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Abstract 

Electrical Impedance Tomography (EIT) is a promising imaging modality whose accuracy strongly depends on 
the precision of its forward problem solution. In this study, a Modified Element-Free Galerkin Method (MEFG) 
is developed to solve both forward and inverse problems in EIT. The MEFG approach preserves the mesh-free 
advantages of the conventional Element-Free Galerkin(EFG) Methodwhile directly imposing essential boundary 
conditions through modified shape functions that satisfy the Kronecker delta property. To further improve 
reconstruction accuracy, a back-propagation neural network is trained to reduce discrepancies between 
simulated and exact data during inverse problem. Numerical experiments using a heterogeneous model 
demonstrate that MEFG achieves superior forward model accuracy compared to the traditional finite element 
method. Additionally, theMEFG improves image reconstruction stability in the presence of measurement noise, 
validating the robustness of the proposed approach for practical biomedical EIT applications. 

Keywords: Electrical impedance tomography, Modified element-free Galerkin method, Mesh-free methods, 
Neural network, Image reconstruction 

 

1. Introduction 

Electrical Impedance Tomography (EIT) 
is a non-invasive imaging modality used in 
clinical and industrial applications to 
estimate internal conductivity distributions 
based on boundary voltage measurements 
acquired via surface electrodes [1- 16]. 
Solving the nonlinear, ill-posed inverse 
problem of EIT requires highly accurate 
solutions to the associated forward 
problem. The forward problem involves 
solving a boundary value problem derived 
from Maxwell’s equations, typically 
approximated by Laplace’s equation for 
isotropic, quasi-static media. 

Numerical methods are widely employed 
to solve the EIT forward problem. Among 

them, Finite Element (FE)method is the 
most popular due to its flexibility in 
modeling complex domains; however, its 
reliance on mesh generation limits its 
efficiency for irregular and deformable 
geometries, such as heterogeneous 
biological tissues. 

To address these challenges, mesh-free 
approaches like the Element-Free Galerkin 
(EFG) Methodhave been introduced [17, 
18]. Unlike FE, EFG requires only 
scattered nodal data, eliminating the need 
for meshing and offering superior 
flexibility in dynamic or complex 
geometries. EFG has been successfully 
applied to EIT forward problems [19- 21]. 
Nevertheless, a major drawback is that its 
Moving Least Squares (MLS) shape 
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functions do not satisfy the Kronecker 
delta property, complicating the direct 
imposition of essential boundary 
conditions. 

The Modified Element-Free Galerkin 
Method (MEFG) modifies MLS shape 
functions to satisfy the Kronecker delta 
condition [21], allowing direct boundary 
condition enforcement while preserving 
the mesh-free advantages of EFG. In this 
study, MEFG is applied to both forward 
and inverse EIT problems, improving 
accuracy over FE and EFG, especially in 
complex geometries. 

Furthermore, recognizing the gap 
between simulated and measured data due 
to system noise, modeling errors, and 
uncertainties, a neural network-based 
correction using Back-Propagation (BP) is 
introduced to better approximate this 
nonlinear relationship. The neural network 
serves as a data-driven correction 
mechanism, further improving inversion 
accuracy and robustness. 

2. Formulation of theforward problem 

The forward problem in EIT models the 
relationship between the internal resistivity 
distribution and the resulting voltage data 
on the boundary, governed by an 
electromagnetic formulation. 

The forward problem can be stated as 
follows: 
Given the geometry of the domain, the 
distribution of electrical conductivity (or 
resistivity) within the region, and the 
configuration of current injection and 
electrode placement, compute the resulting 
electrical potential on the boundary. 

Fig. 1. shows a 2D conducting region Ω 
with electrical resistivity ρ(x), and L  

electrodes positioned on the boundary ∂Ω. 
Each adjacent electrode pair defines a port 
through which electric currents are 
injected. 

 
Fig.1. Conducting region Ω with electrical 
resistivityρ and locations of the electrodes. 

 The current source is applied to one port, 
and the voltage difference at the other ports is 

measured. For each current injection, the 
resulting electric potential distribution u(x) 
is generated throughout the domain. 

To construct a complete dataset, the 
current source is sequentially applied to 
each port while voltage measurements are 
recorded from the remaining ports. The 
number of independent voltage 
measurements that can be collected from a 
system with L electrodes is L(L − 3)/2 
[22]. 

2.1.Governing equations 

In the case of a linear, isotropic, and 
quasi-static medium, the electric potential 
field u(x) within the domain is governed 
by Laplace’s equation: 

0.. 1   uu   (1) 

where   is the electrical conductivity, 

  is the electrical resistivity, and u is the 

electric scalar potential. Assuming the 
current source exits from the electrode k 
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and enter to electrode l ,  the boundary 
condition can be shown as [23]:  
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where lJ is injected current density and n  

is the unit vector normal to the surface.  
To solve the forward model given by 

equation (1), the MEFG is applied and the 
results are validated using the standard FE 
method. The following sections present a 
detailed explanation of both FE and the 
Meshless MEFG method and their 
implementation in the EIT forward 
problem. 

2.2. Finite Element Method 

In the FE method, the solution domain Ω 
is discretized into Ne triangular elements 
and contains NFE nodes. The electric 
potential u(x) at any point x∈Ω is 
approximated using a linear interpolation 
of nodal values as follows [24]: 




xxx
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1

)()(  (3) 

where  x  is a variable that represents the 
point ),( yx  in the plane of the region , 

)(xFE
i , )N:1i(  are linear nodal shape 

functions. These shape functions are 
piecewise polynomial over the elements 
and have the selectivity property i.e.  

iji
FE )X(
j

 ; Therefore, the essential 

boundary conditions for   can be 
directly enforced. 

Formulating the system of equations by 
Galerkin method, a matrix form for 
Laplace equation can be obtained as [24]: 

FEFE fVK   (4) 

where 
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This formulation provides the basis for 
solving the forward problem in EIT using 
FE method. 

2.3. Modified Element-Free alerkinmethod 
(MEFG) 

In the Modified Element-Free Galerkin 
Method, the first step is to define a set of 
nodal points within the domain Ω. Then 
the shape function for the MEFG method 
can be obtained by means of the Moving 
Least Squares (MLS) approximation 
method[25]. In MLS approximation )(xu

can be approximated as: 
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 (7) 

where )(xp is the monomial of order m  

and )(xja is the non-constant coefficient 

which can be obtained by minimizing the 
following weighted quadratic functional 

)( a(x)x,J with respect to )(xa : 
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where )( iw xx  is the weight function 

related to the node x , and ix is a node in 

the support domain of x  for which 

0)(  iw xx .To minimise (8), 0



a

J   is 

taken and considering (8), one obtains : 

 (9)  VBaA )()()( xxx   

where: 
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Solving (9) for )(xa and replacing it into 

(7), the following equation is obtained  

(13)  VxVxBxAxpx )()()()()( 1 EFGTu    

where 1)( xA  is computed as [26]. 

Expanding (13), )(xu can be expressed as: 
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where the shape function )(xEFG
i is given 

as: 
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where )(xBi is the i-th column of the matrix
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The partial derivatives of )(xEFG
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where Srepresents the space variable x or 
y, and the comma indicates the partial 
derivative with regard to the spatial 
coordinate that follows. 

From Eq. (15), we can see that the 
performance of the MLS approximation is 
governed by the basis function and the 
weight function. 
In the MLS method of this paper, the 2D 

linear basis function is ]1[)( yxT xp such 

that 3m , and the following tensor product 
weights with the cubic spline weight 
function is used. The tensor product weight 
function at any given point is given by 

yxyxi wwrwrwW .)(.)()(  xx  
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in which ximx cdd .max  and yimy cdd .max  

are the size of the domain of  influence of 

the thi  node in each directions. maxd  is a 

scaling parameter which is typically 2-4 
for a static analysis and the distance ic is 

determined by searching for enough 
neighbor nodes for A  to be regular, i.e. 
invertible [9]. 

Incorporating kxx  back in (14), we 

have: 
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where V̂  is the nodal electrical potential, 
and   is referred to as full transformation 
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The generalized electrical potential can 
be obtained from (19): 

(22)  V)(ΛV 1T   

and 
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substituting (23) in (14), we have: 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 14, No. 54, Sep2025 
 

50 
 

(24)  

Vxx

Vxxx

1

ˆ)(ˆ)(

ˆ)()()(

1

1 1

MEFG
N

l
l

MEFG
l

l

N

i

N

l
I

EFG
l

EFG
i

V

ΦΦu







 





   

where  


N

i i
EFG
l

EFG
i

MEFG
l 1

1)()()( xxx

is called modified MLS shape function, 
and it satisfies the Kronecker delta 
function property: 
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Formulating the system of equations by 
Galerkin method, a matrix form for 
Laplace equation can be obtained as: 

(26)  MEFGMEFG fVK   
where 
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This formulation ensures that both the 
accuracy and flexibility of meshless 
methods are retained, while essential 
boundary conditions can be imposed as 
easily as in finite element methods. 

3. Neural Network based forward model 
correction 

In this section, the Backpropagation (BP) 
neural network is employed to establish a 
relationship between the measured data 
obtained from a practical EIT system and 
the simulated outputs estimated by the 
numerical forward solvers described 
earlier. 

Ideally, if the modeling and numerical 
solution of the forward problem in 
Electrical Impedance Tomography (EIT) 
were perfectly accurate, the forward 
simulation outputs and the measured data 
should be identical. However, due to issues 

such as system instability, coupling errors, 
and unit mismatches between theoretical 
modeling and experimental data, a 
nonlinear relationship often exists between 
the two. The precise nature of this 
nonlinear function is not required—this 
relationship can be treated as a “black box” 
that transforms theoretical data into data 
approximating that of the experimental 
system. 

The BP neural network is an effective 
tool for modeling this black box. It is 
trained to learn the mapping from the 
numerically simulated forward problem 
results to the experimentally measured 
voltages, thereby improving the accuracy 
and reliability of the forward data used in 
EIT image reconstruction. 

4. Inverse problem and NOSER 
algorithm 

The NOSER algorithm has been 
developed to address the inverse problem 
in Electrical Impedance Tomography 
(EIT). In this method, the imaging domain 
is first divided into n pixels, and an initial 
guess is made for the conductivity 
distribution σ (or equivalently, the 
resistivity ρ within these pixels. 

Electrical current patterns are applied to 
the electrodes, and the corresponding 
electrode voltages V are measured. On the 
other hand, using the initial guess for ρ, 
simulated electrode voltages U(ρ) can be 
computed through the forward problem. 
The goal is to minimize the sum of squared 
differences between the measured and 
simulated voltages, defined by the error 
function: 
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where ∥⋅∥ denotes the L²-norm and M is 
the total number of measurements. 
Minimizing E(ρ) corresponds to solving 
the equation: 
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Using Newton’s method, the solution is 
updated iteratively. The resulting system of 
equations can be written as: 
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computed using sensitivity theorem[22] 
and the fast integration technique introduced 
in [27]. 

5. Forward problem simulation results 
To evaluate the numerical performance of 

the Modified Element-Free Galerkin 

(MEFG) method in solving the EIT 
forward problem, a benchmark test was 
conducted. Although the geometry in this 
study is fixed, the proposed method is 
readily extendable to more complex and 
deformable biomedical domains. The test 
scenario is adapted from the setup 
described in [28]. 

Fig.2 illustrates the two-dimensional 
heterogeneous square domain (Ω) 
containing a rectangular inhomogeneity 
(Ω′). Sixteen electrodes of equal length are 
uniformly distributed along the boundary. 
A constant current is injected through 
electrode 1, and the resulting voltages are 
measured at the remaining electrodes.To 
simulate the forward problem, both FE and 
MEFG methods were implemented.  
Fig. 3 shows the discretization approach 

for each solver. 

 
Fig.2. Test model withbackground and 

inhomogeneityresistivities.Electrode locations 
are also shown. 

The FE model employs a mesh of 229 
nodes and 392 triangular elements. In 
contrast, the MEFG model uses the same 
set of 229 nodes without meshing, 
aligning with the FE node locations.  

To assess the accuracy of the solutions, 
the computed voltages were compared 
against a reference solution obtained from 
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a highly refined FE model comprising 
100,352 elements and 50,689 nodes. 

 
(a) 

 
(b) 

Fig.3.(a) Triangular mesh used in the FE 
method; (b) Node distribution used in MEFG 

method 
The evaluation metric is the Relative Error 
(RE1), defined as: 

(34)  RE1 = 100 ×
|𝑢 − 𝑢෤|

𝑢
 

where u~  is the electrode's potential 
predicted by the forward model, andu is 
the exact electrode's voltages. 

Table 1 presents the computed electrode 
voltages and their associated RE1 for both 
FE and MEFG methods. Table 2 provides 
a comparison of the mean RE1 across all 
electrodes. 

The results clearly demonstrate that the 
MEFG method yields improved accuracy 
compared to the traditional FE. As shown 
in Table 2, MEFG reduces the mean RE 
by approximately 22% relative to FE, 
while maintaining the same number of 
computational nodes. 

Table 1. Voltage values and Relative Errors 
(RE1%) for each method per electrode 

E
le

ct
ro

d
e 

A
n

al
yt

ic
al

 FE MEFG 

Solution 
RE1
% 

Solution RE1% 

1 -7.27 -6.93 4.74 -7.16 1.60 
2 - 1.36 -1.30 4.37 - 1.33 1.89 

3 -2.14 - 2.01 5.83 -2.02 5.46 
4 -3.17 -2.98 5.98 -3.04 3.96 
5 -2.23 -2.09 6.23 -2.13 4.38 

6 -0.71 -0.67 5.28 -0.67 5.29 
7 -1.32 -1.24 6.29 -1.26 4.97 

8 -2.32 -2.17 6.22 -2.20 4.93 
9 -1.96 -1.84 6.12 -1.87 4.54 

10 -0.73 -0.70 4.29 -0.71 2.65 

11 -1.86 -1.77 4.70 -1.78 3.99 
12 -7.33 -7.00 4.497 -7.00 4.52 
13 -33.15 -31.75 4.23 -32.63 1.57 

14 -6.33 -6.34 0.09 - 6.13 3.26 

15 -7.41 -7.21 2.77 -7.24 2.38 
16 -9.13 -8.79 3.72 -8.83 3.20 

These findings highlight the effectiveness 
of MEFG in enhancing forward model 
fidelity in EIT without the need for mesh 
generation. This is particularly 
advantageous in applications involving 
irregular or deformable geometries where 
mesh generation is complex or unstable. 

Table 2. Mean Relative Errors for each 
forward solver method 

Method Number of 
Nodes 

Mean RE(%) 

FE 229 4.71 
MEFG 229 3.66 
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6. Inverse problem simulation results 

To evaluate the effectiveness of the 
MEFG in solving the inverse problem of 
EIT, we reconstructed conductivity images 
using both MEFG and FE as forward 
solvers. The benchmark test is conducted 
on the rectangular domain with a known 
inhomogeneity to assess the accuracy and 
efficiency of image reconstruction. 
To quantify the accuracy of numerical 

results, the following mean relative error 
RE2 have been used in the inverse problem: 

(35)  
%100

))((
RE2 




Ttruetrue

Ttruecaltruecal

ρρ

ρρρρ

 

Where calρ is the calculated resistivity 

vector, and trueρ  is the actual resistivity 

vector.  
In the MEFG, the forward problem is 

solved using an irregular distribution of 
350 nodes, while the FE model utilizes a 
structured mesh with 357 nodes and 648 
elements. For image reconstruction, a 
16×16pixel grid (256 pixels) is used to 
compute the Jacobian matrix. To avoid the 
inverse crime, the simulated measurement 
data were generated using a high-
resolution FE model consisting of 100,352 
elements and 50,689 nodes, ensuring no 
correlation between simulation and 
reconstruction domains. 

To enhance the accuracy of forward 
solutions in each iteration, a 
Backpropagation Neural Network is 
trained to map simulated voltages to their 
corresponding high-fidelity reference 
values. A training dataset consisting of 100 
samples generated from various resistivity 
distributions is used for this purpose. The 
neural network is trained using the 

Levenberg–Marquardt optimization 
algorithm, achieving good convergence 
and effectively minimizing the gap 
between simulated and exact data.Fig. 4 
demonstrates the neural network's 
performance before and after training, 
showing improved alignment between 
simulated and actual voltages. This data 
correction contributes to higher image 
fidelity in the inverse problem. 
Reconstructed images for both FE and 
MEFG forward solvers are shown in Fig. 
5. Visual inspection reveals that both 
methods can localize the inhomogeneity; 
however, MEFG provides slightly sharper 
boundaries and more accurate contrast. 

Quantitative comparisons of performance 
are presented in Table 3, which lists the 
RE2% and execution time for each 
method. Although MEFG incurs slightly 
more computational time due to its 
meshless nature and integration 
procedures, it provides a marginally better 
reconstruction accuracy (RE = 23.87%) 
compared to FE (RE = 25.07%).  

 

 
Fig.4. Relationship between exact data and 

neural network output before and after 
training. 
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These results confirm the capability of 
MEFG as a reliable alternative to FE for 
EIT image reconstruction, particularly 
when dealing with irregular or deforming 
geometries where mesh generation is 
problematic. 

 
(a) 

 
(b) 

 
(c) 

Fig.5. (a) Ground truth image. Reconstructed 
images using the Noser method with (b) FE 

and (c) MEFG forward solvers. 

Table 3: Comparison of the performances of 
the MEFG with the FE in the inverse problem 

Forward 
solver 

RE% 
Execution 

time 
(Sec.) 

MEFG 23.87 94.59 
FE 25.07 72.06 

7. Impact of measurement noise 

In the previous section, the simulated 
data used to solve the inverse problem 
were noise-free. In this section, we 
investigate the impact of random noise on 
the quality of image reconstruction using 
the same test model. To this end, noisy 
measurement data are generated by adding 
normally distributed noise to the high-
fidelity simulated data produced by a 
refined FE model.The noisy data Vnoisy are 
generated according to the following 
equation [29]: 

XVVNVVnoisy  ][)1,0(
~

minmax  

where V  is the noise-free simulated 
voltage, Vmax and Vmin are the maximum 
and minimum values of the simulated 
voltage data,Xis the noise percentage, and 

)1,0(
~
N  is a normally distributed random 

variable with zero mean and unit standard 
deviation, normalized to the range of the 
voltage data. 

Noisy data were created for different 
levels of random noise, ranging from 
0.01% to 1%. The reconstruction error, 
denoted as RE2%, was calculated using 
both the FE and MEFG forward solvers to 
assess the robustness of each method under 
noise contamination. Table 4 presents the 
results. As shown in Table 4, both methods 
exhibit increased reconstruction error as 
the noise level increases. However, the 
MEFG forward solver demonstrates 
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greater robustness to noise. While the FE-
based reconstruction becomes significantly 
less reliable with even moderate noise 
(e.g., 85.06% error at 0.5% noise), the 
MEFG method maintains a more gradual 
increase in error (40.85% at the same noise 
level). Beyond 1% noise, both methods 
become unstable. 

Table 4. Reconstruction error (RE2%) for 
different levels of added noise using FE and 

MEFG forward solvers  

Noise Level 
(%) 

%2RE 

MEFG FE 

0.00  23.87 25.07 

0.01  24.02 25.31 
0.05  24.07 25.69 

0.10  25.68 29.03 

0.50  40.85 85.06 
1.00  Unstable Unstable 

8. Conclusion 

This study introduced a Modified 
Element-Free Galerkin Method for solving 
the forward and inverse problems in 
Electrical Impedance Tomography. By 
incorporating shape functions with the 
Kronecker delta property, the MEFG 
retains the mesh-free nature of traditional 
EFG while enabling accurate and direct 
imposition of boundary conditions. 
Numerical results confirm that the MEFG 
enhances forward modeling accuracy 
compared to conventional finite element 
methods. Furthermore, integrating a back-
propagation neural network into the 
inverse problem improves image 
reconstruction and the stability and 
accuracy of the meshless MEFG approach 
in noisy environments is asseeed, showing 
it more suitable for practical applications 
of EIT where measurement noise is 
inevitable. These findings demonstrate the 

potential of the M approach as a robust and 
accurate tool for practical biomedical EIT 
applications. 
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