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Abstract: 
In this paper, we calculate the band structure of graphene 

using the empirical tight-binding (TB) method with a 

first-neighbor approximation and an SP2 basis. 

Subsequently, utilizing the same first-neighbor 

approximation SP2 
basis for electron and gap levels, we 

obtain the energy of graphene nanodiscs (GNDs) with 

varying radii. As expected, the calculated energy gap 

decreases with an increase in the radius of the nanodisc. 

Finally, the energy gap of a nanodisc with a huge radius 

converges to the energy gap of two-dimensional 

graphene. Our numerical results indicate that the energy 

gap is dependent on the shape of the edges and the radius 

of the GND. Controlling the energy gap by applying an 

external field is beneficial for optical, infrared, and THz 

applications. Here, using the empirical tight-binding 

method for π-electrons, we have estimated the effect of 

an external electric field on a set of nanodiscs. The 

application of an external electric field and its impact on 

the energy gap are key factors in controlling the energy 

gap of nanodiscs. 
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1. INTRODUCTION 

Carbon is the main element in biological structures, and the two-dimensional 

form of carbon is called graphene [1-2]. Graphene’s unique properties, including 

extremely high strength, high transparency to light, excellent electrical and 

thermal conductivity [3-5], strong excitability of charge carriers, unusual 

quantum Hall effect [6, 7], and the linear relationship between electron energy 

scattering at Dirac points and chirality [8], have made this crystalline solid 

applicable in a variety of fields. These applications include making more 

efficient transistors and wind turbines [9], creating highly sensitive gas sensors 

[10, 11], use in optical screens and computers [12], fabrication of 

supercapacitors [13], and incorporation into medical equipment, earning it the 

designation of a ‘super-material.’ The reason for the difference in its properties 

compared to common two-dimensional semiconductors lies in its distinct band 

structure. Consequently, charge carriers in graphene exhibit relativistic behavior 

similar to Dirac’s massless fermions, whose dynamics are described by Dirac’s 

equation. For this reason, graphene displays different behavior from normal 

two-dimensional electron gas from a particle perspective. Graphene is the first 

truly two-dimensional and stable crystal [14], and due to the aforementioned 

applications [15, 16], it has garnered significant attention, particularly for the 

linearity of its energy spectrum at Dirac points [17]. The absence of an energy 

gap in graphene poses a challenge for controlling electronic properties in 

graphene-based devices [18], a problem that can be addressed by reducing 

graphene’s size and creating graphene nanodiscs (GNDs). Small strips of 

graphene are called graphene nanostrips, which involve a limitation in either the 

width or length of the graphene sheet, whereas a nanodisc is formed by 

limitations on both sides [19, 20]. A nanodisc is a small segment of two-

dimensional graphene, with its radius typically on the nanometer scale. Because 

electrons are confined to a small surface area, their physical properties differ 

from those of two-dimensional graphene. The efficiency of nanodiscs stems 

from the adjustment of the wavelength emitted by these structures. This 

wavelength value is susceptible to the quantum size of the nanodisc. Since the 

condition of periodic potential is not established for nanodiscs, they lack the 

translational symmetry of two-dimensional graphene. Due to the non-periodic 

potential of nanodiscs, energy levels replace energy bands [21, 22]. 

The tight-binding method is a suitable approach for calculating electron band 

structure, utilizing the linear combination of atomic wave functions [23]. 

Although the tight-binding method is a one-electron model, it provides a 
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foundation for more complex calculations. The first description of the strong 

bonding in graphene was given by Wallace in 1947. He considered the 

interaction of first and second nearest neighbors for graphene orbitals but 

neglected the overlap of wave functions between different atoms [24]. A 

significant advantage of this method is the derivation of simple formulas for 

graphene’s band structure. The assumptions of this model include the specific 

separation of energy values and the use of specific functions for an electron in a 

particular atom. This approach assigns each electron to a specific atomic 

location, based on the assumption that atoms are sufficiently far apart in solids, 

and approximates the periodic potential through superposition [25, 26]. The 

atomic potential definition can be viewed as calculating the Hamiltonian of the 

entire system using the Hamiltonians of individual atoms, each situated at a 

lattice point. While using this method is a reasonable approximation for the 

energy bands of semiconductors, it may not be as accurate for conductors. In the 

following sections, we will employ the semi-empirical tight-binding method to 

describe the electronic structure of GNDs. The application of the tight-binding 

method to nanodiscs is quite straightforward, as it involves disregarding the 

precise atomic positions at the boundary of the nanodisc and considering them 

as part of the two-dimensional graphene structure [27, 28]. 

When discussing the electronic applications of graphene, it’s important to 

acknowledge the issue of electrical contact resistance [29]. This issue, however, 

can be effectively managed in carbon-based electronic devices [30] by carefully 

controlling the energy gap of nanostructures. Furthermore, carbon-based devices 

offer the advantage of being easily recycled and reintegrated into the production 

cycle. Consequently, manipulating the energy gap is achievable through both 

structural modifications and the application of external fields. Several methods 

have been proposed to control graphene’s energy gap, each with its own 

advantages and disadvantages. These methods include: patterning graphene [31, 

32], straining graphene [33-37], laterally confining charge carriers in one-

dimensional graphene nanostructures, and inducing vertical inversion symmetry 

breaking in bilayer [38, 39] or trilayer graphene [40]. For instance, patterning 

allows for higher current within the nanostructure, whereas symmetry breaking 

via an external electric field enables precise adjustment of the energy gap, a 

feature not attainable through patterning or carrier confinement. Recent 

theoretical research has highlighted the potential of lateral and simultaneous 

carrier confinement, combined with inverse symmetry breaking in double-layer 

nanostructures, for precisely tuning the energy gap [41, 42]. 

While numerous studies have focused on applying electric fields 
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perpendicular to nanostructures [33-40], an alternative approach involves 

considering an intra-surface electric field parallel to the surface. Investigating 

the effects of this parallel field on the properties of nanostructures is a 

worthwhile endeavor. A key distinction between these two field orientations is 

that the parallel field can influence the properties of single-layer systems, 

whereas the perpendicular field primarily affects the physical properties of 

multilayers. In this article, we aim to calculate the energy gap of nanodiscs in 

the presence of an electric field, employing the tight-binding method across a 

wide range of sizes and field strengths. The article is structured as follows: the 

next section details the calculation of graphene energy bands using the empirical 

tight-binding method, considering nearest-neighbor overlaps within the sp2 

basis. The third section discusses empirical graphene nanodiscs (GNDs) 

composed of π bonds, utilizing sp2 orthogonal and non-orthogonal bases for 

varying radii. The fourth section examines the application of a uniform electric 

field to π-bonded GNDs. Using the semi-empirical tight-binding method, we 

will investigate the impact of the applied electric field on the energy levels of 

nanodiscs with different radii. Finally, the conclusion will be presented in the 

last section. 

2. CALCULATION OF GRAPHENE ENERGY BANDS BY THE SEMI-EMPIRICAL 

TIGHT-BINDING METHOD 

In the tight-binding method, the elements of the Hamiltonian matrix and overlap 

are sufficient to solve the problem. In this method, the electron wave function is 

considered a linear combination of atomic orbitals: 

 
(1) 

Where φ(r-R) is the hybrid wave function, k is the electron wave vector, and 

R is the position vector of the atom in the lattice. Function φ(r-R) can be 

considered as a linear combination of individual atomic wave functions: 

 
(2) 

Here  is the substituted atomic wave function at the location of the R 

atom. So, the electron wave function in the crystal can be considered as follows: 

 

(3) 

In a crystalline solid, the transfer in the direction of the lattice transfer vectors 

 imposes Bloch's theorem, whose form is . Using the 
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tight-binding wave function, we obtain the eigen-equation En(k) of a common 

value: 

 𝑏𝑛𝑒𝑖𝒌.𝑹

𝑛 ,𝑹

 𝑑3 𝑥𝜑𝑚
∗ (𝒓 − 𝑹′)𝐻0𝜑𝑛 (𝒓 − 𝑹) = 𝐸(𝒌) 𝑏𝑛𝑒𝑖𝒌.𝑹

𝑛,𝑹

 𝑑3 𝑥𝜑𝑚
∗ (𝒓 − 𝑹′)𝜑𝑛(𝒓 − 𝑹) 

 

(4) 

Using Eq.4 energy bands can be obtained by the tight-binding method, in 

which the summation over the left integral, the elements of the Hamiltonian 

matrix, and the summation over the right integral, the elements of the overlap 

matrix are replaced between the atomic wave functions. By using the 

Hamiltonian matrix and overlap [43] in which the parameters of the tight-

binding method in the first neighbor approximation for orthogonal and non-

orthogonal basis are replaced by the fitting method [44], we will obtain the 

graphene band structure. The difference between the non-orthogonal part and 

the orthogonal part is to ignore the overlaps, and the calculation of the energy 

bands in this part will be possible only by considering the overlap matrix as a 

single matrix, in other words, the elements of the overlap matrix are considered 

equal to Kronecker's delta. The band structure diagram for the most symmetric 

paths in the first Brillouin zone is shown in Fig. 1. It is good to point out that the 

overlapping matrix will not only not affect the energy gap, but the linearity of 

the energy band in Dirac points will remain, but it will affect the energy bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. The energy band structures of the (π: red), and (σ dashed blue) bonding using the 

empirical tight-binding method (a) in the non-orthogonal basis, (b) in the 

orthogonal basis 

Bonds π, σ give bands π, π* (red bands) and σ, σ* (dashed bands), respectively, 
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so that bands π and σ (four bands at the bottom of Figure 1), valence bands and 

bands π*, σ* (four bars at the top of Figure 1), are called conduction bands. The 

most important characteristic of graphene is the linearity of the energy spectrum 

in the corners of the Brillouin zones around the Dirac points (K point) and it 

represents the obvious difference between two-dimensional electron gas systems 

and graphene. The scattering equation for two-dimensional electron gas systems 

is parabolic, while it is linear for graphene near the Dirac points, and this 

difference has a significant effect on physical properties such as electrical, 

magnetic, and optical. We can see that the bands in the orthogonal state will 

have less energy than in the non-orthogonal state. Also, the comparison of these 

methods with the strip structure of single-layer graphene using first-principles 

calculations [45], which uses density functional theory to calculate it, will 

remind us of the accuracy of our calculations, and there is a good qualitative 

agreement. 

3. CALCULATION OF ENERGY BALANCES OF GNDS BY THE SEMI-

EMPIRICAL TIGHT-BINDING METHOD 

In this section, the circular GNDs with the origin of coordinates placed in their 

center will be examined, considering the links ,  of the closed surfaces. Due 

to the non-periodic potential of nano-discs, energy balances will arise [45]. To 

find the energy levels of GNDs, the Schrödinger equation must be calculated. 

Therefore, a tight-binding wave function of nano-discs is necessary; in other 

words, the wave function for each nano-disc is a linear combination of 

individual wave functions of atoms: 

 

(5) 

where NC is the number of carbon atoms and NH is the number of hydrogen 

atoms and 4 is the number of carbon atom orbitals that are added to the selected 

base. Because hydrogen has only one orbital, no summation will be performed 

on its orbital. The potential energy for nano-discs is not periodic and we will 

also use the independent electron approximation according to the previous 

chapter. With the Hamiltonian assumption  and a combination of 

spherical potentials of individual atoms in the nano-disc 

, we have: 

  𝑏𝑛𝑖

4

𝑛=1

𝑁𝑐

𝑖=1

 𝑑𝑥3 𝜑𝑚
𝐴 ∗

 𝑟 − 𝑅  𝑗  𝐻𝜑𝑛
𝑐 𝑟 − 𝑅  𝑖 + 𝑐𝑗

𝑁𝐻

𝑗=1

 𝑑𝑥3 𝜑𝑚
𝐴 ∗

 𝑟 − 𝑅  𝑗  𝐻𝜑𝐻 𝑟 − 𝑅  𝑗  

= 𝐸𝑟(  𝑏𝑛𝑖

4

𝑛=1

𝑁𝐻

𝑗=1

 𝑑𝑥3 𝜑𝑚
𝐴 ∗
(𝑟 − 𝑅  𝑗 )𝜑𝑛

𝑐(𝑟 − 𝑅  𝑖) + 𝑐𝑗 𝛿𝑅  𝑖𝑅  𝑗
) 

(6) 
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Er is the energy level of the nano-disc, the integral on the left side of the 

Hamiltonian matrix, and the integral on the right side of the overlap matrix. To 

solve the above equation, due to the non-orthogonality of the desired base, the 

overlap matrix of the right side of the above equation for carbon-carbon bonds 

has non-zero non-diagonal elements, but for carbon-hydrogen bonds, non-

diagonal elements are equal to zero. The components of the Hamiltonian matrix 

at the boundary of the nano-disc are made from the product of the wave 

functions of the carbon atom and the wave functions of the hydrogen atom. 

 

  

 

 

 

 

 

 

 

Fig 2. Energy gap in terms of radius and number of hydrogenated GND atoms in sp2 (a) 

non-orthogonal basis, (b) orthogonal basis 

Choosing a nano-disc is a way to eliminate the zero energy gap and we can 

see that, in general, for GNDs, the energy gap changes according to the number 

of atoms, and its size will have a regular process, that is, with the increase of the 

radius, which will increase the number of atoms. The energy gap is reduced. 

Finally, as the radius increases, the energy gap of the nano-disc approaches the 

energy gap of two-dimensional graphene, which is equal to zero. The effects of 

quantum confinement are clearly evident in these figures. We can see that in 

addition to the number of atoms or the size, other factors are effective on the 

energy levels of nano-discs because it is expected that with the increase in 

radius, the energy gap of nano-discs will have a regular trend of decreasing and 

finally tend to zero. In general, what prevents the regular reduction of the energy 

gap changes will be the surface arrangement and structure of the edges as well 

as the number of atoms. It can be said that the edges of nano-discs have inherent 

edge irregularity. For example, in Fig. 2 for a radius of 15.9  compared to a 

radius of 14A◦, the energy gap has increased, and the reason for that is nothing 

but the arrangement of the surface and the structure of the edges. We can clearly 

(a) (b) 
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see that considering the non-orthogonal base, we will have more changes in the 

energy gap, and these changes will be more pronounced at smaller radii. 

4. CALCULATING THE LEVELS AND ENERGY GAP OF GNDS ONLY 

CONSIDERING Π BONDS 

In this part, we will discuss the formation of Hamiltonian and overlapping 

elements by ignoring the hydrogen atoms and the -bonds of carbon atoms. The 

exceptional thermal, optical, and electrical properties of graphene are the result 

of its -bond coupling [42]. Here, we will have an energy balance with the 

number of carbon atoms forming the GND, in other words, the dimensions of 

the Hamiltonian and  overlap matrices will be. In this case, the nano-

disc wave function is written as follows. 

 

(7) 

where NC is the number of carbon atoms and the potential 

 of the system is a combination of the spherical potentials 

of each carbon atom. By performing the same operations as before for the 

aforementioned nano disc, we reach the following relationship: 

 

(8) 

For both Hamiltonian and overlap matrices, we form the elements by 

considering only the following values. 

and  (9) 

where indices A and B represent two neighboring carbon atoms. We will 

focus our observations only on closed surfaces because if the carbon atoms 

placed on the edges have a bond with other carbon atoms, they will interact with 

each other or with the environment and cause the structure to be disturbed. The 

energy gap for these nano-discs in terms of size and number of atoms is shown 

in Fig. 3. As before, we can clearly see that the atoms in the closed levels of this 

system are all individuals, and in general, the energy gap changes according to 

the number of atoms, and its size will have a downward trend. What prevents 

the regular and continuous reduction of the energy gap are the arrangement of 

the surface and the structure of the edges. 

2 2 3.1
z z

A B

p pH   
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5. GND WITH POINT SYMMETRY 

In previous calculations, the origin of coordinates was located on a carbon atom 

at the center of the nano-disk, which formed an asymmetric nano-disk. What 

allows us to have a symmetric structure is choosing the suitable origin. It is 

enough to choose the origin as a point with coordinates ( ) and form 

the nano-disc around this point (nano-disc with point symmetry). With the help 

of the information in the previous section, it is easy to calculate the energy gap 

for each radius, and we will consider its changes according to the number of 

atoms and size in Fig. 4. In this system, the number of atoms in the closed 

surfaces will be even, and if the surfaces only contain zigzag edges, then the 

energy gap will decrease with the increase of these edges, otherwise, the ratio of 

the number of zigzag edges to the armature is important, will be so that by 

increasing this ratio, the energy gap will decrease. Also, if the surfaces have the 

same ratios, then the number of atoms will be the measurement criterion, and the 

energy gap will be less for a system that has more atoms. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3. Energy gap in terms of radiuss and number of atoms of GNDs consisting of π 

bonds in the non-orthogonal basis 
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Fig. 4. Energy gap in terms of radius and number of atoms for GNDs with point 

symmetry in SP2 non-orthogonal basis 

We have shown the energy of the valence (stars below the dashed line) and 

conduction (stars above the dashed line) levels in Fig. 5 in terms of the radius of 

the nano-disc. Both levels have different values and as the radius of the nano-

disc increases, they approach zero, which is the energy gap of the graphene 

crystal. 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 5. Energy of valence and conduction levels for different radii for GND with 

pointsymmetry in SP2 basis (a) non-orthogonal and (b) orthogonal basis 

As in the previous discussions, by ignoring the overlaps (Kronecker's delta), 

the results will be orthogonal. In this base, the levels are completely similar in 

such a way that we will have a symmetrical diagram, and with the increase of 

the radius, they both approach zero. Also, by comparing the two orthogonal and 

non-orthogonal states, as before, it can be seen that the energy gap for a certain 

radius will be greater in the non-orthogonal state than in the orthogonal state, 

and this increase in the gap will be more pronounced in smaller radii. 

(b) (a) 

(a) (b) 
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6. CALCULATION OF ENERGY LEVELS OF GNDS IN THE PRESENCE OF AN 

EXTERNAL ELECTRIC FIELD 
In this section, the energy levels of GNDs are investigated using the tight-

binding method in the first neighbor approximation in the presence of an 

external electric field. We know that the Hamiltonian matrix elements for atoms 

in the unit cell are expressed as . Where i=0 for intrasite and 

i=1 for the first neighbor of the carbon atom. In relation above, the Hamiltonian 

of the system  is the atomic orbital of the nth atom in the unit cell. In the 

presence of an external field, the Hamiltonian will be of the form . 

Here  is the Hamiltonian of the system in the absence of an external field and 

 is the potential energy operator for a uniform electric field , which is defined 

as , then we have: 

 (10) 

Where  and also the applied electric field is weak. By 

calculating  with the help of the hydrogen atom wave function [45] and 

carbon atomic number, we see that the electric field applied on the non-diagonal 

elements of the Hamiltonian matrix will have no effect and only on the diagonal 

elements (within the site). By substituting of H in relation=H0+U instead of H0 

in relation , we can obtain the characteristic Hamiltonian 

values and use them to calculate the energy gap of nano-discs in the presence of 

an electric field. In general, the electric field applied to the non-diagonal 

elements of the Hamiltonian matrix will have no effect and only affect the 

diagonal elements (within the site). Now, the Hamiltonian matrix for GNDs will 

be easily organized by applying an electric field. It is sufficient to use the 

Hamiltonian matrix of GNDs before applying the field by considering only the π 

bonds and also the nearest neighboring atoms using the sp2 approximation that 

was investigated and calculated in the previous chapter. It is also important to 

point out that the applied electric field will not affect the overlapping matrix. In 

this case, we can calculate the energy gap of different nano-discs in the presence 

of electric fields. Figure 6 shows the energy gap of GNDs with non-point 

symmetry and point symmetry by applying an external electric field, 

respectively. 

According to Figure 6, for a weak electric field, the energy gap does not 

change much compared to the case where the field is zero, but the stronger the 

field, the more obvious the energy gap changes. In general, for the electric field 

of the gap, the energy first decreases with the increase of the radius similar to 

the zero electric fields. But for the radius of 20.5A◦, the decreasing trend 

changes, and the energy gap increases and then decreases concerning the zero 
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electric field. For a nano-disc with point symmetry, it is generally evident that 

with the application of an electric field, the energy gap of the system decreases 

compared to the state where no field is applied to the system, and with the 

increase of the electric field, this reduction of the gap is also maintained for high 

radii. In Figure 6 by comparing different fields, it can be said that, like the 

system with non-point symmetry, in the low fields, for example, in the diagram 

for the regular decreasing process of the energy gap changes according to the 

radius, it is exactly the same as the case where no field The system is not 

applied, and with the increase of the field, the failure of the regular decreasing 

trend of energy gap changes according to the radius of the nano-disc, compared 

to the case where no field is applied to the nano-disc, will be maintained. In 

general, we can see in Fig. 6 that the trends of all the points in the form of stars, 

squares, and triangles are consistent with each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. The energy gap of GNDs for different electric fields in the case of (a) 

non-point and point symmetry with orthogonal sp2 basis and (b) non-

point and point symmetry with non-orthogonal sp2 basis 

(a) (b) 
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By comparing the orthogonal and non-orthogonal state of this nano-disc, we 

will see that when no electric field is applied to the system, the energy gap for 

the non-orthogonal state increases for smaller fields or nano-discs with a smaller 

radius, and this increase in the gap depends on the radius. It will be more visible 

in the lower radii. For nano-discs with point symmetry, all the results of the 

actions mentioned before for the orthogonal state are also true for the non-

orthogonal state. For both orthogonal and non-orthogonal basis for the 

mentioned system, it can be said with certainty that the energy gap decreases 

with the increase of the electric field compared to the case where there is no 

electric field. In the following, we will see the energy gap of nano-discs 

according to the applied electric field. For this purpose, we subject the GND 

with a certain radius to different fields and investigate the effect of the electric 

field and the gap changes. The energy gap of GNDs in terms of applied electric 

fields for the system with non-point symmetry considering overlaps is shown in 

Fig. 7. The considered radii for these nano-discs are 24.7, 20.5, and 14 , which 

are shown in black, blue, and red colors, respectively, in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Energy gap of GNDs with non-orthogonal sp2 basis (a) with non-point 

symmetry and (b) with point symmetry 

We can clearly see that in the nano-disc with non-point symmetry for smaller 

radii, the process of energy gap changes in terms of the electric field will be 

more regular. For smaller radii, which are prevented from being drawn in the 

diagram due to preventing the merging of the diagrams together, the application 

of the field in the system will cause small oscillations in it so that the gaff 

changes in terms of the electric field. It will be linear or open curves. For larger 

radii, where the graph takes the form of successive curves, it can be said that 

these changes will constantly have ascended and descending points, and these 

(a) (b) 
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ascending and descending points occur more often for larger radii. If we repeat 

the mentioned operation for the orthogonal basis, which means considering the 

overlap matrix as a unit matrix, we see that applying the overlaps itself will 

cause changes in the energy gap and that for the applied fields, the energy gap 

for the states The non-orthogonal will be more, but due to the small differences 

between these two basis and the presentation problems of the diagrams, we 

refrain from drawing this diagram for the orthogonal state. Also, in general, in 

the orthogonal state, more irregularities will rule the system, but since the state 

non-orthogonal is a more realistic mode for considering such systems, the most 

attention can be directed to non-orthogonal modes. In the investigation of 

systems with point symmetry, the energy gap of these nano-discs for different 

radii and electric fields is also shown in Figure 6. For this system, we have 

considered the radii of 23.3, 19.2, and 17.1A◦, which are shown in black, blue, 

and red colors respectively in Figure 6. It can be seen that with the increase of 

the electric field, the energy gap first decreases until it reaches a minimum 

value, then the energy gap increases until it reaches a maximum value and these 

changes are repeated. We also see that in the nano-disc with point symmetry for 

the radii, the smaller the change process of the energy gap in terms of the 

electric field, the more regular it will be. The changes in the gap in terms of the 

electric field for small nano-discs will be either linear or open curves. For larger 

radii, where the graph takes the form of successive curves, we see that these 

changes will have ascending and descending points, and these ascending and 

descending points will happen earlier for larger radii. By summarizing all the 

results and investigations, it can be said that the system with point 

symmetry will generally have a higher order than the nano-disc with non-

point symmetry. Finally, it can be said with certainty that choosing a 

nano-disc and applying an electric field to it is one of the ways to create 

an energy gap. 

7. CONCLUSION 

An important goal of nanotechnology is to create structures of materials in 

which the arrangement of atoms is pre-designed. Finding suitable production 

techniques in nanotechnology is a topic that has been of great interest to 

researchers and scientists in recent years. In this article, we calculated the 

electronic structure of GNDs using the empirical tight-binding method in the 

first neighbor approximation with orthogonal and non-orthogonal basis. From 

these approximations, we obtained the energy gap of nano-discs with different 

radii. It was observed that the energy gap decreases with the increase of the 

radius of the nano-disc. Finally, with the increase of the radius, the energy gap 

of the nano-disc will approach the energy gap of two-dimensional graphene. 
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Nano-disc selection is a method to eliminate the zero energy gaps in graphene. 

We also observed that for GNDs, the energy gap changes according to its size 

and will generally have a regular trend. What prevents the regular reduction of 

the energy gap changes is the arrangement of the surface and the structure of the 

edges, as well as the number of atoms, and it was observed that the energy gap 

depends on the geometric shape and structure of the edge. In the end, the effect 

of the electric field on the energy gap was investigated and we showed that 

applying the electric field to the nano-disc will be another method to control the 

energy gap. Our numerical results showed that in nano-discs with a smaller 

radius, the energy gap change process in terms of the electric field will have less 

fluctuation than in nano-discs with a larger radius. 

As can be seen from Fig. 3, the energy gap of GNDs depends on the radius of 

the nano-discs, and as the radius of the nano-discs increases, the energy gap of 

the nano-discs decreases. The effects of quantum confinement are clearly 

evident in this figure. We can see that in addition to the number of atoms or the 

size, other factors are effective on the energy levels of nano-discs because it is 

expected that with the increase in radius, the energy gap of nano-discs will have 

a regular trend of decreasing and finally tend to zero. In general, what prevents 

the regular reduction of the energy gap changes will be the surface arrangement 

and structure of the edges as well as the number of atoms. It can be said that the 

edges of nano-discs have inherent edge irregularity. For example, a nano-disc 

with a radius of 14 A◦ has an energy gap of 0.43 eV, while a nano-disc with a 

radius of 15.9 A◦ has an energy gap of 0.46 eV, and this means that the energy 

gap for a nano-disc with a larger radius is has increased to a nano-disc with a 

smaller radius. The reason for this increase in the energy gap is related to the 

shape of the atoms placed on the boundary. The shape of the edge is a 

combination of zigzag and armchair. For a nano-disc with a radius of 14 A◦, the 

zigzag shape of the edges is more than that of a nano-disk with a radius of 15.9 

A◦, and vice versa, the armchair shape of the edges is less. In general, the ratio 

of the number of zigzags to the armchair edges will be important, such that the 

energy gap decreases as this ratio increases. In other words, the physical 

properties of GNDs are strongly dependent on the size and topology of their 

edge structures. 

Therefore, we can say that two-dimensional graphene has a zero-energy gap 

and the energy spectrum is linear in the corners and edges of the Brillouin zones 

or the Dirac points and the areas close to them, and considering overlaps or 

ignoring them, on the energy gap and the linearity of the energy spectrum is 

unaffected. The choice of nano-disc is a method to eliminate the zero-energy 

gap, and the hydrogen atoms on the surface of the hydrogenated GND and the 

sigma bonds of carbon atoms will not affect the energy gap. Also, considering 
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the overlaps or ignoring them will cause changes in the levels and energy gap of 

the nano-discs in such a way that by choosing the non-orthogonal base, we will 

witness more changes in the energy gap and as the nano-discs grow, the energy 

gap will approach the energy gap of 2D graphene. Applying an electric field to 

the nano-disc will be another method to control the energy gap, and in general, 

nano-discs with point symmetry have a higher order in the presence of the 

external electric field than nano-discs with non-point symmetry. 
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