
107

Vol.18, Issue 2, Summer & Autumn 2025, 107-137

 Research Article

A template-based hybrid large neighborhood search for the consistent vehicle

routing problem with time-dependent travel times

3 Hashem-e-Seyyed Mohammad Javad Mirzapour Al *,2 , Mohammad Mahdi Nasiri1 Hossein Nikdel

1. Department of Industrial Engineering, Alborz Campus, University of Tehran, Tehran, Iran

2. School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
3. Department of Industrial Engineering & Management Systems, Amirkabir University of Technology, Tehran, Iran

https://doi.org/10.71720/joie.2025.1210053

Abstract
Customer satisfaction attracts increasing attention in competitive environments. The consistent

vehicle routing problem (ConVRP), introduced in recent years, incorporates customer satisfaction

into VRP. In ConVRP, vehicle routes must be designed for multiple periods, and each customer

must be visited by the same driver at roughly the same time on each period. Previous ConVRP

research models travel times as constant and based only on distance. This is unrealistic for urban

areas, where travel times vary dynamically with factors like congestion and time of day. The time-

dependent VRP (TDVRP) incorporates time-varying travel times. In this paper, the ConVRP is

considered with time-dependent travel times to integrate the TDVRP and ConVRP models. A

mixed-integer linear programming (MILP) model is proposed for the new problem, termed the

consistent TDVRP (ConTDVRP). We extend the ConVRP benchmark instances from the literature

by incorporating time-dependent travel times. The model is solved using a solver for small-scale

instances. Since the new problem -an extension of the two aforementioned models- is NP-hard, we

propose a template-based hybrid large neighborhood search (THLNS) algorithm that incorporates

variable neighborhood search (VNS) to solve it. An iterative procedure is also presented to modify

a heuristic departure-time adjustment in the literature to be used with time-dependent travel times.

Computational experiments and sensitivity analysis are performed on new extended instances to

evaluate the efficiency of the proposed algorithm. Three presented methods in ConVRP literature

are adapted to solve ConTDVRP and the results of proposed approach compared with them for

three time-dependent speed profiles on extended instances. The results demonstrate that the

proposed method not only achieves consistent solutions with reduced computation time but also

delivers solutions with 13.38%, 10.61%, and 35.67% lower average travel times compared to the

three alternative methods. Departure-time adjustment also results in 17.48% lower average travel

times and 5.91% better time consistency across all benchmark instances and speed profiles.

Received: 20 June 2025

Revised: 29 August 2025

Accepted:18 September 2025

Keywords:
Consistent Vehicle Routing Problem;

Template;

Large Neighborhood Search;

Variable Neighborhood Search;

Time-Dependent Travel Times;

Departure-Time Adjustment

Citation:
Nikdel, H., Nasiri, M.M.. & Mirzapour Al-e-Hashem, M. J. (2025). A template-based hybrid large neighborhood search

for the consistent vehicle routing problem with time-dependent travel times. Journal of Optimization in Industrial

Engineering, 18(2), 107- 137. https://doi.org/10.71720/joie.2025.1210053

*

Corresponding Author:

Mohammad Mahdi Nasiri

School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran

E-Mail:

mmnasiri@ut.ac.ir

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC) license

(https://creativecommons.org/ licenses/by/4.0/).

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

108

1. Introduction

The classical vehicle routing problem (VRP), studied for

over 65 years, aims to minimize the total cost or distance

traveled by a homogeneous fleet under given constraints.

While traditionally focused on fleet efficiency, recent

research has shifted toward customer-related factors like

service quality and satisfaction. Businesses now prioritize

consistent service delivery—often more valuable than

marginal cost savings—as a key competitive advantage,

especially in parcel delivery industries where reliability

enhances perceived service quality. This leads to the

introduction of the consistent vehicle routing problem

(ConVRP) (Groër, Golden, & Wasil, 2009).

In the ConVRP framework, consistency constraints ensure

that the same driver visits the same customers (named

driver consistency) at roughly the same times across

different planning periods (named arrival time

consistency). Driver (or service provider) consistency

improves service quality in home

healthcare, where assigning the same personnel to patients

enhances care through better communication between

staff and patients, which in turn reduces service time.

Similarly, in other applications like small-package

delivery or transportation for the elderly and disabled

people, limiting customers per driver eliminates the need

to learn new routes or adjust to new customers. This

increases driver productivity, service quality, and finally

leads to greater customer satisfaction. In business

applications—such as wholesale-to-retail distribution,

reverse logistics (pickup and delivery), and restaurant

supply chain food distribution—as well as personal

customer services like home healthcare, consistent arrival

times enable customers to plan service receptions more

efficiently and foster long-term relationships with the

company. This builds customer loyalty and enhances

satisfaction.

This study presents the first integration of time-dependent

VRP (TDVRP) with the ConVRP, which focuses on

customer satisfaction. Unlike prior ConVRP research,

which relied on unrealistic constant travel times, this

research uses time-dependent functions to accurately

reflect real-world variables like traffic congestion. This

allows for precise calculation of customer arrival times,

ensuring both driver and visit-time consistency to enhance

practical applicability and customer satisfaction. While

this approach better balances service quality and

operational costs, it also increases computational

complexity due to the dynamic travel time calculations.

We propose a novel hybrid approach called template-

based hybrid LNS (THLNS), which integrates variable

neighborhood search (VNS) into a large neighborhood

search (LNS) framework, preserving the template

concept. The proposed approach employs a novel search

space filtering mechanism to skip the evaluation of

unpromising solutions and estimates time-dependent

travel times to deliver consistent satisfactory solutions

with reduced computational time. We investigate the

impact of modeling time-dependent travel times on

ConVRP’s performance metrics. Prior studies have

proposed departure-time adjustment heuristics to improve

arrival time consistency (measured by l-max index). We

modify an existing sophisticated heuristic (Kovacs,

Golden, Hartl, & Parragh, 2015) by incorporating time-

dependent travel times.

The LNS metaheuristic and its adaptive counterpart, the

ALNS, have been effectively used to solve numerous

VRP variants, especially the ConVRP. (Voigt, 2025)

classify ALNS operators using unified terminology,

evaluate their performance and provide guidelines for

future use. Existing ConVRP heuristic approaches have

predominantly employed the template concept to maintain

driver consistency and satisfy precedence principle,

typically implementing LNS frameworks. While VNS has

demonstrated strong performance for ConVRP in terms of

solution quality (Xu & Cai, 2018). We conduct an

extensive evaluation comparing our method with state-of-

the-art approaches, regarding the runtime and solution

quality metrics using newly developed benchmark

instances. This study makes following main contributions:

 Develops a model for the new problem and proposes

an efficient solution approach by integrating the most

effective existing ConVRP methods.

 Incorporates time-dependent travel time estimation

functions and introduces a novel search space

filtering technique to significantly reduce

computational requirements.

 Adapts an existing heuristic for departure-time

adjustment to accommodate time-dependent travel

times.

The article’s structure is as follows: Section 2 presents an

in-depth review of relevant ConVRP and TDVRP

literature to identify research gaps. Section 3 describes the

new problem along with key assumptions and notation,

then formulates it as a mixed-integer linear programming

(MILP) model. Section 4 presents our proposed solution

framework and the modified departure-time adjustment

heuristic. Section 5 presents computational experiments

analyzing the approach’s efficiency through comparisons

with CPLEX solver solutions and existing ConVRP

methods, including sensitivity analyses on generated

benchmark instances. Finally, Section 6 presents

concluding remarks along with suggestions for future

studies.

2. Literature Review

This study bridges the ConVRP and TDVRP frameworks

to enhance the practical applicability of ConVRP models.

We systematically review both literatures to identify the

critical research gap at their intersection.

2.1. ConVRP Related Research

As an extension of the classical VRP, the ConVRP falls

into the category of NP-hard problems. Since its

introduction, various versions suitable for different real-

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

109

world applications have been explored in previous

studies. (Kovacs, Golden, Hartl, & Parragh, 2014)

conducted a systematic review of vehicle routing

problems incorporating consistency considerations. Due

to the problem’s high complexity, researchers have

proposed different approaches to derive near-optimal

solutions of high quality within acceptable computation

times, with most employing metaheuristics or hybrid

heuristic methods. A few numbers of studies have

developed specialized exact methods to determine optimal

solutions for larger-scale problems more effectively

(Goeke, Roberti, & Schneider, 2019; Subramanyam &

Gounaris, 2016, 2018).

(Shaw, 1998) first proposed LNS algorithm to solve VRP.

Since then, the LNS and its adaptive version (ALNS

(Ropke & Pisinger, 2006)) has effectively solved many

VRP variants specially the ConVRP. (Groër et al., 2009)

developed a mixed-integer programming (MIP) model

and a record-to-record heuristic (ConRTR) for the

ConVRP. The key feature of their approach is enforcing

the precedence principle to ensure consistent customer

sequencing across days. Their two-step method involves

creating template routes from "frequent customers" (those

with multi-day demand) and building daily routes by

adjusting these templates, adding or removing "non-

frequent customers" with single-day demand. They

generated new test instances from classic VRP

benchmarks and evaluated their algorithm by comparing

its results against a non-consistent version of the RTR

method. (Tarantilis, Stavropoulou, & Repoussis,

2012) introduced a template-based tabu search (TTS)

algorithm for the ConVRP. Similar to ConRTR, TTS

operates at both master and daily levels: it first generates

template routes, then resolves and improves daily routes.

Template feasibility is evaluated by checking the

feasibility of corresponding daily routes. Finally, a tabu

search is applied to each daily route to further improve

them through neighborhood search.(Kovacs, Parragh, &

Hartl, 2014) developed a template-based adaptive large

neighborhood search (TALNS) for the ConVRP. The

algorithm iteratively improves an initial template using

adaptively selected removal and repair operators,

accepting new templates via simulated annealing. A key

insight was their heuristic for optimizing depot departure

times, which proved critical in avoiding significant costs

when stricter service time consistency was required.(Xu

& Cai, 2018) developed a VNS algorithm for the

ConVRP. Their two-step method first uses a "shaking"

procedure to diversify the search with a template (which

may be infeasible), and then a local search to optimize it.

They used three neighborhood structures (relocation,

exchange, reverse) and a "near points" technique to

improve efficiency by skipping unpromising operations.

Infeasible templates were evaluated with penalty costs for

violations. The second step was only performed on

higher-quality templates to achieve feasibility and further

improve the solution.

(Feillet, Garaix, Lehuédé, Péton, & Quadri,

2014) introduced "time classes" as a new measure for

time consistency, grouping customers with service start

times within a defined sensitivity threshold. The objective

is to minimize the total number of time classes,

formulated as a graph coloring problem. Their model

generalizes the ConVRP (Groër et al., 2009), which

corresponds to the special case of a single time class. The

authors solved the model using a LNS

method.(Smilowitz, Nowak, & Jiang, 2013) examined

how workforce management strategies affect

transportation firms' competitive positioning. The study

established two workforce management metrics: (1)

driver-customer consistency, quantified by repeated

service encounters, and (2) driver-area consistency,

measured by frequency of serving specific geographic

zones. (Yu, Hu, & Wu, 2024) proposed a ConVRP

framework that integrates two key objectives: 1.

Workload Equity: Enforcing a maximum daily workload

difference between drivers. 2. Route

Consistency: Promoting the use of familiar routes by

applying reduced costs for travel time on them. They

developed an ALNS algorithm with new operators to

solve this problem. The algorithm uses remove and repair

operators to generate new solutions. For feasible solutions

that meet all constraints, departure schedules are further

adjusted to enhance time consistency. (Mancini,

Gansterer, & Hartl, 2021) investigated a collaborative

ConVRP where multiple companies share customers to

maximize collective profit. Their model enforces service

consistency by requiring the same company (but not

necessarily the same driver) to serve a customer

throughout the period. They formulated the problem with

a mathematical model enhanced by valid inequalities and

developed a matheuristic (MH) to solve large instances,

evaluating its performance against an iterative local

search (ILS) method

(Kovacs, Golden, et al., 2015) introduced the generalized

ConVRP (GenConVRP), which limits the number of

drivers per customer and penalizes service time

variations. Departing from template-based methods, they

employed a flexible LNS applied directly to all daily

routes. Their algorithm also incorporated adjustable route

departure times to improve arrival time consistency and

used a greedy method to reduce the l-max. (Luo, Qin,

Che, & Lim, 2015) studied a multi-period VRP with time

windows (VRPTW) where customer visits are limited to a

few vehicles. They formulated a MIP model and solved it

using a three-step heuristic: first generating initial

solutions via decomposition, then minimizing fleet size

with a tree-search repair mechanism, and finally applying

TS to reduce total travel distance.

(Kovacs, Parragh, & Hartl, 2015) later proposed a multi-

objective GenConVRP (MoGenConVRP), treating

routing costs, driver consistency, and arrival time

consistency as conflicting objectives. They developed

exact ϵ -constraint algorithms and a multi-directional

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

110

large neighborhood search that combined multi-

directional local search (MDLS) with LNS to solve large-

scale instances. (Lian, Milburn, & Rardin, 2016)

enhanced the MDLS method for the multi-objective

ConVRP. Their approach integrated LNS to identify non-

dominated solutions iteratively, under the assumption that

all vehicles depart the depot at time zero in every period.

(Sungur, Ren, Ordóñez, Dessouky, & Zhong, 2010)

addressed a stochastic courier delivery problem (CDP)

with uncertain demands and service times. Using

stochastic and robust optimization, their goal was to

maximize coverage and efficiency rather than enforce

fixed assignments. Their approach generated a master

schedule for overall planning and adaptable daily plans

optimized for coverage, route consistency, travel cost, and

on-time delivery. They developed a two-part heuristic and

a TS algorithm to solve large-scale instances. (Alvarez,

Cordeau, & Jans, 2024) addressed a ConVRP with

uncertain customer presence and demand. Using a two-

stage stochastic model, their approach first plans routes

while penalizing consistency violations. In the second

stage, it minimizes actual routing and penalty costs after

uncertainties are realized. They solved the problem via

sample average approximation (SAA), employing exact

algorithms to handle sampled scenarios iteratively.

(Subramanyam & Gounaris, 2016) proposed a branch-

and-cut algorithm for the consistent traveling salesman

problem (ConTSP), a special case of the ConVRP with a

single uncapacitated vehicle. This was the first exact

solution method for consistency-based routing problems.

Their approach, which included three MIP models

compared via branch-and-cut, can serve as either a

component in metaheuristic hybrids or an exact

decomposition method for the ConVRP. (Subramanyam

& Gounaris, 2018) developed an exact method for the

ConTSP that incorporates vehicle waiting times. Their

approach decomposed the problem into periodic time-

windowed TSPs within a branch-and-bound framework,

accounting for AM/PM time windows and variable depot

departure schedules.(Goeke et al., 2019) introduced the

first exact solution method for the ConVRP. They found

standard column generation ineffective due to weak linear

relaxations caused by consistency constraints. Instead,

their novel approach used column generation with

variables representing a vehicle’s complete multi-period

route sequence. A modified Clarke-Wright algorithm

(Clarke & Wright, 1964) generated initial solutions, while

LNS provided upper bounds for larger instances. Driver

consistency was prioritized before addressing arrival time

consistency.

(Braekers & Kovacs, 2016) studied a dial-a-ride problem

(DARP) with driver consistency for specialized transit

services. Their model included precedence constraints

between pickup and drop-off locations. They proposed

two formulations and solved them using a branch-and-cut

approach enhanced with techniques to reduce model size

and strengthen constraints. (Ulmer, Nowak, Mattfeld, &

Kaminski, 2020) studied a dynamic, stochastic multi-

period routing problem where driver-customer familiarity

reduces service times after initial contact. Daily revealed

demands necessitate sequential decisions modeled as a

Markov decision process (MDP). The goal was to

evaluate the strategic benefit of long-term driver-customer

relationships. (Jost, Jungwirth, Kolisch, & Schiffels,

2022) tackled a specialized transportation problem for

football players with prioritized passenger demands. They

introduced an iterative, template-based heuristic to

maximize demand priority and routing consistency. An

ϵ -constraint mechanism balanced these objectives under

fleet capacity constraints

(Zhen, Lv, Wang, Ma, & Xu, 2020) introduced a new

variant combining ConVRP with the VRP with

simultaneous pick-up and delivery (VRPSPD), termed

ConVRPSPD (or ConVRPSDC). They formulated it as a

MIP and solved medium to large instances using

template-based methods: RTR travel, LNS-enhanced local

search (LSVNS), and TTS. (Stavropoulou, 2022) studied

a heterogeneous fleet ConVRP that jointly optimizes fleet

composition and consistent routing to minimize total costs

(fixed and variable) under vehicle availability constraints.

A hierarchical tabu search (HTS) algorithm was used,

where the upper level selects the fleet mix and the lower

level employs variable neighborhood descent (VND) to

optimize routes. (Stavropoulou, Repoussis, & Tarantilis,

2019) studied a VRP combining profit maximization and

service consistency. The model included mandatory

regular customers and optional profitable customers.

Routes were designed to maximize profit under capacity,

tour-length, and time consistency constraints, using an

adaptive TS algorithm with long and short-term memory

for effective exploration.

(Nolz, Absi, Feillet, & Seragiotto, 2022) introduced the

CEVRP-BCM, integrating electric vehicle routing with

backhauls, charging, and consistency. Their hybrid

approach combined template-based ALNS with constraint

programming for charging and quadratic optimization for

pickups/deliveries. A backhaul policy mandated deliveries

before pickups. The objective function penalized

violations of arrival time and driver consistency,

promoting equitable service. The TALNS method used

worst-case demands to generate templates.

Table 1

The related literature of ConVRP

Constraints

Consistency

Fleet

Travel Time

F
le

x
ib

le

V
eh

ic
l

e

D
ep

ar
t

u
re

T
im

es

Objective Function

Solution Method

Authors

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

111

C
ap

ac
it

y

T
o
u

r-
L

en
g
th

A
rr

iv
al

 T
im

e

D
ri

v
er

H
o

m
o
g

en
eo

u
s

H
et

er
o

g
en

eo
u

s

T
im

e-
D

ep
en

d
en

t

C
o
n

st
an

t

Characteristics

E
x

ac
t

H
eu

ri
st

ic

M
et

ah
eu

ri
st

ic

H
y

b
ri

d

    
 

 Minimizing total travel time in all periods 
(Groër et al.,

2009)

  



Maximizing the count of served customers

and minimizing travel time and

lateness/earliness penalties

 
(Sungur et al.,

2010)

    

 Minimizing total travel time in all periods 
(Tarantilis et

al., 2012)

  



Minimizing the total distance and

maximizing the driver-to-customer and

driver-to-service region familiarity

 
(Smilowitz et

al., 2013)

    

  Minimizing total travel time in all periods 

(Kovacs,

Parragh, et al.,

2014)

  



Minimize total travel time across all periods

by limiting the maximum count of time

classes per customer

 
(Feillet et al.,

2014)

   

 
Minimizing the weighted aggregation of

overall travel time and l-max
 

(Kovacs,

Golden, et al.,

2015)

   

 
First minimizing the utilized fleet size then

minimizing the overall travel time
 

(Luo et al.,

2015)

    

 

Minimizing the vector of overall travel

time, maximum count of assigned drivers

across all customers and l-max

 

(Kovacs,

Parragh, et al.,

2015)

    



Minimizing the vector of total distance

traveled, maximum number of drivers per

customer and maximum arrival time

difference

 
(Lian et al.,

2016)

 

 Minimizing total travel time in all periods 

(Subramanyam

& Gounaris,

2016)

   

 
Minimizing the total travel cost in all

periods
 

(Braekers &

Kovacs, 2016)

    

 Minimizing total travel time in all periods 
(Xu & Cai,

2018)

  

 Minimizing total travel time in all periods 

(Subramanyam

& Gounaris,

2018)

    


Maximizing the overall obtained profit

minus the overall travel cost
 

(Stavropoulou

et al., 2019)

    

 Minimizing total travel time in all periods  
(Goeke et al.,

2019)

    

 Minimizing total travel time in all periods 
(Zhen et al.,

2020)

  


Minimizing expected cost including service

and routing costs in all periods
 

(Ulmer et al.,

2020)

    


Maximizing the overall revenue minus the

overall travel cost in all periods
 

(Mancini et al.,

2021)

     Maximizing the priorities of players then  (Jost et al.,

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

112

minimizing total travel time in all periods 2022)

    


Minimizing the total cost including vehicles

fixed costs and routing cost
 

(Stavropoulou,

2022)

    

 

Minimizing the total cost including fixed

costs, travel time and consistency violation

costs

 
(Nolz et al.,

2022)

      

Minimizing the overall travel time

including the time discounts resulted from

traveling familiar routes in all periods

 
(Yu et al.,

2024)

   

Sum of the penalty costs of driver

consistency violation and expected routing

costs and penalty costs of non-serving

customers in all scenarios

 
(Alvarez et al.,

2024)

        Minimizing total travel time in all periods  This study

2.2. Relevant Literature on TDVRP

The study of TDVRP has its own rich history since its

initial introduction. (Gendreau, Ghiani, & Guerriero,

2015) performed the systematic review of TDVRP,

establishing key classification frameworks. (Adamo,

Gendreau, Ghiani, & Guerriero, 2024) later synthesized

methodological advances in TDVRP (2015–2022),

highlighting emerging machine learning applications and

unresolved challenges in routing.

(Beasley, 1981) first presented a time-dependent travel

time model with an algorithm for a two-interval planning

period including distinct travel times. (Ahn & Shin, 1991)

studied the time-dependent VRP with time windows

(TDVRPTW), introducing the key concept of arrival time

monotonicity. This property simplifies computations,

enables efficient feasibility checks, and reduces the

computational burden. Their work demonstrated that with

this property, solving the TDVRPTW is only marginally

harder than the standard VRPTW. (Malandraki & Daskin,

1992) formulated MILP models for the time-dependent

TSP and VRP using step-function travel times. They

proposed nearest-neighbor heuristics for both problems

and a cutting-plane method for the TDTSP. Their

heuristics were also adaptable to continuous travel time

functions. (Hill & Benton, 1992) introduced a modeling

framework employing node-based time-varying step

functions for speed, with edge travel times computed from

the mean speed of adjacent nodes. (Fleischmann, Gietz, &

Gnutzmann, 2004) studied a static TDVRP, introducing a

parametric method to smooth travel time functions under

the first-in-first-out (FIFO) principle. They also proposed

a route-based time window concept to derive feasibility

conditions for path concatenation operations.

(Jung & Haghani, 2001) developed a genetic algorithm

(GA) for a dynamic TDVRP where new demands and

changing travel times occur after vehicle departure. They

categorized vehicles as used or unused. (Haghani & Jung,

2005), in later work, established solution lower bounds

and provided simulation results on a large network. Early

models, however, violated the FIFO principle by allowing

later departures to sometimes result in earlier arrivals.

(Ichoua, Gendreau, & Potvin, 2003) introduced the

foundational IGP speed model for TDVRPs, which

guarantees FIFO compliance by using interval-specific

travel speeds. Key contributions include a method

(Algorithm A.1 in Appendix A) to compute FIFO-

preserving travel time functions (illustrated in Fig. A.1 in

Appendix A), dynamic speed adjustments at interval

boundaries, and a parallel TS algorithm with an

approximated evaluation for computational efficiency.

Validated on Solomon benchmarks (Solomon, 1987), the

IGP model has become a cornerstone in TDVRP research.

(Donati, Montemanni, Casagrande, Rizzoli, &

Gambardella, 2008) solved the TDVRPTW using a

multiple ant colony system (MACS). The approach

employed two hierarchical colonies: ACS-VEI to

minimize the number of vehicles and ACS-TIME to

minimize travel time. They evaluated the algorithm on

modified Solomon benchmarks (Solomon, 1987) against

five speed models across four time intervals. (Hashimoto,

Yagiura, & Ibaraki, 2008) solved the TDVRPTW with an

iterative local search that uses dynamic programming

(DP) to efficiently optimize route schedules and a filtering

mechanism to prune low-potential neighborhoods. (C. Liu

et al., 2020) developed an enhanced ant colony algorithm

(ACA) for the same problem, incorporating congestion

avoidance through modified pheromone updates to

prevent congested routes. (Balseiro, Loiseau, & Ramonet,

2011) developed a hybrid ant colony optimization (ACO)

for TDVRPTW that combats infeasible solutions by

integrating insertion heuristics. It used three constructive

heuristics for initialization and a local search phase

employing Fleischmann’s route time windows

(Fleischmann et al., 2004) to efficiently verify feasibility

during customer sequence insertions. (Maden, Eglese, &

Black, 2010) studied TDVRPTW with departure-time

scheduling, using a parallel insertion method and TS

algorithm, validated on a UK distribution case. (Figliozzi,

2012) provided a general framework for generating

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

113

TDVRP instances and a heuristic for hard/soft time

windows, employing a generalized nearest neighbor

heuristic (GNNH). (Gmira, Gendreau, Lodi, & Potvin,

2021) developed a TS method for TDVRPTW with

segment-based speeds including an approximate

evaluation method and time-dependent Dijkstra’s

algorithm, testing it on NEWLET benchmarks with up to

200 nodes. (Ticha, Absi, Feillet, & Quilliot, 2017).

(Dabia, Ropke, Van Woensel, & De Kok, 2013)

introduced the first exact branch-and-price algorithm for

TDVRPTW, using column generation and a labeling

algorithm for the time-dependent pricing subproblem.

(Soler, Albiach, & Martínez, 2009) transformed

TDVRPTW into an equivalent asymmetric capacitated

VRP (ACVRP) via graph reduction techniques. (Sun,

Veelenturf, Dabia, & Van Woensel, 2018) studied

profitable TDVRPTW with precedence constraints,

developing a modified labeling algorithm and generating

new benchmarks. (Sun, Veelenturf, Hewitt, & Van

Woensel, 2018) in subsequent work, proposed an exact

branch-and-price method for the time-dependent pickup

and delivery problem with time windows (TDPDPTW)

with profits.

The green vehicle routing problem (GVRP) is a recent

variant of the VRP, closely related to the TDVRP. Its

primary objective is to incorporate environmental aspects,

such as minimizing greenhouse gas (GHG) emissions.

The classic version of the GVRP assumes constant travel

speeds for vehicles. (Sharafi & Bashiri, 2016) developed

two MIP models for the GVRP that include social factors,

such as fair workload distribution for drivers. They also

proposed a genetic algorithm for large-scale problems.

(Manavizadeh, Farrokhi-Asl, & WT Lim, 2020) proposed

a mathematical model for the GVRP that incorporates a

bi-fuel mixed fleet and refueling options using a

comprehensive fuel consumption function. They

linearized the model and introduced valid inequalities to

calculate the fuel consumption of the bi-fuel vehicles. The

model's validity was demonstrated by solving a small-

scale example. (Shahrabi, Nasiri, & Al-e, 2024) proposed

a sustainable VRP model integrated with cross-docking to

enhance efficiency. The model minimizes costs, GHG

emissions, maximum driver working hours (for social

equity), and ensures high product freshness. A hybrid

GA-MIP algorithm was developed for large instances,

with results validated against CPLEX and a case study.

Several studies have been conducted on time-dependent

GVRP (TDGVRP). (Alinaghian & Naderipour, 2016)

created a detailed fuel model and solved the problem with

an enhanced firefly algorithm. (Soysal & Çimen, 2017)

modeled congestion and solved their problem by

converting it into a TSP solved with restricted dynamic

programming (RDP). (Fan, Zhang, Tian, Lv, & Fan,

2021) used trigonometric speed functions and a hybrid

GA for a time-dependent problem with time windows. (Y.

Liu et al., 2023) also addressed this with an ALNS

heuristic featuring a time discretization search (TDS).

(Ulsrud, Vandvik, Ormevik, Fagerholt, & Meisel, 2022)

developed a MIP model and ALNS for weather-dependent

vessel routing, allowing for unmet or delayed demand.

(Mancini, 2017) studied TDVRP without time windows,

proposing a two-step heuristic method. The first step

generates initial solutions using a multi-start random

constructive heuristic (MRCH), then the second step

includes these solutions in a set partitioning problem

formula. (Huang, Zhao, Van Woensel, & Gross, 2017)

introduced the TDVRP considering path flexibility

(TDVRP-PF), including decisions for selecting the proper

path in TDVRP. They modeled TDVRP-PF under both

traffic situations with deterministic and stochastic

congestion conditions.

(R. Zhang, Guo, & Wang, 2020) studied a time-dependent

electric vehicle routing problem with time windows

(TDEVRPTW) that includes congestion tolls for peak

travel. They formulated it as a MIP model and solved it

using an ALNS algorithm. (Lu, Chen, Hao, & He, 2020)

studied TDEVRP, enhancing route planning for vehicles

by optimizing departure schedules and speeds across all

route segments using an iterative VNS (IVNS) algorithm

that combines VND for node sequencing with specialized

optimization for departure times and speed variables.

(Xiong, Xu, Yan, Guo, & Zhang, 2024) enhanced electric

vehicle routing models with drivetrain loss considerations

under traffic congestion, using real-time congestion

coefficients and presented an ALNS with capacity-aware

initial solutions.

(Pan, Zhang, & Lim, 2021) introduced the multi-trip

TDVRPTW (MTTDVRPTW). They solved it using a

hybrid ALNS-VND algorithm, which featured a segment-

based method to efficiently check route feasibility, (Zhao,

Poon, Tan, & Zhang, 2024) presented a GA hybridized

with time-dependent split algorithm (TD-SPA) for

MTTDVRP. The TD-SPA was devised to split a tour into

multiple routes and GA was used to generate these tours.

Monotone queue optimization (MQO) was used to speed-

up the TD-SPA.

(Kok, Hans, & Schutten, 2012) tested congestion

protocols using Dijkstra’s algorithm and an RDP

heuristic. (T. Zhang, Chaovalitwongse, & Zhang, 2014)

developed a hybrid ACS and TS algorithm for a time-

dependent vehicle routing problem with simultaneous

pickup and delivery (TDVRPSPD). (Rincon-Garcia,

Waterson, Cherrett, & Salazar-Arrieta, 2020) used an

LNS algorithm with a scheduling component to adhere to

driving time regulations. (Cai, Lv, Xiao, & Xu, 2021)

presented a linearized model for connected and automated

vehicle (CAV) routing, solved with a particle swarm

optimization (PSO) enhanced by VNS. (Jie, Liu, & Sun,

2022) incorporated stochastic factors (such as weather and

traffic conditions) into TDVRP with soft time windows,

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137
 Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

114

solving it with a hybrid sweep algorithm and improved

PSO (IPSO). (Zhou, Li, Bian, & Zhang, 2024) introduced

two-echelon TDVRP with simultaneous pickup-delivery

and satellite synchronization (2E-TDVRPSPDSS), solved

by a memetic algorithm (MA) featuring self-adaptive

operators and specialized local search.

Table 2

 An overview of the most significant literature of TDVRP

Constraints Fleet

W
ai

ti
n

g
 a

t

C
u

st
o
m

er
s’

L
o

ca
ti

o
n

Model

Objective Function

Characteristics

Solution Method

Authors

T
im

e
W

in
d

o
w

s

C
ap

ac
it

y

T
o
u

r-
L

en
g
th

H
o

m
o
g

en
eo

u
s

H
et

er
o

g
en

eo
u

s

A
ll

o
w

ed

N
o

t-
A

ll
o

w
ed

S
ta

ti
c

D
y

n
am

ic

E
x

ac
t

M
et

ah
eu

ri
st

ic

H
eu

ri
st

ic

H
y

b
ri

d

     Minimizing total travel time 
(Malandraki &

Daskin, 1992)

    

Minimizing the weighted

aggregation of the overall travel

time and delay time in serving

all customers

 
(Ichoua et al.,

2003)

   

Minimizing overall travel time

and the fraction of customers

with time window violations

 
(Fleischmann et

al., 2004)

     

Minimizing the total cost

including vehicle fixed costs,

routing costs and penalty cost

of time window violations

 
(Haghani &

Jung, 2005)

     

Minimizing total travel time

including transportation and

waiting times

 
(Soler et al.,

2009)

     

First minimizing the route

number then minimizing the

overall travel time

 
(Figliozzi,

2012)

      Minimizing overall travel time 
(Dabia et al.,

2013)

      Minimizing fuel consumption 

(Alinaghian &

Naderipour,

2016)

    
Maximizing the earned profit

minus the overall travel time
 

(Sun,

Veelenturf,

Dabia, et al.,

2018)

     

Maximizing the earned profit

minus the sum of travel time

and fixed costs



(Sun,

Veelenturf,

Hewitt, et al.,

2018)

     
Minimizing total distance

traveled
 

(Pan et al.,

2021)

    
Minimizing fuel consumption

and greenhouse gas generation
 

(Cai et al.,

2021)

     
Minimizing total travel time

including transportation,
 

(Gmira et al.,

2021)

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

115

waiting and service times

     

Minimizing the total cost

including fixed costs, fuel

consumption and penalty costs

of time windows violations

 
(Fan et al.,

2021)

   

Minimizing the total cost

including the vessels travel

costs plus the cost of renting

new vessels and penalty costs

of back-ordering some demands

 
(Ulsrud et al.,

2022)

     

Minimizing total cost including

distance traveled costs, fixed

costs and penalty costs of time

window violations

  (Jie et al., 2022)

     
Minimizing greenhouse gas

generations
 

(Y. Liu et al.,

2023)

     

Minimizing the sum of fixed

cost and overall travel time

costs

 
(Zhao et al.,

2024)

      Minimizing fuel consumption 
(Xiong et al.,

2024)

     

Minimizing the sum of fixed

costs, routing costs, loading,

inventory and fuel consumption

costs

 
(Zhou et al.,

2024)

As shown in Table 1, all existing ConVRP research

assumes constant travel times, and none has considered

time-dependent travel times in their models. Additionally,

Table 2 reveals that the existing TDVRP literature has not

yet explored consistency considerations for customers.

This indicates a significant research gap in the ConVRP

literature, where all studies assume constant travel

times—an assumption far removed from real-world

applications. Moreover, most ConVRP studies do not

allow flexible depot departure times—a feature

demonstrated in the literature to enhance arrival time

consistency. To address this gap, we incorporate both

time-dependent travel times and flexible vehicle departure

times into the ConVRP model, with constant travel times

becoming a special case of the newly proposed model.

3. Problem Description and Mathematical Modeling

In this section, we extend the ConVRP by assuming time-

dependent travel times instead of distance or constant

times used in all previous studies of ConVRP. We call the

new problem as consistent time-dependent vehicle routing

problem (ConTDVRP). The ConTDVRP is characterized

as follows. We have a fleet of at most k identical vehicles

positioned at a single depot, each with a fixed capacity Q.

These vehicles must depart from and return to the depot

after completing their routes. The problem spans d days

(or periods) with each customer requiring service on

a specific pre-determined day(s) and can be served at

most once per day from any vehicle. All routes must

finish by time T. The service time and demand for each

customer on their requested day are known in advance

with specific values. The same driver services each

customer at approximately the same time each day

throughout the planning period, ensuring the maximum

difference between the latest and earliest arrival times

(called l-max) never exceeds the permitted maximum L.

In this problem, initial vehicle departure from the depot is

synchronized to occur at time zero, (i.e., from the start of

working day) and vehicles are prohibited from idle

waiting at customer sites. The travel time between any

two locations is derived from time-dependent speed

profiles which is a piece-wise linear function. The

model’s objective function seeks to minimize total travel

time (including travel times and service times) across all

routes in all days of the planning period. One application

of this problem is providing services to disabled and

elderly people because consistency between service

providers and customers (driver consistency) is important

in these cases. Additionally, consistency in service times

for these customers (arrival time consistency) must be

maintained, which is why arrival time consistency is

defined as a constraint in the model. The other

assumptions of modelling the new problem are described

in details as follows:

• All demands in all periods must be fully met.

• The number of available vehicles is unlimited (matching

the total count of customers in the proposed model).

• There are no time windows for customer demands.

• The speed profiles between two nodes are time-

dependent and defined as stepwise functions for every

pair of nodes in the entire network.

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

116

• The continuous piece-wise linear travel time functions

associated with each pair of nodes are derived from the

time-dependent stepwise speed functions; therefore, the

FIFO property always holds.

• The fastest routes connecting all nodes are precomputed

for the entire network and do not change.

• While traveling, a vehicle’s speed changes along the

remaining edge distance when the time interval of the

speed profile changes.

• All customers have delivery demands.

Notation

The following notation is used in the mathematical modeling of ConTDVRP:

Sets Description
𝐷 = {1,2, … . . , 𝑑} set of planning periods.

𝐾 = {1,2, … . . , 𝑘} set of available vehicles in the fleet.

𝑀𝑖𝑗 = {1,2, … . . , 𝑚𝑖𝑗} ∀𝑖, 𝑗 ∈ 𝑁 set of time slots in the travel time function for edge (i,j).

𝑁 = {0,1,2, … . . , 𝑛} set of customer nodes plus depot. (where depot is node 0).

𝑁′ = {1,2, … . . , 𝑛} set of customers.

Parameters

𝑏𝑝𝑖𝑗𝑚 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑚 ∈ 𝑀𝑖𝑗 breakpoint of time slot m in the travel time function for edge (i,j).

𝑑 count of planning periods.

𝑘 count of available vehicles.

𝐿 maximum arrival time difference across all customers.

𝑀′ a big positive value.

𝑚𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑁 the count of breakpoints in the travel time function for edge (i,j).

𝑛 count of customers.

𝑄 maximum capacity of each vehicle.

𝑞𝑖𝑑 ∀𝑖 ∈ 𝑁′, ∀𝑑 ∈ 𝐷 demand of customer i in period d.

𝑠𝑖𝑑 ∀𝑖 ∈ 𝑁′, ∀𝑑 ∈ 𝐷 service time of customer i in period d.

𝑇 latest allowed return time to depot (maximum tour-length).

𝑤𝑖𝑑 ∈ {0,1} ∀𝑖 ∈ 𝑁′, ∀𝑑 ∈ 𝐷 1 if customer i requests demand in period d, 0 otherwise.

𝜃𝑖𝑗𝑑𝑚 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑑 ∈ 𝐷, ∀𝑚 ∈ 𝑀𝑖𝑗 gradient of the travel time function for edge (i,j) in time slot m of

period d.

𝜔𝑖𝑗𝑑𝑚 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑑 ∈ 𝐷, ∀𝑚 ∈ 𝑀𝑖𝑗 intercept of the travel time function for edge (i,j) in time slot m of

period d.

Decision Variables

𝑡𝑖𝑗𝑑𝑚𝑘 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑑 ∈ 𝐷,

 ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾

𝑡𝑖𝑘𝑑

 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 departure time of vehicle k from customer i in period d.

𝑥𝑖𝑗𝑑𝑚𝑘 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑑 ∈ 𝐷, 1 if vehicle k travels from i to j in time slot m of period d, 0 otherwise.

 ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾

𝑧𝑖𝑘𝑑 ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 1 if vehicle k visits customer i in period d equals 1, 0 otherwise.

MILP Model

𝑂𝐹 = 𝑀𝑖𝑛 ∑ ∑ ∑ ∑ ∑ 𝜃𝑖𝑗𝑑𝑚 ∗
𝑚𝑖𝑗

𝑚=1
𝑑
𝑑=1

𝑘
𝑘=1

𝑛
𝑗=0

𝑛
𝑖=0 𝑡𝑖𝑗𝑑𝑚𝑘 + 𝜔𝑖𝑗𝑑𝑚 ∗ 𝑥𝑖𝑗𝑑𝑚𝑘 (1)

𝑧0𝑘𝑑 = 1 ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (2)

𝑡0𝑘𝑑 = 0 ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (3)

∑ 𝑧𝑖𝑘𝑑
𝑘
𝑘=1 = 𝑤𝑖𝑑 ∀𝑖 ∈ 𝑁′, ∀𝑑 ∈ 𝐷 (4)

∑ 𝑞𝑖𝑑 ∗ 𝑧𝑖𝑘𝑑
𝑛
𝑖=1 ≤ 𝑄 ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (5)

∑ ∑ 𝑥𝑖𝑗𝑑𝑚𝑘

𝑚𝑖𝑗

𝑚=1
𝑛
𝑖=0 = ∑ ∑ 𝑥𝑗𝑖𝑑𝑚𝑘

𝑚𝑗𝑖

𝑚=1
𝑛
𝑖=0 = 𝑧𝑗𝑘𝑑 ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (6)

𝑤𝑖𝑑 + 𝑤𝑖𝑑′ − 2 ≤ 𝑧𝑖𝑘𝑑 − 𝑧𝑖𝑘𝑑′ ≤ −(𝑤𝑖𝑑 + 𝑤𝑖𝑑′ − 2) ∀𝑖 ∈ 𝑁′, ∀𝑘 ∈ 𝐾, ∀𝑑, 𝑑′ ∈ 𝐷|𝑑 ≠ 𝑑′ (7)

𝑡𝑖𝑘𝑑 = ∑ ∑ 𝑡𝑖𝑗𝑑𝑚𝑘

𝑚𝑖𝑗

𝑚=1
𝑛
𝑗=0 ∀𝑖 ∈ 𝑁′, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (8)

𝑡𝑖𝑘𝑑 + 𝜃𝑖𝑗𝑑𝑚 ∗ 𝑡𝑖𝑘𝑑 + 𝜔𝑖𝑗𝑑𝑚 − (1 − 𝑥𝑖𝑗𝑑𝑚𝑘) ∗ 𝑀′ ≤ 𝑡𝑗𝑘𝑑 − 𝑠𝑗𝑑 ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁′, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (9)

𝑡𝑖𝑘𝑑 + 𝜃𝑖𝑗𝑑𝑚 ∗ 𝑡𝑖𝑘𝑑 + 𝜔𝑖𝑗𝑑𝑚 + (1 − 𝑥𝑖𝑗𝑑𝑚𝑘) ∗ 𝑀′ ≥ 𝑡𝑗𝑘𝑑 − 𝑠𝑗𝑑 ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁′, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (10)

𝑡𝑖𝑘𝑑 + (∑ (𝜃𝑖0𝑑𝑚 ∗ 𝑡𝑖𝑘𝑑 + 𝜔𝑖0𝑑𝑚 ∗ 𝑥𝑖0𝑑𝑚𝑘)) ∗ 𝑤𝑖𝑑

𝑚𝑖𝑗

𝑚=1 ≤ 𝑇 ∗ 𝑤𝑖𝑑 ∀𝑖 ∈ 𝑁′, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (11)

𝑡𝑖𝑘𝑑 + (∑ (𝜃𝑖0𝑑𝑚 ∗ 𝑡𝑖𝑘𝑑 + 𝜔𝑖0𝑑𝑚 ∗ 𝑥𝑖0𝑑𝑚𝑘)) ∗ 𝑤𝑖𝑑

𝑚𝑖𝑗

𝑚=1 ≥ 0 ∀𝑖 ∈ 𝑁′, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (12)

−𝐿 + 𝑇 ∗ (𝑤𝑖𝑑 + 𝑤𝑖𝑑′ − 2) ≤ 𝑡𝑖𝑘𝑑 − 𝑡𝑖𝑘𝑑′ ≤ 𝐿 − 𝑇 ∗ (𝑤𝑖𝑑 + 𝑤𝑖𝑑′ − 2) ∀𝑖 ∈ 𝑁′, ∀𝑘 ∈ 𝐾, ∀𝑑, 𝑑′ ∈ 𝐷|𝑑 ≠ 𝑑′ (13)

departure time of vehicle k from customer i to customer j in time slot m of

period d.

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

117

 𝑏𝑝𝑖𝑗𝑚−1 ∗ 𝑥𝑖𝑗𝑑𝑚𝑘 ≤ 𝑡𝑖𝑗𝑑𝑚𝑘 ≤ 𝑏𝑝𝑖𝑗𝑚 ∗ 𝑥𝑖𝑗𝑑𝑚𝑘 ∀𝑖, 𝑗 ∈ 𝑁, ∀ 2 ≤ 𝑚 ≤ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (14)

0 ≤ 𝑡𝑖𝑗𝑑1𝑘 ≤ 𝑏𝑝𝑖𝑗1 ∗ 𝑥𝑖𝑗𝑑1𝑘 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (15)

𝑡𝑖𝑘𝑑 ≥ 0 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (16)

𝑡𝑖𝑗𝑑𝑚𝑘 ≥ 0 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (17)

𝑥𝑖𝑗𝑑𝑚𝑘 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (18)

𝑧𝑖𝑘𝑑 ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 (19)

Eq. 1 defines the objective function, which minimizes the

overall travel time for all vehicles across every day. Eq. 2,

3 ensure that every vehicle must visit the depot each day

and start their routes at time zero. Eq. 4 ensures each

customer is visited by only one vehicle on all days

requiring service and Eq. 5 enforces the vehicle capacity

constraint, limiting loads to Q units for each vehicle per

day. Eq. 6, specifies that each visited customer must have

only one predecessor and one successor. Eq. 7 maintains

driver consistency, requiring the same driver for each

customer across all service days. Eq. 8 defines the

departure time of the given vehicle visiting each customer

on requested day. Eq. 9, 10 determine the departure times

of successive customers visited on each route and prohibit

waiting at customer locations. Eq. 9 also serves as sub-

tour elimination constraints in the individual daily routes.

Eq. 10 could be eliminated to permit drivers to wait at a

location before proceeding to the next customer. The

vehicle tour-length limit is defined by Eq. 11, 12. Eq. 13

bounds the arrival time consistency, limiting the

maximum difference between visit times for every

customer across any pair of days to L time units. Eq. 14,

15 constrain departure times between consecutive

customers to fall within the appropriate time slot of the

piecewise travel time function. The decision variable

domains are defined in Eq. 16 to Eq. 19.

4. Solution Methodology

We design a hybrid metaheuristic that embeds a local

search stage in a templated-based LNS algorithm. Similar

to (Xu & Cai, 2018) our template consists of all customers

who demand service in one period or more. First, an

initial template generation procedure generates a feasible

template meeting both capacity and tour-length

limitations. Arrival time consistency isn’t considered in

generating initial template. Then, the LNS algorithm starts

with the initially generated template, and a pair of

remove-repair operators is selected randomly. The

number of removed customers is selected randomly from

the predefined interval in each iteration of LNS. The

selected pair of remove and repair operators destroys the

template by removing the specified number of customers

from the template and re-inserting them into the partial

template routes respectively, creating a new template

solution. In the repair operators, feasibility checking for

template routes considers only artificial capacity limit.

Because verifying tour-length feasibility with time-

dependent travel times is computationally expensive, and

because the resulting template might still produce

infeasible daily routes after resolution, we omit this check

during the template phase. Also artificial capacity concept

is defined similar to (Kovacs, Parragh, et al., 2014) to

resolve and obtain daily solutions from generated

templates in shorter time. The artificial capacity limit Qₐ

is chosen randomly within the range [Q, Qₐ -UB], where

Q represents the actual capacity and Qₐ -UB is the

predefined upper bound. Qa-UB is calculated as the sum

of maximum customer demand across all periods divided

by the maximum number of routes required based on

capacities among all periods. Eq. 20 illustrates how Qa-

UB is computed.

𝑄𝑎 − 𝑈𝐵 = ∑ 𝑚𝑎𝑥∀𝑑∈𝐷{𝑞𝑖𝑑}𝑛
𝑖=1 /

𝑚𝑎𝑥∀𝑑∈𝐷 {∑
𝑞𝑖𝑑

𝑄
𝑛
𝑖=1 } (20)

Then, the sum of all travel times and the maximum

divergence in arrival times (l_max) are approximated for

the new solution, and simulated annealing determines

whether to accept it. If accepted, the approximate l_max

is verified against the threshold (i.e. l_max_constant * L).

If below the threshold, the template is resolved into daily

routes to verify feasibility against actual capacity and

tour-length constraints. If template is feasible and

approximate l-max is lower than L, then l-max is

calculated exactly for resolved daily routes to check

arrival time consistency. Else, if the routes are marginally

feasible, the general improvement procedure executes to

simultaneously reduce l_max and travel times. Else

general repair procedures (including load- and time-repair

operators) are performed to convert the infeasible daily

routes to feasible ones. Subsequently, if the feasible

solution satisfies arrival time consistency, its travel time is

evaluated for potential selection as the best-found

solution; otherwise, general improvement is applied to

enhance the feasible solution satisfying all constraints. At

this time, the first stage of generating a new template and

choosing an accepted template as the appropriate one to

repair and performing improvement is finished and the

second stage is started. The second stage includes

performing a local search procedure on the new template

obtained from chosen repair operator of LNS. Local

search is done for specific neighborhood structures of a

template considering special requirements for decreasing

neighborhood search space and computational times. As

the obtained solution of local search may not satisfy the

constraints on vehicle capacity and tour-length, the repair

and general improvement procedures is performed similar

to the first stage to first, convert the obtained solution to a

feasible one and then improve it. Local search and

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137
 Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

118

general improvement procedures are described below in

details. We refer to the proposed template-based hybrid

LNS approach as THLNS.

Algorithm 1. Pseudo code of the proposed THLNS

Input: l_max_constant, l_max_penalty, ol_penalty, ot_penalty, FC, n_e_s, pworst, Qa-UB, travel time functions, initial

feasible template, l_max_penalty_accept, local_search_counter_limit, repair and remove operators, wt^, c

Output: best_solution, best_found_objective, l_max of best solution
local_search_counter = 0

iteration = 0

current template = initial feasible template

while local_search_counter <= local_search_counter_limit:

 if iteration % 50 = = 0 and local_search_counter = = 0:

 l_max_constant += 0.2

 iteration += 1

 if iteration > 2000:

 choose q randomly from [min (0.2* 𝑛, 30), min (0.4* 𝑛, 60)]
 else:
 choose q randomly from [min (0.1* 𝑛, 30), min (0.2* 𝑛, 60)]

 choose y randomly from [0,1]

 Qa = Q + y * (Qa-UB – Q)

 select a pair of remove and repair operators randomly

 apply selected pair on current template to obtain a candidate template

 resolve candidate template and calculate objective and l_max approximately

 if l_max > L:

 cand objective with penalty = candidate objective + (l_max – L) * l_max_penalty_accept

 else:

 cand objective with penalty = candidate objective

 if (accept && l_max <= l_max_constant * L) || (iteration > 2000 && l_max <= l_max_constant * L):

 check feasibility status of the candidate template

 if l_max <= L and status = = “feasible”:

 calculate new objective and l_max exactly

 update best_feasible_objective

 else:

 perform First Stage on the candidate template

 perform Local Search (The Second Stage) on the candidate template to obtain a new template

 resolve the new template and check feasibility status

 perform First Stage on the new template

end while

return best_solution, best_found_objective, l_max of best solution

4.1. LNS Components

4.1.1. Initial template generation

An initial feasible template is generated with respect to

capacity and tour-length constraints. First, all customers

are unassigned at the empty solution. Initial template

generation takes the empty solution and uses a greedy

heuristic method for sequentially adding customers in

feasible positions with a minimum added travel time

across all routes. Each position is checked for feasibility

by resolving the template to daily routes and checking

feasibility on each day. Then, the increase in travel time

for each position is computed for each day and added to

obtain total inserting cost for each position. The daily

routes are feasible, if they satisfy load capacity and tour-

length limits. Arrival time consistency is not considered in

initial template generation. When no feasible placement

exists in current routes, a new empty route is added to

assign other customers. The template generation is

complete when all customers are assigned to a template

route.

4.1.2. Remove and repair operators

We used three remove and five repair operators as

follows. Removal and repair operators include random,

worst, and related for removals and greedy, and regret

(four versions) for repairs. Appendix B explains each

operator in details.

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137
 Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

119

4.1.3. Acceptance criterion

The algorithm employs simulated annealing to determine

if a new template τ producing solution s should replace

the existing incumbent template τ. The new template τ is

adopted when its associated solution yields a better

(lower) objective value f (s ') than the current incumbent

solution, f (s) . We calculate the l_max of candidate

template’s corresponding solution approximately. If

l_max > L, then the penalty is also added to candidate

objective and f (s ') (candidate objective with penalty) is

computed as follows:

𝑓(𝑠′) = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 + (𝑙_𝑚𝑎𝑥 − 𝐿) ∗
 𝑙_max _𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑎𝑐𝑐𝑒𝑝𝑡 (21)

l_max_penalty_accept in Eq. 21 is the penalty assigned to

each unit of arrival time consistency violation and defined

as follows:

(
∑ ∑ 𝑤𝑖𝑑

𝑑
𝑑=1

𝑛
𝑖=1

𝐷∗𝑛
) ∗ (

𝑓(𝑠)

max{1,𝑙_𝑚𝑎𝑥−𝐿}
)/ (max∀𝑑∈𝐷 {

𝑀𝑆𝑇𝑐𝑜𝑠𝑡+∑ 𝑠𝑖𝑑
𝑛
𝑖=1 +min

∀𝑖∈𝑁′{𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒[0,𝑖]}

𝑇
} + max∀𝑑∈𝐷 {∑

𝑞𝑖𝑑

𝑄

𝑛
𝑖=1 }) (22)

In Eq. 22 f(s) and l_max were calculated for initial

feasible template exactly. The 𝑀𝑆𝑇𝑐𝑜𝑠𝑡 is the cost of

minimum spanning tree of the customers requesting

demand on the given day. Distance [0, i] is the Euclidean

distance of depot to customer i. In Eq. 22,

l_max_penalty_accept is calculated according to

characteristics of each problem instance. Thus, it is

computed for each problem independently and is used as

input parameter for the solution approach. This way, we

reduce the number of parameters needed to be tuned

before running algorithm. It is defined in a way that the

more difficult to satisfy arrival time consistency in the

problem the less acceptance penalty will be assigned for

violation.

The algorithm permits acceptance of worse solutions with

probability 𝑒
−(𝑓(𝑠′)−𝑓(𝑠))

𝑡^ where 𝑡^represents the current

temperature which is initially set to:

𝑡^ = − (
𝑤

𝑡^

ln 0.5
) ∗ 𝑓(𝑆) (23)

We configure 𝑡^ such that solutions worse by wt^ % have

a 50% acceptance probability, with wt^ being a tunable

parameter. 𝑓(𝑆) is the initial feasible template objective

which is computed approximately. The geometric cooling

is applied to decrease the temperature, expressed as
𝑡^ = 𝑡^ ∗ 𝑐, where c is the cooling rate parameter. We

used the same values for parameters as the same applied

in (Kovacs, Parragh, et al., 2014) (wt^=0.01, c=0.9999).

4.1.4. Selection and stopping criterion

During every iteration, the algorithm randomly chooses a

pair of removal and repair operators. The THLNS

terminates when reaching the predefined local search

iteration limit (local_search_iteration_limit).

4.2. The first stage

Algorithm 2. Details of the first stage used in algorithm 1

if status = = “feasible”:

 perform General Improvement on candidate template and obtain new solution

 compute l_max and objective of new solution exactly

 if l_max of new solution <= L:

 update best feasible objective

else:

 perform Load and Tour-Length Time Repairs procedure to obtain new feasible template

 resolve new feasible template to obtain new solution

 compute l_max and objective of new solution exactly

 if l_max <= L:

 update best feasible objective

 else:

 perform General Improvement on candidate template and obtain new solution

 compute l_max and objective of new solution exactly

 if l_max of new solution <= L:

 update best feasible objective

4.2.1. Load and Tour-Length Time Repairs

First, we repair the template to make it load-feasible. For

routes violating their capacity limits, we shift candidate

points to other routes while preserving load-feasibility

constraints. All relocations of a point must maintain route

(driver) consistency across all days, choosing insertion

positions that minimize overall travel time throughout the

planning horizon. Travel times are computed using

estimated travel time functions. The shift must not worsen

the new route’s overload. The procedure favors minimal

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

 Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

120

template perturbation, because the current template has

been accepted as new incumbent template in LNS or

locally optimized by the local search stage. Thus, we

prioritize: (1) single-shift repairs to execute relocations

that resolve route violations through single-shift

corrections and (2) shifts minimizing total travel time. If

no appropriate points are found, we implement the shift

yielding the minimal total cost:

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 +

 𝑜𝑙_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 (24)

Then, the repair process of this route is complete. Total

overload is determined by summing daily overloads

across all routes. ol_penalty represents the overload

penalty factor. Again, total travel times are computed

using estimated travel time functions. We then seek to

find points capable of resolving the route through one

more relocation. Iterations continue until achieving load-

feasibility. When no valid shifts exist, the solution creates

a new empty route to be replicated daily. Time feasibility

is then addressed through a process comparable to load

repair: for each route violating time constraints, carefully

selected points are shifted to other routes without creating

new capacity violations or increasing overtime on the

destination route.

Here, the total cost is computed similarly as follows:

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 +

 𝑜𝑡_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒 (25)

We approximate overtime using estimated travel times for

each route, then total overtime is obtained by adding

overtime of all routes over all days. Total travel time is

also computed the same as load repair and ot_penalty is

the penalty coefficient per overtime.

4.2.2. General improvement

As mentioned before, the general improvement procedure

is performed on solutions that satisfy both capacity and

tour-length limitations. The main structure is the same as

the local search procedure, i.e., three operations

introduced above are applied during every iteration and

the solution minimizing the total cost across three

neighborhoods is determined, but there are some

differences. First, three operations are applied only on the

same route to maintain the driver consistency of the

current solution. Moreover, feasibility checking is

performed with respect to tour-length constraints and only

feasible movements are evaluated to obtain an improved

feasible solution. It is worth noting that because

operations are only applied on the same route, capacity

constraints cannot be violated and thus need not be

checked. Thus, total cost change is only consists of travel

time change of the operation in the selected day and the

change of total time difference excess. Also, no filtering is

done and all feasible movements of operations are

evaluated. Another difference is that operations are

performed on daily routes and are compared among all

routes of all periods. Finally, as indicated in (Kovacs,

Parragh, et al., 2014), the reverse operation is restricted to

apply on sequences with maximum length of three nodes

here to avoid large increases in l-max and also to help

solve larger instances in relatively reduced computational

time. All other details of general improvement are the

same as local search.

4.3. Local search (the second stage)

We use three well-known neighborhood search operators

to define the neighborhood search structures. Each of

these structures is searched to improve the total cost of the

given template solution which is used as the lowest cost in

each iteration and is initialized with C0. (Xu & Cai, 2018)

used a near concept to restrict the neighborhood search

structures. In this concept if an operator could not create

connections between a predefined fraction of near

customers, this operator would be skipped and not be

evaluated (Xu & Cai, 2018). The near concept was only

based on distances between customers. As we study the

problem under time-dependent conditions here, we apply

a different filtering method to restrict the search space for

each operator.

4.3.1. Filtering mechanism

Estimation methods were proposed in (Gmira et al., 2021;

Ichoua et al., 2003) to approximately evaluate

neighboring solutions for solving the TDVRPTW using

the TS algorithm. In (Ichoua et al., 2003), interpolation

was used to approximate the travel time of new solutions

in the neighborhood. In the approximate evaluation used

in (Gmira et al., 2021), the delay in the departure time of

the subsequent node (which is affected by the operation)

is calculated and multiplied by its penalty value. This

penalty is itself derived from the delay propagated to the

next node when the current node’s departure is delayed by

one unit. We employ this delay concept as a filtering

mechanism for each operation. In Fig. 1, nodes 5 and 0

represent the subsequent affected nodes along routes a

and b, respectively, after applying the reverse operation.

The following filtering condition is applied:

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠
 ≥ 𝐹𝐶 ∗ 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒 𝑛𝑜𝑑𝑒𝑠 (26)

Each node’s departure time delay is the difference

between its departure time after and before applying the

operation. By summing the delays at nodes 5 and 0, we

obtain the total delay. Early departure times mean the

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

121

departure times of these two nodes in the current solution

before applying the operation. If the inequality defined in

Eq. 26 holds, then this reverse operation move will be

skipped and will not be evaluated. Otherwise, the cost

change caused by the operation is evaluated. In this way,

we skip the operations without significant potential to

improve the solution and reduce the computational time.

We realized that FC = -0.1 would be a good value to

sufficiently reduce the search space for solving large

instances in reasonable times.

We compute changes in: (1) travel time (Ct), (2) overtime

(Cot), and (3) overload (Col) on each day to obtain the cost

change. However, because of time-varying travel times,

the calculation of Ct and Cot is not straightforward as done

in (Xu & Cai, 2018). Whereas (Xu & Cai, 2018) used

distance-based calculations, we compute changes in time-

dependent travel times per operation on each day.

Estimated travel time functions are computed to

approximately calculate the change in travel times. These

estimated functions obtain the travel time with the

distance between nodes divided by the relevant speed of

the time interval in which the departure time is positioned.

Summing Ct across all days yields Ctt..The change of

overtime for each day (Cot) is also calculated based on Ct

of each affected route and then total overtime change

(Ctot) is calculated similarly. Calculating the change in

total overload (Ctol) is computationally inexpensive and

direct, providing a cost change without change in total

time difference excess (CcwTotd) as CcwTotd = Ctt +

ol_penalty * Ctol + ot_penalty * Ctot = total cost change

(Tcc) – l_max_penalty * Ctotd, in which Ctotd denotes the

change in total time difference violation. Ol_penalty,

ot_penalty, and l_max_penalty are penalty factors

associated to load, tour-length and time difference

violations. We need to determine Ctotd to calculate Tcc.

Given the time-intensive nature of Ctotd computation, we

instead compute operation_cost = C0 – l_max_penalty *

t_otd_initial + CcwTotd, in which t_otd_initial and C0 are

the total time difference violation and total cost of current

template respectively. If operation_ cost ≥ C0, since the

template’s total time difference violation remains non-

negative after the operation, the new template’s cost

cannot be lower than C0. Therefore, Ctotd computation is

unnecessary. However, if this condition isn’t met, we

compute Ctotd to determine Tcc. It is worth to note that Ctotd

is also computed using estimated travel times to keep the

computational time as short as possible. As noted in

(Gmira et al., 2021; Ichoua et al., 2003) a predefined

number of better solutions regarding approximated

evaluations were kept and then the total cost of these

solutions were computed exactly and the best solution

was obtained. The input parameter showing the number of

better solutions to keep for exact evaluation is indicated as

n_e_s in our algorithm. In early stages of designing our

algorithm we realized that n_e_s = 30 seems appropriate

to keep the operations exact enough and simultaneously

decreasing computational time. Three neighborhood

structures are generated by three operators namely,

relocation, exchange and reverse operators. Each of these

operators can be performed within a single route or across

multiple routes. The relocation operation moves a point to

a different position, while the exchange operator

interchanges the positions of two points, finally, Reverse

operator reverses parts of the selected routes. In order to

prevent increasing in reverse operations of local searches

in larger instances, the reverse is restricted to apply on

parts with maximum length of eight nodes. This value

showed satisfying results in our preliminary stages of

designing algorithm regarding computational efficiency

and solution optimality. During every local search

iteration, these three neighborhood structures of a

template are searched through implementation of the three

operations. In order to more decrease the computational

time of local search in solving large instances, the local

search iteration count is limited to eight iterations before

finding an arrival-time consistent solution and if a

consistent solution is found, this limit will decrease to

three iterations. The lowest-cost template solution found

across all three neighborhoods is determined. If the total

cost of this template is lower than the current template

and iteration limit is not reached, the search continues

with new template as the current template. Otherwise,

local search is complete. Fig. 1 shows how the three

operations are applied on template routes

0 1 3 6 8 5 7 0

 Relocation Exchange

 Reverse in the same route

 Route ‘a’ Route ‘b’

 Reverse between two routes

0 1 3 6 8 5 7 0

0 1 5 3 6 8 7 0 0 1 5 6 8 3 7 0

0 1 3 6 8 5 7 0

0 1 5 8 6 3 7 0

0 1 3 6 8 5 7 0 0 9 4 12 2 11 10 0

0 1 10 11 5 7 0 0 9 4 12 2 8 6 3 0

Fig 1. Three types of operations used in Local Search

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

122

4.4. Departure-time adjustment

(Kovacs, Parragh, et al., 2014) proposed the exact and

heuristic methods for adjusting the departure times of

vehicles from depot. They indicated that delaying vehicle

departure times from depot can considerably improve

arrival time consistency without changing in total travel

times. (Kovacs, Golden, et al., 2015) embedded a new

sophisticated heuristic for adjusting the departure times in

their proposed LNS. These approaches are presented for

ConVRP in which travel times are assumed to have

constant values not dependent on departure times. Thus,

delaying departures from the depot doesn’t have any

impact on travel times. The heuristic approach presented

in (Kovacs, Golden, et al., 2015) cannot be used directly

for adjusting departure times in ConTDVRP, so we

modify and extend this heuristic approach to be used in

our problem. Algorithm A.2 in appendix A indicates the

pseudocode of their approach. (More details of their

algorithm are explained in (Kovacs, Golden, et al., 2015)).

According to the heuristic approach, the maximum push

forward pf (j,k) and pull backward pb (j,k) of customer j’s

route on the relevant day(s) is determined in relation to all

other customers k sharing that route. In ConTDVRP,

delaying departure time of a route from depot affects

travel times between customers of the route. So, the

computation cannot be straightforwardly done as in

(Kovacs, Golden, et al., 2015), because delaying

departure times of a route from depot may not lead to the

same delay in arrival times of customers visited in the

route. Thus, we modify their algorithm by proposing an

iterative method for computation of pf (j,k) and pb(j,k)

values in ConVRP with time-dependent travel times.

Algorithm 3 shows the pseudocode of our proposed

iterative approach. We implement an enhanced version of

the THLNS approach in which when the obtained solution

fails to satisfy arrival time consistency constraint, the

extended heuristic for adjusting departure times is

executed to check if it can improve l-max to find feasible

solution. In the next section, we solve each problem

instance by two versions of the proposed THLNS

Algorithm 3. Pseudocode of the proposed iterative approach to compute pf (j,k) in Algorithm A.2

Input: customers j and k, arrival times of all customers in days, solution routes, day, customer j’s route on the given day,

current delayed departure of routes in all days, speed profile (SP) with corresponding breakpoints (bp), α

Output: delay value in departure time (dt) of customer j’s route on the given day

if customer j’s route on the given day is existed in current delayed departure of routes:

 candidate dt of customer j’s route on the given day = its former dt + (last bp of SP- its former dt)/2

else:

 candidate dt of customer j’s route on the given day = last bp of SP/2

candidate dt list = empty list
add candidate dt to candidate dt list

while True:

 set all departure times to zero
 set departure time of customer j’s route on the given day to the candidate dt

 if customer j’s route is feasible after setting its departure time on the given day:

 compute arrival times of customers j and k in all days

 compute the arrival time difference of customers j and k (ATD_of_j, ATD_of_k)

 if ATD_of_j < ATD_of_k:

 if || candidate dt list || <=1

 candidate dt = candidate dt – (candidate dt – former dt) / 2

 add candidate dt to candidate dt list

 elseif absolute (candidate dt – the last but one element of candidate dt list) > α:

 candidate dt=candidate dt -absolute (candidate dt – a last but one element of candidate dt list) /2

 add candidate dt to candidate dt list

 else:

 break

 else:

 if || candidate dt list || <=1

 candidate dt = candidate dt + (last bp of SP – candidate dt) / 2

 add candidate dt to candidate dt list

 elseif absolute (candidate dt – the last but one element of candidate dt list) > α:

 candidate dt=candidate dt +absolute (a last but one element of candidate dt list -candidate dt) /2

 add candidate dt to candidate dt list

 else:

 break

 else:

 if || candidate dt list || <=1

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137
 Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

123

 candidate dt = candidate dt – (candidate dt – former departure time) / 2

 add candidate dt to candidate dt list

 elseif abs (candidate dt – the last but one element of candidate dt list) > α:

 candidate dt = candidate dt – absolute (candidate dt – the last but one element of candidate dt list) /2

 add candidate dt to candidate dt list

 else:

 break

end while

return absolute (candidate dt – former dt of customer j’s route on the given day)

We found that α = 0.01 and ϵ = 0.01 are proper values to

converge fast and exactly. The calculation of pb (j,k) can

be done similarly using analogous logic. According to

(Kovacs, Golden, et al., 2015), calculation of pb (j,k) is

done when pushing forward is not possible. Then, the

previously pushed departure times become candidates to

see if they can be pulled backward. Tour-length feasibility

remains guaranteed because: the former feasible departure

times will be decreased in this case and also the FIFO

property holds on, and it is not needed to check the

feasibility after setting the departure time on the given

day.

5. Computational Experiments

In this section, time-dependent travel time functions were

computed in MATLAB 2020, while the proposed

approach and all benchmark algorithms were

implemented in Python 3.11. All experiments were

conducted on a system featuring an Intel Core i7 2.6 GHz

CPU and 16 GB of RAM. We extend the ConVRP

benchmark instances introduced by (Groër et al., 2009)

and generate new instances to analyze the efficiency of

the presented approach in solving ConTDVRP. They

created a straightforward method for randomly producing

a ConVRP benchmark derived from the classical VRP

benchmarks, generating a unified five-day ConVRP

benchmark from problems 1-12 with p = 0.7 daily service

probability. In generating these problems, they defined the

travel times (in minutes) between any two customers as

identical to their Euclidean distance. (Groër et al., 2009)

reported l-max of each problem obtained by their

proposed algorithm. Then, later research used these l-max

values as the arrival time difference limit (L) in solving

these instances. Table B.1 of Appendix B represents

characteristics of the ConVRP large instances. We

developed their benchmark instances by introducing three

speed profiles. These profiles are derived from (Figliozzi,

2012) which for the first time tried to define standard

TDVRPTW instances that can be used repetitively to

evaluate other TDVRPTW solution approaches. These

benchmark instances incorporated two peak congestion

intervals within the depot’s operating hours. The depot

operational time (T) was partitioned into five equal time

intervals, with specific travel speeds defined for each

interval. Since our problem lacks time windows, we adopt

their three speed profiles which presented for TDVRPTW

with soft time windows because in this case vehicle would

travel the same distance with the same average speed as in

the classical VRP instances until depot closing time with

speed variability in periods. Therefore, these profiles can

be used to generate ConTDVRP instances without time

windows. Similar to (Figliozzi, 2012), the depot

operational time (i.e. [0,T]) is partitioned into five equal

intervals and the associated travel speeds are defined for

each profile as follows:

𝑃𝑟𝑜𝑓𝑖𝑙𝑒_1 = [1.1, 0.85, 1.1, 0.85, 1.1]
𝑃𝑟𝑜𝑓𝑖𝑙𝑒_2 = [1.2, 0.8, 1, 0.8, 1.2] (27)

𝑃𝑟𝑜𝑓𝑖𝑙𝑒_3 = [1.2, 0.7, 1.2, 0.7, 1.2]

For example, for the tenth problem of ConVRP instances

with T=200, the working time is divided to the five equal

periods as [0, 40), [40, 80), [80, 120), [120, 160), [160,

200]. Therefore, three instances are generated regarding

the tenth ConVRP instance and above three profiles.

Finally, we have 36 instances of ConTDVRP by

extending 12 ConVRP instances. Similar to former

ConVRP research, we assumed the l-max values reported

by (Groër et al., 2009) as l-max limit (L) values. The ch-3

problem with profile 2 is chosen as the middle instance to

perform design experiments. We tune four parameters

including l-max-penalty, ot-penalty, ol-penalty and l-max-

constant by Taguchi method. Three levels are tested per

parameter and L-9 array is used to perform 9 experiments

with proposed levels. Each experiment is repeated five

runs on ch-3 with profile 2. The response variable is

computed by Eq. 28 and defined such that the relative

percentage violation of l-max in compare to L is added to

the best-found travel time as penalty.

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 ∗ (1 + 𝑙_max _𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛/𝐿)

 (28)

Table B.2 of Appendix B shows the results of tunning

parameters and Figs. B.1.a-B.1.b display the main effect

plots for Means and SN ratios respectively. Then the best

levels of parameters are determined based on SN ratios as

follows: l-max-penalty = 75, ot-penalty = 10, ol-penalty =

10 and l-max-constant = 1.75. These parameter settings

are used in performing all numerical experiments of this

section. Totally, 12 instances are solved with proposed

THLNS for each speed profile and solving each instance

is repeated five runs. Table 3 shows the obtained results.

In this table ch-1 to ch-12 indicates 12 benchmark

instances of ConVRP. There are five columns reported for

each speed profile. Avg.TT and Avg l-max indicates

averages of the travel time (in minutes) and l-max of each

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137
 Hossein Nikdel

& et al./ A A template-based hybrid large neighborhood search …

124

instance over five runs. Similarly, Min TT and Min l-max

shows minimum travel time and minimum l-max of each

problem among five runs respectively. Avg CPU time

represents the average processor runtime (in seconds) for

solving each instance. As shown in the Avg. TT column

of Table 3, the average travel time across all instances

remains nearly unchanged between Profile 1 (6,978.7) and

Profile 2 (6,930.5), with a marginal decrease of 0.69%.

However, it increases significantly by 4.98% from Profile

2 (6,930.5) to Profile 3 (7,275.45). Average l-max

increases by about 5.39% from profiles 1 to 2 and

decreases only 1.22% from profiles 2 to 3. The average

CPU time increases considerably from profiles 1 to 2 and

2 to 3 (3.78% and 9.1% respectively). it indicates that

obtaining solutions with satisfying l-max becomes

difficult by increasing the speed variation between

periods. (from profiles 1 to 2) and obtaining solutions

with less travel time becomes difficult by more increasing

in speed variation (from profiles 2 to 3). Also, the CPU

runtime of the proposed algorithm increases with greater

variations in the speed profile.

Table 3

Results for ConTDVRP instances solved by THLNS without departure-time adjustment

We also solve above instances by including extended

heuristic for adjusting departure times in the proposed

approach. The obtained results are represented in Tables

4-6.

Table 4

Obtained results of proposed THLNS with departure-time adjustment for profile 1

ID

Profile 1 (k, d) = departure time of route k in day d (in minutes after working start time) and

departure times of all remaining routes of other days equals zero (i.e. the starting time of
depot).

Avg.

TT

 Avg

l-max

Min

TT

Min

l-max

Avg CPU

time

Ch-1 2067.65 25.17 1925.2 20.65 283.16 (5,2) = 14.59, (4,2) = 4.9, (1,1) = 11.53, (1,3) = 11.53

Ch-2 3602.25 31.17 3586.21 27.51 585.08 (10,3) = 34.61, (3,4) = 23.2, (4,1) = 0.2

Ch-3 3207.14 20.32 3179.08 18.08 1952.31 (2,2) = 9.89, (7,1) = 5.13, (2,3) = 9.93, (4,3) = 0.67, (6,3) = 2.04

Ch-4 4922.25 26.28 4661.18 25.05 5990.06 (1,2) = 16.23, (11,5) = 8.29, (4,3) = 7.77, (8,4) = 2.55

Ch-5 6616.72 23.85 6362.17 22.58 15846.19 (4,4) = 4.13, (2,1) = 9.23, (11,2) = 2.97

Ch-6 3945.99 60.06 3800.1 58.87 103.59 (3,5) = 25.45, (1,3) = 2.67, (6,4) = 27.26

Ch-7 6791.98 68.48 6277.42 62.93 275.75 (1,5) = 22.8

Ch-8 6879.16 68.62 6810.64 63.42 910.92 (9,5) = 3.7

ID

Profile 1 Profile 2 Profile 3

Avg.

TT

 Avg

l-max

Min

TT

Min

l-max

Avg

CPU
time

Avg.

TT

Avg

l-max

Min

TT

Min

 l-max

Avg

CPU
time

Avg.

TT

Avg

l-max

Min

TT

Min

l-max

Avg

CPU
time

Ch-1 2560.33 30.19 2514.29 23.04 256.07 2587.35 29.01 2330.31 23.63 275.16 2607.39 30.22 2364.03 25.62 310.70

Ch-2 4231.41 29.45 4081.86 28 529.61 4277.20 31.92 4131.51 30.44 549.12 4195.17 47.77 3996.67 29.83 857.01

Ch-3 4180.08 22.50 4099.3 22.21 2198.47 4074.68 30.95 3938.46 22.37 3198.40 4380.86 27.32 4330.75 21.54 3159.52

Ch-4 5934.86 29.59 5825.97 26.44 8789.10 6134.98 26.92 5811 26.79 7793.79 6427.19 27.01 6141.46 26.38 9295.81

Ch-5 8710.42 25.71 8370.79 24.04 16020.71 8036.07 25.04 7634.67 24.13 19765.97 8990.23 24.48 8641.11 23.49 18564.67

Ch-6 4564.68 60.48 4497.72 56.94 90.17 4799.10 55.71 4694.14 48.68 117.95 5147.91 55.46 5054.69 53.87 120.29

Ch-7 7621.47 77.43 7349.64 72.5 291.50 7872.98 77.77 7613.68 72.47 322.75 8036.68 71.72 7784.81 68.24 280.48

Ch-8 8409.34 69.96 8324.01 65.05 931.68 7979.71 72.19 7533.1 71.76 1103.91 8406.35 69.53 8240.35 68.32 927.72

Ch-9 11937.39 74.29 11812.1 66.7 2562.50 11947.33 81.90 11609.58 72.53 2212.37 12405.31 92.60 12098.53 74.6 3569.95

Ch-10 14924.51 78.52 14864.02 70.01 18868.65 15070.18 85.02 14733.72 79.02 16994.68 15623.62 68.86 15321.01 60.09 20545.73

Ch-11 5965.49 15.36 5677.58 14.67 4614.21 5871.00 17.50 5623.39 15.65 5585.79 6482.56 17.68 6203.2 15.61 5118.72

Ch-12 4704.39 18.41 4691.65 17.04 2708.59 4515.39 26.62 4362.67 11.78 2129.74 4602.07 21.08 4356.71 17.05 2762.57

Average 6978.7 44.32 6,842.41 40.55 4,821.77 6,930.5 46.71 6,668.02 41.6 5004.14 7,275.45 46.14 7044.44 40.39 5,459.43

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

125

Ch-9 10899.54 92.06 9472.26 73.61 2459.83
(3,4) = 108.51, (12,2) = 57.12, (12,4) = 45.72, (12,5) = 57.12, (5,1) = 48.79 (5,2) = 26.53,

(5,3) = 71.64, (5,5) = 48.79, (9,1) = 1.09, (9,2) = 28.6 (9,3) = 41, (9,5) = 75.18

Ch-10 12262.19 51.71 12026.84 49.19 16464.46 (17,5) = 22.6, (1,3) = 15.45, (11,3) = 23.94, (8,1) = 30.73, (12,2) = 23.21 , (9,5) = 13.31

Ch-11 4712.95 15.54 4570.08 14.93 4524.55 (6,5) = 2.22, (2,4) = 7.21, (1,1) = 6.13, (4,2) = 5.04

Ch-12 3676.80 24.84 3441.66 17.46 2038.83 (3,2) = 6.55, (2,4) = 0.49

Average 5,798.72 42.34 5,509.4 37.86 4,286.23

Table 5

 Obtained results of proposed THLNS with departure-time adjustment for profile 2

ID

Profile 2 (k, d) = departure time of route k in day d (in minutes after working start time) and

departure times of all remaining routes of other days equals zero. (i.e. the starting time of

depot).
Avg.

TT

 Avg

l-max

Min

TT

Min

l-max

Avg CPU

time

Ch-1 2284.17 31.50 2064.85 23.81 274.79 (3,1) = 3.74, (2,2) = 3.41, (1,5) = 6.34, (4,5) = 7.62

Ch-2 3429.78 30.39 3303.21 24.19 628.42 (3,4) = 21.2, (7,2) = 3.23, (8,1) = 5.38, (4,2) = 18.11

Ch-3 3413.94 36.02 3311.27 22.09 3016.03 (5,1) = 5.27, (4,3) = 1.2, (3,2) = 2.42, (1,2) = 17.28, (2,1) = 1.4

Ch-4 4983.21 26.20 4652.63 25.81 6712.92 (11,5) = 13.46

Ch-5 6677.46 24.11 6339.33 22.69 16593.30 (18,1) = 13.89, (3,3) = 20.12, (11,2) = 2.28, (14,2) = 9.54

Ch-6 3900.32 50.86 3792.55 49.98 129.15 (5,5) = 16.57, (4,4) = 10.05

Ch-7 6295.96 69.11 6244.67 62.53 330.78 (6,4) = 19.27, (10,5) = 23.43, (1,3) = 28.96, (1,5) = 50.44

Ch-8 6825.32 65.56 6710.29 61.75 1144.77 (7,5) = 28.01, (1,1) = 2.06

Ch-9 10447.45 96.70 9435.13 79.52 2599.83 (9,4) = 5.76

Ch-10 12623.81 53.00 12260.82 50.65 12611.39
(14,5) = 33.48, (17,4) = 35.68, (11,2) = 32.29, (6,1) = 19.61, (10,3) = 20.11 (2,3) = 45.27,

(16,1) = 23.32, (9,1) = 20.93, (8,5) = 24.3, (12,3) = 2.58 (2,1) = 2.61, (12,1) = 42.83

Ch-11 5251.63 26.10 4775.68 13.95 3826.13 (1,2) = 11.4, (5,2) = 5.33, (2,2) = 5.18, (4,2) = 7.4, (4,4) = 6.49

Ch-12 3674.09 16.01 3376.92 14.45 2018.39 (4,5) = 0.69

Average 5,817.26 43.8 5,522.28 37.62 4,157.16

Table 6

Obtained results of proposed THLNS with departure-time adjustment for profile 3

ID

Profile 3 (k, d) = departure time of route k in day d (in minutes after working start time) and

departure times of all remaining routes of other days equals zero. (i.e. the starting time of

depot).
Avg.
TT

 Avg
l-max

Min
TT

Min
l-max

Avg CPU
time

Ch-1 2099.07 26.38 1976.7 23.98 398.24 (1,1) = 13.36, (4,5) = 3.86, (4,1) = 2.86, (3,4) = 5.69

Ch-2 3532.49 45.35 3206.66 25.94 796.13 (7,2) = 1.7

Ch-3 3318.93 29.77 3271.9 20.44 3394.12 (7,4) = 2.41, (4,3) = 11.83, (2,4) = 6.9, (4,4) = 12.85, (3,2) = 3.83

Ch-4 4952.92 25.74 4825.05 25.42 8198.00 (4,2) = 15.68, (8,4) = 7.46, (9,5) = 4.24

Ch-5 6659.22 22.22 6119.33 19.39 17225.56 (17,5) = 13.93, (2,2) = 7.71, (14,2) = 10.65

Ch-6 3983.76 57.25 3833.09 51.78 136.45 (2,5) = 34.23, (1,2) = 6.24

Ch-7 6753.92 69.28 6685.31 65.93 234.39
(10,4) = 131.25, (3,2) = 81.69, (5,3) = 75.23, (12,2) = 8.53, (12,3) = 10.07, (12,4) = 10.07,

(12,5) = 10.07

Ch-8 7001.64 59.81 6916.04 55.24 1082.88 (6,3) = 43.75, (5,1) = 15.39, (2,5) = 56.37

Ch-9 10341.50 73.69 9916.52 63.24 4162.14 (9,4) = 36.94, (13,2) = 36.66, (10,3) = 15.36

Ch-10 12794.15 56.98 12697.02 54.35 15393.22 (16,4) = 20.59, (4,3) = 7.1, (11,2) = 1.23, (19,5) = 12.41

Ch-11 5354.50 22.88 4743.74 15.01 4962.14 (2,5) = 10.65, (5,5) = 8.21, (3,4) = 0.52

Ch-12 3585.17 25.85 3374.15 13.77 2226.94 (5,5) = 13.76, (7,2) = 8.87, (6,2) = 5.55, (1,4) = 3.33, (2,5) = 8.31

Average 5864.77 42.93 5630.46 36.21 4850.85

As shown in Tables 3-6 the average travel time of all

instances decreases for all profiles by including departure

time adjustment in proposed approach. The average l-max

and average CPU time of all instances also decreases for

all profiles. The average travel time of profiles 1 to 3

between all instances decreases by 16.9%, 16.06%, and

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

126

19.39% respectively compared to the baseline THLNS

without adjusting departure times. It seems an interesting

result, because although adjusting departure times are

performed to decrease only l-max value without

considering travel times, but it simultaneously achieves

significant reductions in travel times for all defined speed

profiles. Similarly, the average l-max decreases by 4.47%,

6.23%, 6.96% respectively which shows that although the

departure-time adjustment is not performed for l-max-

feasible solutions, it already can decrease the average l-

max of best-found solutions. Also, there is one instance

for each profile in which THLNS without departure time

adjustment cannot find arrival time consistent solution

among five runs of the algorithm (i.e. Min l-max > L), but

the proposed approach including departure-time

adjustment can find arrival time consistent solutions of all

instances for each defined profile. Average CPU times of

all instances decreases by 11.1%, 16.93%, 11.15% for

profiles 1-3. It is an expected result, because by adjusting

departure times, algorithm can find consistent solution

earlier and then iteration count limit of local search in the

algorithm reduces from 8 to 3 which can greatly reduce

the computational time of local search.

All instances are also solved with constant travel times in

which the speed equals one. Similarly, we perform five

runs per instance. The results are collected in Table B.3 of

Appendix B. The results demonstrate that the algorithm

have found consistent solution for instances with tight

time-consistency constraints (small L values) and constant

speed profile which may not find consistent solutions in

time-dependent profiles for them. Figure 2 compares the

results for each instance across the constant profile and

three other profiles. The results show that the constant

profile generally yields lower average travel time, l-max,

and CPU runtime.

Small instances were presented in (Groër et al., 2009) to

solve ConVRP to optimality. Similarly, we extend these

small problems with predefined speed profiles for

evaluating the MIP model. Table B.4 of Appendix B

indicates the detailed information of these small instances.

Finding optimal solutions for these instances may take

many days. To address this, we supposed the above

extended problems as our medium-sized instances and

created five smaller ConVRP instances (indicated as 6-1

to 6-5) by retaining only the first half nodes of instances

12-1 to 12-5 while keeping all other parameters

unchanged. Table 7 compares the optimal solutions for

new small instances (under Profiles 1–3) with the results

of five runs from THLNS. Here, TT* represents the

optimal travel times for each profile, while the Avg gap

measures the percentage variation across Avg TT and

TT*.

2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

Ch
-1

Ch
-2

Ch
-3

Ch
-4

Ch
-5

Ch
-6

Ch
-7

Ch
-8

Ch
-9

Ch
-1

0

Ch
-1

1

Ch
-1

2

profile 1 profile 2 profile 3 constant

Average total travel time (minutes)

Instance

ID

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ch
-1

Ch
-2

Ch
-3

Ch
-4

Ch
-5

Ch
-6

Ch
-7

Ch
-8

Ch
-9

Ch
-1

0

Ch
-1

1

Ch
-1

2

profile 1 profile 2 profile 3 constant

Average l-max

310.7

857.01

3159.52

9295.81

18564.67

120.29

280.48

927.72

3569.95

20545.73

5118.72

2762.57

Ch-1

Ch-2

Ch-3

Ch-4

Ch-5

Ch-6

Ch-7

Ch-8

Ch-9

Ch-10

Ch-11

Ch-12

constant profile 3 profile 2 profile 1 Average CPU

runtime (sec)

Instance

ID

Instance

ID

Fig. 2. Comparison of the THLNS results between profiles

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

127

Table 7

 Comparing the results of THLNS without departure-time adjustment to CPLEX optimal solutions for new small instances

ID Profile Type

THLNS CPLEX
Avg gap

(%) Avg.
TT

Avg
l-max

Min
TT

Min
l-max

Avg CPU time
(sec)

TT* CPU Time (sec)

6-1

Profile_1 101.65 4.69 100.6 3.47 0.75 87.97 585.86 15.55

Profile_2 107.45 3.34 107.45 3.34 0.11 89.63 327.47 19.88

Profile_3 105.62 3.48 105.62 3.48 0.69 88.74 423.83 19.02

6-2

Profile_1 58.4 4.76 58.4 4.76 0.05 50.397 9.19 15.88

Profile_2 58.75 4.53 58.75 4.53 0.05 50.755 2.11 15.75

Profile_3 58.8 4.76 58.8 4.76 0.07 50.798 19.64 15.75

6-3

Profile_1 90.3 4.89 90.3 4.89 0.09 76.303 310.41 18.34

Profile_2 92.22 4.75 90.93 3.91 0.75 78.136 679.25 18.02

20.67 Profile_3 94.76 4.71 94.76 4.71 0.12 78.529 516.3 20.67

6-4

Profile_1 136.06 0.85 136.06 0.85 0.07 115.554 2450.02 17.75

Profile_2 137.98 0.89 137.98 0.89 0.07 117.757 524.56 17.17

Profile_3 136.77 0.66 136.77 0.66 0.07 116.849 243.64 17.05

19.91

6-5

Profile_1 84.34 2.31 84.34 2.31 0.1 70.338 1801.47 19.91

Profile_2 86.57 2.00 85.9 0.93 0.15 71.903 363.14 20.4

Profile_3 89.42 1.01 85.99 0.58 0.16 71.986 2312.95 24.22

Average 95.94 3.175 95.51 2.938 0.22 81.043 704.656 18.58

Table 8 demonstrates the numerical results of running

medium instances with THLNS for profiles 1-3. The MIP

model of these instances is implemented by CPLEX

solver. The maximum allowed runtime is configured as

3600 seconds for all instances. The gap column measures

the relative difference between Avg TT and Upper Bound

if available.

Table 8

 Comparison of THLNS without departure-time adjustment and CPLEX on medium instances

ID Profile Type

THLNS CPLEX
Avg gap

(%) Avg.

TT

Avg

l-max

Min

TT

Min

l-max

Avg CPU time

(sec)

Upper

Bound

Lower

Bound

CPU Time

(sec)

10-1

Profile_1 134.8027 2.8449 132.0457 2.5986 0.304 173.2276 69.2414 3600 -22.18

Profile_2 121.4004 3.1904 109.7841 2.6533 0.352 156.478 65.9568 3600 -22.42

Profile_3 127.7065 3.9018 124.4387 2.6333 0.326 166.3702 65.69 3600 -23.24

10-2

Profile_1 133.2339 2.1935 128.8691 1.6192 0.328 NA 59.7555 3600 NA

Profile_2 126.2172 3.8888 126.2172 3.8888 0.524 140.1082 54.584 3600 -9.91

Profile_3 123.0142 3.8292 113.6534 2.6925 0.548 159.0368 49.6378 3600 -22.65

10-3

Profile_1 144.7637 3.2168 144.5736 2.0669 0.444 132.4553 60.6938 3600 9.29

Profile_2 139.1806 4.4981 138.7734 4.0838 0.626 184.3733 57.1707 3600 -24.51

Profile_3 141.4415 4.0518 138.6834 2.6675 0.45 171.6666 55.634 3600 -17.61

10-4

Profile_1 146.3757 3.8678 145.2353 3.8678 0.304 193.3243 69.137 3600 -24.28

Profile_2 142.3056 4.4032 140.0943 4.4032 0.338 186.4076 63.5727 3600 -23.66

Profile_3 143.4217 3.4040 140.1200 1.7143 0.284 167.9169 64.7899 3600 -14.59

10-5

Profile_1 133.8742 2.7648 129.2655 0.6190 0.446 134.1546 66.1048 3600 -0.21

Profile_2 129.4069 3.6138 121.9890 1.6550 1.24 149.5773 64.5501 3600 -13.48

Profile_3 126.4124 3.3760 124.3068 1.5796 1.102 140.2731 59.5455 3600 -9.88

12-1

Profile_1 165.3900 3.6287 161.8618 3.3329 0.814 NA 82.4684 3600 NA

Profile_2 155.5854 4.1498 144.4618 3.9031 0.64 363.8623 73.7669 3600 -57.24

Profile_3 162.2788 4.0004 155.7395 3.5272 0.604 NA 72.1691

3600 NA

12-2

Profile_1 125.0532 3.4863 123.0339 2.1266 0.426 130.067 55.3939 3600 -3.85

Profile_2 113.4390 3.1311 107.8172 2.7000 0.74 140.6775 49.9921 3600 -19.36

Profile_3 116.8819 4.4716 116.6014 3.7408 1.386 NA 47.9792 3600 NA

12-3

Profile_1 155.1394 2.5853 149.1467 1.0809 0.626 181.3129 55.0591 3600 -14.44

Profile_2 136.9676 4.4560 128.9389 3.4452 2.718 NA 50.0187 3600 NA

Profile_3 138.7748 2.8330 134.4852 2.5428 0.958 198.6782 48.7897 3600 -30.15

12-4

Profile_1 169.0764 3.4706 165.2609 2.8511 0.664 NA 69.4519 3600 NA

Profile_2 168.2808 4.4154 154.8830 4.0701 1.37 180.526 64.1517 3600 -6.78

Profile_3 156.316 4.5511 155.0342 4.2365 3.132 246.2437 63.6587 3600 -36.52

12-5

Profile_1 141.5695 3.6904 138.8055 3.0832 1.156 NA 54.77 3600 NA

Profile_2 137.3213 3.5858 131.9158 3.0775 1.072 NA 54.8066 3600 NA

Profile_3 133.2511 3.6156 125.4192 2.5375 1.088 NA 49.5064 3600 NA

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

128

We adapted the three approaches presented in literature

for ConVRP including TALNS (Kovacs, Parragh, et al.,

2014), LNS (Kovacs, Golden, et al., 2015) and VNS (Xu

& Cai, 2018) via replacing the constant travel times by

piece-wise linear travel time functions and solved the

extended large instances for profiles 1 to 3. All of these

approaches are implemented using their tuned parameter

values from the main work. Each instance is solved five

times and average observed l-max and travel time values

are reported. Table 9 compares the performance between

these approaches for profile 3. To standardize

comparisons, we use the average CPU time from Table 3

(Profile 3) as the runtime limit for all algorithms per

instance. (Similarly, Tables B.5 and B.6 in Appendix B

compare these results for profiles 1 and 2.) Since VNS

does not consider departure-time adjustment, and since

the departure-time adjustment methods of the other two

approaches cannot be applied directly to ConTDVRP, we

compare the base versions of THLNS, TALNS (Kovacs,

Parragh, et al., 2014), and LNS (Kovacs, Golden, et al.,

2015) (all without departure-time adjustment) for a fair

comparison. An approach is superior if it yields a

consistent solution with the lowest Avg TT (where Avg l-

max ≤ L) or the lowest values for both metrics. Superior

results are bolded; otherwise, the best-performing metric

is highlighted in bold. THLNS outperforms others in five

instances, TALNS in four, and neither dominates in Ch-1,

Ch-3, or Ch-11. (Table B.6 shows the same result for

Profile 2, while Table B.5 demonstrates the superiority of

THLNS in seven instances for Profile 1.) For Profile 3,

the proposed method yielded 11.82%, 12.21%, and

34.52% lower average travel times than TALNS, LNS,

and VNS, respectively. The corresponding improvements

for Profiles 1 and 2 were also significant: 11.83%, 9.43%,

35.91% and 16.48%, 10.18%, 36.57%. Thus, THLNS

performs best under identical computational limits.

Table 9

 Comparison of THLNS (without departure-time adjustment) with three literature approaches for large instances (Profile 3)

ID

THLNS
TALNS (Kovacs,

Parragh, et al., 2014)

LNS (Kovacs, Golden,

et al., 2015)
VNS (Xu & Cai, 2018)

l-max

Limit (L)

CPU Runtime

Limit (sec) Avg TT

(min)

Avg

l-max

Avg TT

(min)

Avg

l-max

Avg TT

(min)

Avg

l-max

Avg TT

(min)

Avg

 l-max

Ch-1 2607.39 30.22 3127.84 64.02 2522.70 76.60 3773.79 118.57 24.38 310.70

Ch-2 4195.17 47.77 5992.32 87.24 5740.27 196.75 6621.35 108.55 34.26 857.01

Ch-3 4380.86 27.32 5460.48 72.87 3530.80 106.99 6505.84 88.60 22.87 3159.52

Ch-4 6427.19 27.01 7241.14 51.51 8645.66 260.79 10323.26 80.35 27.53 9295.81

Ch-5 8990.23 24.48 9822.75 56.82 11254.77 253.73 13168.70 77.33 26.93 18564.67

Ch-6 5147.91 55.46 4361.78 63.36 5493.52 162.23 6546.80 87.68 63.47 120.29

Ch-7 8036.68 71.72 7294.19 74.04 8510.25 127.84 10192.87 60.60 83.96 280.48

Ch-8 8406.35 69.53 9653.05 70.92 8478.89 170.75 12790.37 128.73 73.04 927.72

Ch-9 12405.31 92.60 12378.57 64.45 13164.54 172.11 19040.19 104.61 106.43 3569.95

Ch-10 15623.62 68.86 16489.42 58.92 17089 172.25 24603.10 115.26 60.17 20545.73

Ch-11 6482.56 17.68 7312.16 163.45 5313.46 52.75 7312.16 163.45 16.1 5118.72

Ch-12 4602.07 21.08 6729.97 88.75 6544.39 256.04 8228.81 78.79 17.58 2762.57

Average 7044.44 40.39 7988.64 76.36 8024.02 167.40 10758.94 101.04 46.39

5459.43

To examine the impact of varying L parameters on the

performances of THLNS with and without departure time

adjustment, we selected instance ch-3 and increased the L

values by 0% to 80% with 20% step, then each algorithm

variant executed three runs per L value and profile. It

should be noted that because the algorithm may find a

consistent solution earlier by increasing L values, we

don’t decrease the iteration count limit of local search

after finding the first consistent solution and the local

search continues with 8 iterations to the end of approach.

This approach neutralizes the effect of decreasing L

values on the obtained travel time and CPU times with

respect to local search iterations and we have a fair

comparison. Figs.3 and 4 show the obtained results of

above changing on the proposed approach without and

with departure time adjustment respectively. We selected

ch-1 to analyze the effects of increasing

local_search_counter_limit on solution metrics of each

profile. This limit was increased from 10 to 90 counts.

Fig. 5 indicates the obtained results. The FC parameter

range which impacts on filtering neighborhood search

space of a template was varied from -0.1 to 0.3 for ch-1

and ch-8 with profile 3. Results are shown in Figs. 6 and

7.

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

129

0

1000

2000

3000

4000

5000

L 1.2 L 1.4 L 1.6 L 1.8 L

profile 1 profile 2
profile 3

l-max

Limit

Average CPU

time

0

10

20

30

40

L 1.2 L 1.4 L 1.6 L 1.8 L

profile 1 profile 2
profile 3

Average

l-max

l-max

Limit

3100
3200
3300
3400
3500
3600
3700
3800
3900
4000

L 1.2 L 1.4 L 1.6 L 1.8 L

profile 1 profile 2
profile 3

l-max

Limit

Average total

travel time

Fig. 4. Effect of changing L on results of ch-3 with departure-time adjustment

0

500

1000

1500

2000

2500

3000

3500

4000

L 1.2 L 1.4 L 1.6 L 1.8 L

profile 1 profile 2
profile 3

Average CPU

time

l-max

Limit

0
5

10
15
20
25
30
35
40
45
50

L 1.2 L 1.4 L 1.6 L 1.8 L

profile 1 profile 2
profile 3

Average

l-max

l-max

Limit

3900

4000

4100

4200

4300

4400

4500

4600

L 1.2 L 1.4 L 1.6 L 1.8 L

profile 1 profile 2

profile 3

Average total

travel time

l-max

Limit

Fig. 3. Effect of changing L on results of ch-3 without departure-time adjustment

0

500

1000

1500

2000

10 20 30 50 70 90

profile 1 profile 2
profile 3

Average CPU

time

LS

Counter

Limit

0

10

20

30

40

50

10 20 30 50 70 90

profile 1 profile 2
profile 3

Average

l-max

LS

Counter

Limit

2300
2350
2400
2450
2500
2550
2600
2650
2700
2750
2800

10 20 30 50 70 90

profile 1 profile 2
profile 3

Average total

travel time

LS

Counter

Limit

 Fig. 5. Effect of increasing local_search_counter_limit on results of ch-1 without departure-time adjustment

0

1000

2000

3000

4000

5000

6000

7000

-0.1 0 0.1 0.2 0.3

Average CPU

time

FC Value

0

5

10

15

20

25

30

35

40

45

-0.1 0 0.1 0.2 0.3

Average

l-max

FC Value

2600

2650

2700

2750

2800

2850

2900

-0.1 0 0.1 0.2 0.3

Average total

travel time

FC Value

Fig. 6. Effect of increasing FC parameter on results of ch-1 for profile 3 without departure-time adjustment

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

130

As shown in Figs. 3 and 4, the average runtime indicates a

decreasing trend approximately as L increases for both

versions of the proposed approach. Although the approach

is modified and local search iterations don’t change to

have a fair comparison in this case, CPU time decreases in

both versions for all profiles because by increasing L

value the candidate solutions found by LNS component

can be accepted and chosen earlier, so performing the first

and second stages of the proposed approach can be started

faster. Average l-max of the solution in the first version of

THLNS (i.e. without adjusting departure times) increases

for profile 1. For profiles 2, 3 in the first version of

algorithm, average l-max exceeds the limit L, but when

the limit increases by 20 % (i.e. 1.2 L), average l-max of

both profiles becomes very close to the 1.2 L limit. It

shows that in profiles 2, 3 with higher speed variation,

when the l_max limit is increased by 20%, the algorithm

can find solutions with l-max values that are very close to

or under the l-max limit. After that by more increasing of

l-max, both profiles indicate similar trend as the first

profile. As expected, in the second version of the

algorithm with adjusting departure times, profiles

demonstrate different behaviors and l-max indicates an

increasing trend for profile 2 as well as profile 3

approximately. It indicates that adjusting departure time

leads to the solutions with satisfying or very close to l-

max limit for profiles 1, 2 and has been effective on

decreasing remarkable values of l-max. The average

travel time doesn’t indicate a monophonic and constant

trend for any profile in the two versions of the algorithm.

With the local search limit fixed at 10 (to ensure

consistent feasible solutions within reasonable time),

increasing l-max limit has negligible impact on travel

times. The proposed algorithm is designed such that

obtaining solutions with less travel times is expected by

increasing l-max limit and local search counts

simultaneously. Fig. 5 shows that average CPU time of

the first version for all profiles is increased by increasing

local search counts as expected. Average l-max is

decreased in all profiles which indicates that increasing

local search counts has great impact on obtaining

consistent solutions of all profiles specially for profiles 2,

3 with higher degrees of speed variation. Also, the

average total travel time of profile 1 shows a decreasing

trend approximately but other profiles don’t indicate a

specific trend. It implies that increasing local search count

in profile 1 can simultaneously result in finding solutions

with less travel times and less l-max with the given l-max

limit (L), but for profiles 2, 3 it should be required to

increase l-max limit in addition to perform more numbers

of local searches so that consistent solutions with less

total travel times can be found. Figs. 6 and 7 show that by

increasing FC parameter in the first version of the

algorithm, the average CPU time increases with similar

trend for both instances of ch-1 and ch-8 in profile 3. The

average l-max first decreases greatly by increasing FC to

0 in ch-1 and then continue decreasing until FC=0.1 and

increasing FC above 0.1 doesn’t decrease l-max anymore.

In ch-8 which has very higher l-max limit (L=73.04), the

algorithm has found consistent solution for all FC values

and increasing FC doesn’t have impact on decreasing l-

max anymore because the proposed algorithm designed

such that inconsistent solutions are penalized and once it

reaches a consistent solution it doesn’t give any reward to

decrease l-max values anymore. The average travel time

shows an approximately increasing trend with increasing

FC for both instances of ch-1 and ch-8. This reveals an

important result: the FC parameter can decrease the travel

time of obtained solutions and computational time of

algorithm simultaneously if properly set. FC=-0.1 has the

minimum average travel time as well as CPU time among

other values.

5.1. Managerial insight

The current research provides an efficient approach for

managers to obtain consistent solutions in real-world

cases where travel times can fluctuate because of

changing factors like traffic congestion in urban

environments. The research presents an approach which

incorporates a filtering mechanism as well as estimating

travel times to reduce the computational times, so

managers can use it to find solutions which

simultaneously focus on customer satisfaction via

consistency considerations and cost efficiency by

maintaining moderate travel times in real-world

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

-0.1 0 0.1 0.2 0.3

Average CPU

time

FC Value

66

66.5

67

67.5

68

68.5

69

69.5

70

-0.1 0 0.1 0.2 0.3

Average

l-max

FC Value

8400

8450

8500

8550

8600

8650

8700

8750

8800

8850

-0.1 0 0.1 0.2 0.3

Average total

travel time

FC Value

Fig. 7. Effect of increasing FC parameter on results of ch-8 for profile 3 without departure-time adjustment

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

131

environments like urban regions with reduced

computational time.

Results indicated that by incorporating dynamic

conditions of real-world practice through modeling time-

dependent travel times, finding consistent solutions

becomes more difficult. This suggests managers should

account for dynamic conditions by implementing time-

dependent travel times, enabling them to: (1) satisfy

customer consistency requirements while (2) maintaining

lower travel times in practice.

The incorporation of the departure-time adjustment

procedure into the algorithm reduced travel times and

improved consistency without increasing computational

time. Moreover, thanks to the specialized design of

THLNS, the proposed procedure further reduced

computational time, as the algorithm could identify

consistent solutions earlier. The results demonstrate that

the proposed approach with departure-time adjustment

could find consistent solutions for all ConVRP instances

in the literature with introduced time-dependent travel

times. Managers can apply this adjustment to large-scale

cases in practice to meet customer consistency

requirements more efficiently in real urban environments.

6. Conclusion

In recent years, the primary focus of VRP has shifted

from fleet cost optimization to greater emphasis on

customer-related factors. Concentrating more on customer

satisfaction through improved service levels and quality is

crucial to remaining competitive in today's business

environment. Providing consistent services, using the

same provider at roughly the same times during

customers’ demanding periods, is a key aspect of high-

quality service in many applications such as home

healthcare services, parcel delivery and retail distribution

systems. It can help improve customer loyalty and

maintain long-term relationships with the company. The

ConVRP represents the initial VRP variant that places

primary emphasis on ensuring customer satisfaction. All

previous research on the ConVRP considered

deterministic, time-independent travel times in the

transportation network. These models may fail to reflect

real-world scenarios, where travel times depend on

departure times due to time-varying factors like traffic

congestion, especially in urban environments. Thus, they

cannot ensure arrival time consistency but can only

guarantee driver consistency. Moreover, these models’

total travel time estimates may not reflect reality, leading

to suboptimal or even infeasible solutions in practice.

This study is the first to model time-dependent travel

times in the ConVRP by integrating TDVRP and

ConVRP frameworks, enhancing practicality. A template-

based hybrid approach was proposed combining VNS

within a LNS framework. The method incorporates an

efficient search-space filtering mechanism and travel-time

estimation to identify consistent solutions with reduced

computational effort. Additionally, a modified

heuristic was developed to adjust depot departure

times, improving arrival-time consistency. Results

demonstrated that the proposed THLNS algorithm finds

consistent solutions within reasonable computational

times. The small ConVRP instances of the literature were

also run by THLNS and CPLEX with 3600 seconds

runtime limit. These results indicated the superiority of

the proposed approach for finding consistent solutions

with far lower computation times. The proposed approach

was also compared to three established methods from the

ConVRP literature. The results demonstrate its

superiority, yielding consistent solutions with 13.38%,

10.61%, and 35.67% lower average travel times than the

alternative methods, within equal computation times. The

results of sensitivity analysis indicated that the CPU time

was decreased and l-max generally increased with

increasing parameter L. By increasing local search

counter, the CPU time was increased but average l-max

decreased for all profiles. The average travel time

demonstrated a decreasing trend for profile 1. The results

of increasing FC parameter which filters the solution

space showed that average l-max was decreased greatly

by a little increase in FC. Increasing FC simultaneously

increased the travel time and CPU time. This indicated the

efficiency of filtering mechanism for skipping low-

potential solutions in the proposed approach.

Future research should focus on a multi-objective model

that optimizes cost (travel time), service consistency, and

sustainability, incorporates live traffic data to handle

unpredictable traffic patterns dynamically, and robust

optimization or stochastic programming to deal with

uncertainty in customer demands or service times, uses

machine learning to predict travel time variability based

on historical or real-time data and integrates green

logistics with consistency.

References

Adamo, T., Gendreau, M., Ghiani, G., & Guerriero, E.

(2024). A review of recent advances in time-

dependent vehicle routing. European Journal of

Operational Research.

Ahn, B.-H., & Shin, J.-Y. (1991). Vehicle-routeing with

time windows and time-varying congestion. Journal

of the Operational Research Society, 42(5), 393-400.

Alinaghian, M., & Naderipour, M. (2016). A novel

comprehensive macroscopic model for time-

dependent vehicle routing problem with multi-

alternative graph to reduce fuel consumption: A case

study. Computers & Industrial Engineering, 99, 210-

222.

Alvarez, A., Cordeau, J.-F., & Jans, R. (2024). The

consistent vehicle routing problem with stochastic

customers and demands. Transportation Research

Part B: Methodological, 186, 102968.

Balseiro, S. R., Loiseau, I., & Ramonet, J. (2011). An ant

colony algorithm hybridized with insertion heuristics

for the time dependent vehicle routing problem with

time windows. Computers & Operations Research,

38(6), 954-966.

Beasley, J. (1981). Adapting the savings algorithm for

varying inter-customer travel times. Omega, 9(6),

658-659.

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

132

Braekers, K., & Kovacs, A. A. (2016). A multi-period

dial-a-ride problem with driver consistency.

Transportation Research Part B: Methodological,

94, 355-377.

Cai, L., Lv, W., Xiao, L., & Xu, Z. (2021). Total carbon

emissions minimization in connected and automated

vehicle routing problem with speed variables. Expert

Systems with Applications, 165, 113910.

Clarke, G., & Wright, J. W. (1964). Scheduling of

vehicles from a central depot to a number of delivery

points. Operations research, 12(4), 568-581.

Dabia, S., Ropke, S., Van Woensel, T., & De Kok, T.

(2013). Branch and price for the time-dependent

vehicle routing problem with time windows.

Transportation Science, 47(3), 380-396.

Donati, A. V., Montemanni, R., Casagrande, N., Rizzoli,

A. E., & Gambardella, L. M. (2008). Time dependent

vehicle routing problem with a multi ant colony

system. European Journal of Operational Research,

185(3), 1174-1191.

Fan, H., Zhang, Y., Tian, P., Lv, Y., & Fan, H. (2021).

Time-dependent multi-depot green vehicle routing

problem with time windows considering temporal-

spatial distance. Computers & Operations Research,

129, 105211.

Feillet, D., Garaix, T., Lehuédé, F., Péton, O., & Quadri,

D. (2014). A new consistent vehicle routing problem

for the transportation of people with disabilities.

Networks, 63(3), 211-224.

Figliozzi, M. A. (2012). The time dependent vehicle

routing problem with time windows: Benchmark

problems, an efficient solution algorithm, and

solution characteristics. Transportation Research

Part E: Logistics and Transportation Review, 48(3),

616-636.

Fleischmann, B., Gietz, M., & Gnutzmann, S. (2004).

Time-varying travel times in vehicle routing.

Transportation Science, 38(2), 160-173.

Gendreau, M., Ghiani, G., & Guerriero, E. (2015). Time-

dependent routing problems: A review. Computers &

Operations Research, 64, 189-197.

Gmira, M., Gendreau, M., Lodi, A., & Potvin, J.-Y.

(2021). Tabu search for the time-dependent vehicle

routing problem with time windows on a road

network. European Journal of Operational

Research, 288(1), 129-140.

Goeke, D., Roberti, R., & Schneider, M. (2019). Exact

and heuristic solution of the consistent vehicle-

routing problem. Transportation Science, 53(4),

1023-1042.

Groër, C., Golden, B., & Wasil, E. (2009). The consistent

vehicle routing problem. Manufacturing & service

operations management, 11(4), 630-643.

Haghani, A., & Jung, S. (2005). A dynamic vehicle

routing problem with time-dependent travel times.

Computers & Operations Research, 32(11), 2959-

2986.

Hashimoto, H., Yagiura, M., & Ibaraki, T. (2008). An

iterated local search algorithm for the time-

dependent vehicle routing problem with time

windows. Discrete Optimization, 5(2), 434-456.

Hill, A. V., & Benton, W. C. (1992). Modelling intra-city

time-dependent travel speeds for vehicle scheduling

problems. Journal of the Operational Research

Society, 43(4), 343-351.

Huang, Y., Zhao, L., Van Woensel, T., & Gross, J.-P.

(2017). Time-dependent vehicle routing problem

with path flexibility. Transportation Research Part

B: Methodological, 95, 169-195.

Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2003). Vehicle

dispatching with time-dependent travel times.

European Journal of Operational Research, 144(2),

379-396.

Jie, K.-W., Liu, S.-Y., & Sun, X.-J. (2022). A hybrid

algorithm for time-dependent vehicle routing

problem with soft time windows and stochastic

factors. Engineering Applications of Artificial

Intelligence, 109, 104606.

Jost, C., Jungwirth, A., Kolisch, R., & Schiffels, S.

(2022). Consistent vehicle routing with pickup

decisions-Insights from sport academy training

transfers. European Journal of Operational

Research, 298(1), 337-350.

Jung, S., & Haghani, A. (2001). Genetic algorithm for the

time-dependent vehicle routing problem.

Transportation Research Record, 1771(1), 164-171.

Kok, A. L., Hans, E. W., & Schutten, J. M. (2012).

Vehicle routing under time-dependent travel times:

the impact of congestion avoidance. Computers &

Operations Research, 39(5), 910-918.

Kovacs, A. A., Golden, B. L., Hartl, R. F., & Parragh, S.

N. (2014). Vehicle routing problems in which

consistency considerations are important: A survey.

Networks, 64(3), 192-213.

Kovacs, A. A., Golden, B. L., Hartl, R. F., & Parragh, S.

N. (2015). The generalized consistent vehicle routing

problem. Transportation Science, 49(4), 796-816.

Kovacs, A. A., Parragh, S. N., & Hartl, R. F. (2014). A

template‐ based adaptive large neighborhood search

for the consistent vehicle routing problem. Networks,

63(1), 60-81.

Kovacs, A. A., Parragh, S. N., & Hartl, R. F. (2015). The

multi-objective generalized consistent vehicle

routing problem. European Journal of Operational

Research, 247(2), 441-458.

Lian, K., Milburn, A. B., & Rardin, R. L. (2016). An

improved multi-directional local search algorithm for

the multi-objective consistent vehicle routing

problem. Iie Transactions, 48(10), 975-992.

Liu, C., Kou, G., Zhou, X., Peng, Y., Sheng, H., &

Alsaadi, F. E. (2020). Time-dependent vehicle

routing problem with time windows of city logistics

with a congestion avoidance approach. Knowledge-

Based Systems, 188, 104813.

Liu, Y., Roberto, B., Zhou, J., Yu, Y., Zhang, Y., & Sun,

W. (2023). Efficient feasibility checks and an

adaptive large neighborhood search algorithm for the

time-dependent green vehicle routing problem with

time windows. European Journal of Operational

Research, 310(1), 133-155.

Lu, J., Chen, Y., Hao, J.-K., & He, R. (2020). The time-

dependent electric vehicle routing problem: Model

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

133

and solution. Expert Systems with Applications, 161,

113593.

Luo, Z., Qin, H., Che, C., & Lim, A. (2015). On service

consistency in multi-period vehicle routing.

European Journal of Operational Research, 243(3),

731-744.

Maden, W., Eglese, R., & Black, D. (2010). Vehicle

routing and scheduling with time-varying data: A

case study. Journal of the Operational Research

Society, 61(3), 515-522.

Malandraki, C., & Daskin, M. S. (1992). Time dependent

vehicle routing problems: Formulations, properties

and heuristic algorithms. Transportation Science,

26(3), 185-200.

Manavizadeh, N., Farrokhi-Asl, H., & WT Lim, S. F.

(2020). A New Mathematical Model for the Green

Vehicle Routing Problem by Considering a Bi-Fuel

Mixed Vehicle Fleet. Journal of Optimization in

Industrial Engineering, 13(2), 165-183.

Mancini, S. (2017). A combined multistart random

constructive heuristic and set partitioning based

formulation for the vehicle routing problem with

time dependent travel times. Computers &

Operations Research, 88, 290-296.

Mancini, S., Gansterer, M., & Hartl, R. F. (2021). The

collaborative consistent vehicle routing problem with

workload balance. European Journal of Operational

Research, 293(3), 955-965.

Nolz, P. C., Absi, N., Feillet, D., & Seragiotto, C. (2022).

The consistent electric-Vehicle routing problem with

backhauls and charging management. European

Journal of Operational Research, 302(2), 700-716.

Pan, B., Zhang, Z., & Lim, A. (2021). Multi-trip time-

dependent vehicle routing problem with time

windows. European Journal of Operational

Research, 291(1), 218-231.

Rincon-Garcia, N., Waterson, B., Cherrett, T. J., &

Salazar-Arrieta, F. (2020). A metaheuristic for the

time-dependent vehicle routing problem considering

driving hours regulations–An application in city

logistics. Transportation Research Part A: Policy

and Practice, 137, 429-446.

Ropke, S., & Pisinger, D. (2006). An adaptive large

neighborhood search heuristic for the pickup and

delivery problem with time windows. Transportation

Science, 40(4), 455-472.

Shahrabi, F., Nasiri, M. M., & Al-e, S. M. J. M. (2024).

Vehicle routing problem with cross-docking in a

sustainable supply chain for perishable products.

journal of Optimization in Industrial Engineering,

17(2), 259-278.

Sharafi, A., & Bashiri, M. (2016). Green vehicle routing

problem with safety and social concerns. Journal of

Optimization in Industrial Engineering, 10(21), 93-

100.

Shaw, P. (1998). Using constraint programming and local

search methods to solve vehicle routing problems.

Paper presented at the International conference on

principles and practice of constraint programming.

Smilowitz, K., Nowak, M., & Jiang, T. (2013). Workforce

management in periodic delivery operations.

Transportation Science, 47(2), 214-230.

Soler, D., Albiach, J., & Martínez, E. (2009). A way to

optimally solve a time-dependent vehicle routing

problem with time windows. Operations Research

Letters, 37(1), 37-42.

Solomon, M. M. (1987). Algorithms for the vehicle

routing and scheduling problems with time window

constraints. Operations research, 35(2), 254-265.

Soysal, M., & Çimen, M. (2017). A simulation based

restricted dynamic programming approach for the

green time dependent vehicle routing problem.

Computers & Operations Research, 88, 297-305.

Stavropoulou, F. (2022). The consistent vehicle routing

problem with heterogeneous fleet. Computers &

Operations Research, 140, 105644.

Stavropoulou, F., Repoussis, P. P., & Tarantilis, C. D.

(2019). The vehicle routing problem with profits and

consistency constraints. European Journal of

Operational Research, 274(1), 340-356.

Subramanyam, A., & Gounaris, C. E. (2016). A branch-

and-cut framework for the consistent traveling

salesman problem. European Journal of Operational

Research, 248(2), 384-395.

Subramanyam, A., & Gounaris, C. E. (2018). A

decomposition algorithm for the consistent traveling

salesman problem with vehicle idling.

Transportation Science, 52(2), 386-401.

Sun, P., Veelenturf, L. P., Dabia, S., & Van Woensel, T.

(2018). The time-dependent capacitated profitable

tour problem with time windows and precedence

constraints. European Journal of Operational

Research, 264(3), 1058-1073.

Sun, P., Veelenturf, L. P., Hewitt, M., & Van Woensel, T.

(2018). The time-dependent pickup and delivery

problem with time windows. Transportation

Research Part B: Methodological, 116, 1-24.

Sungur, I., Ren, Y., Ordóñez, F., Dessouky, M., & Zhong,

H. (2010). A model and algorithm for the courier

delivery problem with uncertainty. Transportation

Science, 44(2), 193-205.

Tarantilis, C. D., Stavropoulou, F., & Repoussis, P. P.

(2012). A template-based tabu search algorithm for

the consistent vehicle routing problem. Expert

Systems with Applications, 39(4), 4233-4239.

Ticha, H. B., Absi, N., Feillet, D., & Quilliot, A. (2017).

Empirical analysis for the VRPTW with a multigraph

representation for the road network. Computers &

Operations Research, 88, 103-116.

Ulmer, M., Nowak, M., Mattfeld, D., & Kaminski, B.

(2020). Binary driver-customer familiarity in service

routing. European Journal of Operational Research,

286(2), 477-493.

Ulsrud, K. P., Vandvik, A. H., Ormevik, A. B., Fagerholt,

K., & Meisel, F. (2022). A time-dependent vessel

routing problem with speed optimization. European

Journal of Operational Research, 303(2), 891-907.

Voigt, S. (2025). A review and ranking of operators in

adaptive large neighborhood search for vehicle

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

134

routing problems. European Journal of Operational

Research, 322(2), 357-375.

Xiong, H., Xu, Y., Yan, H., Guo, H., & Zhang, C. (2024).

Optimizing electric vehicle routing under traffic

congestion: A comprehensive energy consumption

model considering drivetrain losses. Computers &

Operations Research, 168, 106710.

Xu, Z., & Cai, Y. (2018). Variable neighborhood search

for consistent vehicle routing problem. Expert

Systems with Applications, 113, 66-76.

Yu, X.-P., Hu, Y.-S., & Wu, P. (2024). The consistent

vehicle routing problem considering driver equity

and flexible route consistency. Computers &

Industrial Engineering, 187, 109803.

Zhang, R., Guo, J., & Wang, J. (2020). A time-dependent

electric vehicle routing problem with congestion

tolls. IEEE Transactions on Engineering

Management, 69(4), 861-873.

Zhang, T., Chaovalitwongse, W. A., & Zhang, Y. (2014).

Integrated ant colony and tabu search approach for

time dependent vehicle routing problems with

simultaneous pickup and delivery. Journal of

Combinatorial Optimization, 28, 288-309.

Zhao, J., Poon, M., Tan, V. Y., & Zhang, Z. (2024). A

hybrid genetic search and dynamic programming-

based split algorithm for the multi-trip time-

dependent vehicle routing problem. European

Journal of Operational Research, 317(3), 921-935.

Zhen, L., Lv, W., Wang, K., Ma, C., & Xu, Z. (2020).

Consistent vehicle routing problem with

simultaneous distribution and collection. Journal of

the Operational Research Society, 71(5), 813-830.

Zhou, G., Li, D., Bian, J., & Zhang, Y. (2024). Two-

echelon time-dependent vehicle routing problem

with simultaneous pickup and delivery and satellite

synchronization. Computers & Operations Research,

167, 106600.

Appendix A.
Algorithm A.1. Travel time calculation procedure (Ichoua, Gendreau, & Potvin, 2003).

𝑡 = 𝑡0

𝑑 = 𝑑𝑖𝑗

𝑡′ = 𝑡 + (
𝑑

𝜈𝑐𝑇𝑘

)

𝑤ℎ𝑖𝑙𝑒 𝑡′ > 𝑡𝑘̅

 𝑑 = 𝑑 − 𝜈𝑐𝑇𝑘
∗ (𝑡𝑘̅ − 𝑡)

 𝑡 = 𝑡𝑘̅

 𝑡′ = 𝑡 + (
𝑑

𝜈𝑐𝑇𝑘+1

)

 𝑘 = 𝑘 + 1

return 𝑡′ − 𝑡0

Algorithm A.2. Adjustment of vehicle departure times (Kovacs, Golden, Hartl, & Parragh, 2015).

𝑤ℎ𝑖𝑙𝑒 max 𝑃𝐹 > 𝜖 𝑜𝑟 max 𝑃𝐵 > 𝜖

 𝑖𝑚𝑎𝑥 = 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑇𝐷

 𝐵𝐶 = {𝑖𝑚𝑎𝑥} #𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑠𝑒𝑡

 max 𝑃𝐹 = max 𝐴𝑇𝐷(𝑠)

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝐵𝐶

 Max 𝑃𝐹 = min {max 𝑃𝐹, 𝑔𝑒𝑡𝑀𝑎𝑥𝑃𝐹(𝑗, 𝐵𝐶, 𝑠)}

 𝑒𝑛𝑑 𝑓𝑜𝑟

 𝑖𝑓 max 𝑃𝐹 > 𝜖 𝑡ℎ𝑒𝑛
 𝑎𝑝𝑝𝑙𝑦 𝑃𝐹(𝑚𝑎𝑥𝑃𝐹, 𝐵𝐶, 𝑠)

 𝑒𝑙𝑠𝑒 #𝑝𝑢𝑠ℎ𝑖𝑛𝑔 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 ⇒ 𝑡𝑟𝑦 𝑡𝑜 𝑝𝑢𝑙𝑙 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠
 𝐵𝐶 = {𝑖𝑚𝑎𝑥}

 max 𝑃𝐵 = max 𝐴𝑇𝐷(𝑠)
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝐵𝐶 𝑑𝑜
 max 𝑃𝐵 = min {max 𝑃𝐵, 𝑔𝑒𝑡𝑀𝑎𝑥𝑃𝐵(𝑗, 𝐵𝐶, 𝑠)}
 𝑒𝑛𝑑 𝑓𝑜𝑟
 𝑖𝑓 max 𝑃𝐵 > 𝜖 𝑡ℎ𝑒𝑛
 𝑎𝑝𝑝𝑙𝑦 𝑃𝐵(𝑚𝑎𝑥𝑃𝐵, 𝐵𝐶, 𝑠)
 𝑒𝑛𝑑 𝑖𝑓
 𝑒𝑛𝑑 𝑖𝑓
𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

135

Appendix B.

 Remove Operators

 Random Removal

The random removal operator randomly chooses

customers and removes them from the template routes.

This process repeats until q customers have been

removed.

 Worst Removal

 The worst removal operator iteratively identifies

customers contributing most to total travel time, and

removes them to enable cheaper reinsertion positions.

First, all existing customers of the template are sorted in

decreasing order in list C based on the saving obtained by

temporarily removing them from the template. In every

iteration, customer 𝑖 = 𝐶 [𝑦^𝑝 ∗ |𝐶|] is removed.

Where y is a random number ∈ [0,1) and p controls the

impact of randomization. The saving values are updated

and one customer is removed in every iteration until q

customers have been removed (Kovacs, Parragh, & Hartl,

2014).

 Related Removal

The related removal operator is based on the fact that it is

easier to interchange customers within a solution when

they are somehow related (Kovacs et al., 2014). The

relatedness R(i, j) between two customers i and j,

combines distance and demand relatedness measures.

Distance relatedness measures the Euclidean distance of

two customers and demand relatedness is the absolute

difference between maximum demands of two given

customers among all days. Smaller R(i, j) values indicate

higher relatedness. The procedure is initialized by

removing a randomly chosen customer from the template

and inserting it into the set of removed customers D. In

each iteration, one customer is chosen randomly from D

to calculate the R(i, j) values. Similar to worst removal,

this operator also incorporates randomization to obtain a

certain degree of diversification. Therefore, all R(i, j)

values are sorted in list C in increasing order and

customer 𝑖 = 𝐶 [𝑦^𝑝 ∗ |𝐶|] is removed from the

template and added to D. The process continues until q

customers are removed.

 Repair Operators

 Greedy Repair

Similar to initial template generation, the greedy repair

operator consecutively inserts customers using a similar

approach. For each unassigned customer, each feasible

insertion position is checked and the customer with lowest

insertion cost is assigned to their cheapest feasible

position. Feasibility is checked only for capacity

constraints based on an artificial capacity limit, selected

each LNS iteration.

 Regret Repairs

Similar to the greedy approach, the regret heuristic inserts

customers one after another by checking every feasible

insertion position but it includes a look ahead component

denoted as regret. This value quantifies potential

opportunity costs from delayed insertion (Kovacs et al.,

2014). In the basic variant of the regret repair, the

customer with the largest difference between inserting

into their best position at best route and inserting into the

best position at second-best route is inserted in every

iteration. This approach extends to multiple routes (q > 2),

enabling earlier identification of insertion difficulties. Let

∆𝑓𝑖
𝑞
 denotes the travel time change for inserting customer

i at his cheapest position in his q-cheapest route. If it is

not possible to insert a customer into a route, ∆𝑓𝑖
𝑞
is set to

infinity. In every iteration, the customer i to be inserted is

given by eq. B.1:

𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈𝑁′ {∑ (∆𝑓𝑖
ℎ − ∆𝑓𝑖

1)
min(𝑞,𝑚)
ℎ=2 }

(B. 1)

Parameter q defines the number of routes considered in

the current version of regret and m denotes the number of

currently available routes. As in the greedy heuristic, an

empty route is added whenever it is not possible to insert

further customers in existing routes. We implement four

regret heuristics, each with a different setting for q with

𝑞 ∈ (2, 3, 4, 𝑚).

Fig A.1. An example of travel speed and travel time functions (Ichoua, Gendreau, & Potvin,

2003).

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

136

Table B.1
Characteristics of large ConVRP instances

ID Instance name

Number of

customer nodes
(n)

Capacity (Q)
Tour-length

limit (T)

l-max limit

(L)

Number of available

vehicles (k)

Number of

periods (d)

Ch-1 Christofides_1_5_0.7 50 160 unlimited 24.38 Unlimited (= n) 5

Ch-2 Christofides_2_5_0.7 75 140 unlimited 34.26 Unlimited (= n) 5

Ch-3 Christofides_3_5_0.7 100 200 unlimited 22.87 Unlimited (= n) 5

Ch-4 Christofides_4_5_0.7 150 200 unlimited 27.53 Unlimited (= n) 5

Ch-5 Christofides_5_5_0.7 199 200 unlimited 26.93 Unlimited (= n) 5

Ch-6 Christofides_6_5_0.7 50 160 200 63.47 Unlimited (= n) 5

Ch-7 Christofides_7_5_0.7 75 140 160 83.96 Unlimited (= n) 5

Ch-8 Christofides_8_5_0.7 100 200 230 73.04 Unlimited (= n) 5

Ch-9 Christofides_9_5_0.7 150 200 200 106.43 Unlimited (= n) 5

Ch-10 Christofides_10_5_0.7 199 200 200 60.17 Unlimited (= n) 5

Ch-11 Christofides_11_5_0.7 120 200 unlimited 16.1 Unlimited (= n) 5

Ch-12 Christofides_12_5_0.7 100 200 unlimited 17.58 Unlimited (= n) 5

Table B.2

 Experimental results from the L-9 Taguchi array for ch-3 with profile 2

l-max-constant l-max-penalty ol-penalty ot-penalty Response

1.75 50 2 2 6347.84

1.75 75 5 5 4906.32

1.75 100 10 10 5055.29

2 50 5 10 6227.94

2 75 10 2 5017.70

2 100 2 5 6492.72

2.25 50 10 5 6305.13

2.25 75 2 10 5278.98

2.25 100 5 2 6181.74

Table B.3

 Results of solving instances with proposed THLNS assuming constant travel times

ID
Constant Travel Times

Avg. TT Avg l-max Min TT Min l-max Avg CPU time

Ch-1 2495.59 26.58 2315.68 20.08 276.82

Ch-2 4310.05 34.14 4080.82 34.03 557.46

Ch-3 4247.77 22.67 4048.58 22.36 1632.53

Ch-4 5951.96 26.49 5796.74 25.30 6423.04

Ch-5 7925.52 21.84 7678.22 19.82 15699.15

Ch-6 4568.71 61.94 4437.97 61.11 76.93

Ch-7 7657.18 79.05 7596.72 79.05 206.35

Ch-8 8043.09 71.97 7984.51 70.69 734.92

Ch-9 12041.16 68.67 11857.75 57.11 2357.66

Ch-10 15670.42 59.78 15271.56 59.53 14876.48

Ch-11 5816.02 15.45 5574.57 15 4440.34

Ch-12 4433.47 17.13 4261.69 16.93 1748.34

Average 6,930.078 42.1425 6,742.0675 40.084 4,085.835

Table B.4

 Characteristics of small ConVRP instances (equivalent to medium ConTDVRP instances)

ID

Number of

customer nodes

(n)

Capacity (Q)
Tour-length

limit (T)

l-max

limit

(L)

Number of

available vehicles

(k)

Number of
periods (d)

10-1 10 15 35 5 Unlimited (= n) 3

10-2 10 15 35 5 Unlimited (= n) 3

10-3 10 15 35 5 Unlimited (= n) 3

10-4 10 15 35 5 Unlimited (= n) 3

10-5 10 15 35 5 Unlimited (= n) 3

12-1 12 15 35 5 Unlimited (= n) 3

12-2 12 15 35 5 Unlimited (= n) 3

12-3 12 15 35 5 Unlimited (= n) 3

12-4 12 15 35 5 Unlimited (= n) 3

12-5 12 15 35 5 Unlimited (= n) 3

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 107-137

Hossein Nikdel & et al./ A A template-based hybrid large neighborhood search …

137

Table B.5
Comparison of THLNS (without departure-time adjustment) with three literature approaches for large instances (Profile 1)

Table B. 6
Comparison of THLNS (without departure-time adjustment) with three literature approaches for large instances (Profile 2)

ID

THLNS TALNS LNS VNS
l-max

Limit (L)

CPU Runtime

Limit (sec)
Avg TT

(min)

Avg

l-max

Avg TT

(min)

Avg

l-max

Avg TT

(min)

Avg

l-max

Avg TT

(min)

Avg

 l-max

Ch-1 2587.35 29.01 3087.40 118.06 2328.61 99.62 3690.64 101.07 24.38 275.16

Ch-2 4277.20 31.92 5492.65 122.69 5738.27 196.75 6783.17 115.89 34.26 549.12

Ch-3 4074.68 30.95 5757.98 69.50 3732.82 69.94 6487.98 98.40 22.87 3198.40

Ch-4 6134.98 26.92 8075.09 77.68 5006.74 69.12 9729.58 62.78 27.53 7793.79

Ch-5 8036.07 25.04 11105.01 140.06 11087.99 253.73 13303.76 75.54 26.93 19765.97

Ch-6 4799.10 55.71 4330.64 52.00 5664.84 169.70 6349.13 61.66 63.47 117.95

Ch-7 7872.98 77.77 7569.44 81.19 8601.56 126.42 11138.10 92.12 83.96 322.75

Ch-8 7979.71 72.19 8141.54 65.97 8235.21 172.28 12551.51 164.43 73.04 1103.91

Ch-9 11947.33 81.90 11685.37 104.03 13491.57 168.99 18869.96 115.73 106.43 2212.37

Ch-10 15070.18 85.02 20001.64 59.93 16269.80 171.27 24351.97 147.53 60.17 16994.68

Ch-11 5871.00 17.50 7465.18 173.06 5762.62 177.96 9432.26 85.69 16.1 5585.79

Ch-12 4515.39 26.62 6860.35 116.41 6676.90 256.04 8422.92 105.81 17.58 2129.74

Average 6930.498 46.7125 8297.691 98.38167 7716.411 160.985 10925.92 102.2208 46.39 5004.14

ID

THLNS TALNS LNS VNS
l-max

Limit (L)

CPU Runtime

Limit (sec)
Avg TT

(min)

Avg

l-max

Avg TT

(min)

Avg

l-max

Avg TT

(min)

Avg

l-max

Avg TT

(min)

Avg

 l-max

Ch-1 2560.33 30.19 3109.53 74.14 2418.66 31.04 3769.12 109.68 24.38 256.07

Ch-2 4231.41 29.45 5536.10 79.71 5736.34 196.45 6720.81 79.21 34.26 529.61

Ch-3 4180.08 22.50 5219.33 175.48 3507.22 89.98 6603.23 58.39 22.87 2198.47

Ch-4 5934.86 29.59 8001.31 73.20 5560.97 68.76 10254.21 92.14 27.53 8789.10

Ch-5 8710.42 25.71 10094.21 61.18 11261.98 258.62 13394.86 87.37 26.93 16020.71

Ch-6 4564.68 60.48 4449.57 52.01 4467.21 143.83 5844.57 74.24 63.47 90.17

Ch-7 7621.47 77.43 7992.55 68.59 8691.78 123.75 10834.17 114.93 83.96 291.50

Ch-8 8409.34 69.96 8176.93 62.43 7870.28 152.87 12881.56 97.88 73.04 931.68

Ch-9 11937.39 74.29 11560.77 80.11 12763.96 166.59 19596.85 74.43 106.43 2562.50

Ch-10 14924.51 78.52 16860.92 104.45 16158.36 174.93 23643.36 126.56 60.17 18868.65

Ch-11 5965.49 15.36 7336.60 90.46 7349.04 326.99 8692.46 82.10 16.1 4614.21

Ch-12 4704.39 18.41 6641.10 162.38 6673.24 265.75 8430.13 120.72 17.58 2708.59

Average 6978.698 44.32417 7914.91 90.345 7704.92 166.63 10888.78 93.1375 46.39 4,821.77

a b

Fig B.1. Main Effects Plots for the Means and Signal-to-Noise (SN) ratios derived from Table B.2

