unlimited (= n) 5
Ch-2 Christofides 2 5 0.7 75 140 unlimited 34.26 Unlimited (= n) 5
Ch-3 Christofides 3 5 0.7 100 200 unlimited 22.87 Unlimited (= n) 5
Ch-4 Christofides 4 5 0.7 150 200 unlimited 27.53 Unlimited (= n) 5
Ch-5 Christofides 5 5 0.7 199 200 unlimited 26.93 Unlimited (= n) 5
Ch-6 Christofides 6 5 0.7 50 160 200 63.47 Unlimited (= n) 5
Ch-7 Christofides 7 5 0.7 75 140 160 83.96 Unlimited (= n) 5
Ch-8 Christofides 8 5 0.7 100 200 230 73.04 Unlimited (= n) 5
Ch-9 Christofides 9 5 0.7 150 200 200 106.43 Unlimited (= n) 5
Ch-10 Christofides 10 5 0.7 199 200 200 60.17 Unlimited (= n) 5
Ch-11 Christofides 11 5 0.7 120 200 unlimited 16.1 Unlimited (= n) 5
Ch-12 Christofides_12 5 0.7 100 200 unlimited 17.58 Unlimited (= n) 5
Table B.2
Experimental results from the L-9 Taguchi array for ch-3 with profile 2
I-max-constant |-max-penalty ol-penalty ot-penalty Response
1.75 50 2 2 6347.84
1.75 75 5 5 4906.32
1.75 100 10 10 5055.29
2 50 5 10 6227.94
2 75 10 2 5017.70
2 100 2 5 6492.72
2.25 50 10 5 6305.13
2.25 75 2 10 5278.98
2.25 100 5 2 6181.74
Table B.3
Results of solving instances with proposed THLNS assuming constant travel times
D Constant Travel Times
Avg. TT Avg |-max Min TT Min I-max Avg CPU time
Ch-1 2495.59 26.58 2315.68 20.08 276.82
Ch-2 4310.05 34.14 4080.82 34.03 557.46
Ch-3 4247.77 22.67 4048.58 22.36 1632.53
Ch-4 5951.96 26.49 5796.74 25.30 6423.04
Ch-5 7925.52 21.84 7678.22 19.82 15699.15
Ch-6 4568.71 61.94 4437.97 61.11 76.93
Ch-7 7657.18 79.05 7596.72 79.05 206.35
Ch-8 8043.09 71.97 7984.51 70.69 734.92
Ch-9 12041.16 68.67 11857.75 57.11 2357.66
Ch-10 15670.42 59.78 15271.56 59.53 14876.48
Ch-11 5816.02 15.45 5574.57 15 4440.34
Ch-12 4433.47 17.13 4261.69 16.93 1748.34
Average 6,930.078 42.1425 6,742.0675 40.084 4,085.835
Table B.4
Characteristics of small ConVRP instances (equivalent to medium ConTDVRP instances)
Number of Tour-length l-max Number of Number of
ID customer nodes | Capacity (Q) limit (T) limit available vehicles periods (d)
(n) () (k)
10-1 10 15 35 5 Unlimited (= n) 3
10-2 10 15 35 5 Unlimited (= n) 3
10-3 10 15 35 5 Unlimited (= n) 3
10-4 10 15 35 5 Unlimited (= n) 3
10-5 10 15 35 5 Unlimited (= n) 3
12-1 12 15 35 5 Unlimited (= n) 3
12-2 12 15 35 5 Unlimited (= n) 3
12-3 12 15 35 5 Unlimited (= n) 3
12-4 12 15 35 5 Unlimited (= n) 3
12-5 12 15 35 5 Unlimited (= n) 3
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Table B.5
Comparison of THLNS (without departure-time adjustment) with three literature approaches for large instances (Profile 1)
THLNS TALNS LNS VNS l-max CPU Runtime
ID Avg' TT Avg Avg' TT Avg Avg_ TT Avg Avg_ TT Avg Limit (L) Limit (sec)
(min) l-max (min) |-max (min) I-max (min) I-max
Ch-1 | 2560.33 | 30.19 | 3109.53 | 74.14 | 2418.66 31.04 3769.12 | 109.68 24.38 256.07
Ch-2 | 4231.41 | 29.45 | 5536.10 | 79.71 | 5736.34 | 196.45 | 6720.81 79.21 34.26 529.61
Ch-3 | 4180.08 | 2250 | 5219.33 | 175.48 | 3507.22 89.98 6603.23 58.39 22.87 2198.47
Ch-4 | 5934.86 | 29.59 | 8001.31 | 73.20 | 5560.97 68.76 | 10254.21 | 92.14 27.53 8789.10
Ch-5 | 8710.42 | 25.71 | 10094.21 | 61.18 | 11261.98 | 258.62 | 13394.86 | 87.37 26.93 16020.71
Ch-6 | 4564.68 | 60.48 | 4449.57 | 52.01 | 4467.21 | 143.83 | 5844.57 74.24 63.47 90.17
Ch-7 | 7621.47 | 77.43 | 799255 | 68.59 | 8691.78 | 123.75 | 10834.17 | 114.93 83.96 291.50
Ch-8 | 8409.34 | 69.96 | 8176.93 | 62.43 | 7870.28 | 152.87 | 12881.56 | 97.88 73.04 931.68
Ch-9 | 11937.39 | 74.29 | 11560.77 | 80.11 | 12763.96 | 166.59 | 19596.85 | 74.43 106.43 2562.50
Ch-10 | 1492451 | 78.52 | 16860.92 | 104.45 | 16158.36 | 174.93 | 23643.36 | 126.56 60.17 18868.65
Ch-11 | 5965.49 | 15.36 | 7336.60 | 90.46 | 7349.04 | 326.99 | 8692.46 82.10 16.1 4614.21
Ch-12 | 4704.39 | 1841 | 6641.10 | 162.38 | 6673.24 | 265.75 | 8430.13 | 120.72 17.58 2708.59
Average| 6978.698 |44.32417| 7914.91 | 90.345 | 7704.92 | 166.63 | 10888.78 | 93.1375 | 46.39 4,821.77
Table B. 6
Comparison of THLNS (without departure-time adjustment) with three literature approaches for large instances (Profile 2)
THLNS TALNS LNS VNS lmax | CPU Runtime
ID Avg_ TT Avg Avg_ TT Avg Avg_ TT Avg Avg_ T Avg Limit (L) | Limit (sec)
(min) I-max (min) |-max (min) |-max (min) I-max
Ch-1 2587.35 20.01 | 3087.40 | 118.06 | 2328.61 99.62 3690.64 | 101.07 24.38 275.16
Ch-2 4277.20 31.92 | 5492.65 | 122,69 | 5738.27 | 196.75 | 6783.17 | 115.89 34.26 549.12
Ch-3 4074.68 3095 | 5757.98 | 69.50 3732.82 69.94 6487.98 98.40 22.87 3198.40
Ch-4 6134.98 26.92 | 8075.09 | 77.68 5006.74 69.12 9729.58 62.78 27.53 7793.79
Ch-5 8036.07 25.04 |11105.01| 140.06 | 11087.99 | 253.73 | 13303.76 | 75.54 26.93 19765.97
Ch-6 4799.10 55.71 | 4330.64 | 52.00 5664.84 | 169.70 | 6349.13 61.66 63.47 117.95
Ch-7 7872.98 77.77 | 7569.44 | 81.19 8601.56 | 12642 | 11138.10 | 92.12 83.96 322.75
Ch-8 7979.71 7219 | 814154 | 65.97 8235.21 | 172.28 | 1255151 | 164.43 73.04 1103.91
Ch-9 11947.33 | 81.90 |11685.37| 104.03 | 13491.57 | 168.99 | 18869.96 | 115.73 106.43 2212.37
Ch-10 | 15070.18 | 85.02 |20001.64| 59.93 | 16269.80 | 171.27 | 24351.97 | 147.53 60.17 16994.68
Ch-11 | 5871.00 1750 | 7465.18 | 173.06 | 5762.62 | 177.96 | 9432.26 85.69 16.1 5585.79
Ch-12 | 4515.39 26.62 | 6860.35 | 116.41 | 6676.90 | 256.04 | 8422.92 | 105.81 17.58 2129.74
Average | 6930.498 | 46.7125 | 8297.691 | 98.38167 | 7716.411 | 160.985 | 10925.92 |102.2208 | 46.39 5004.14
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Fig B.1. Main Effects Plots for the Means and Signal-to-Noise (SN) ratios derived from Table B.2
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