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: Abstract:

i In this paper, we calculate the band structure of graphene
i using the empirical tight-binding (TB) method with a
: first-neighbor  approximation and an SP? basis.
: Subsequently, utilizing the same first-neighbor
i approximation SP? basis for electron and gap levels, we

obtain the energy of graphene nanodiscs (GNDs) with

: varying radii. As expected, the calculated energy gap
: decreases with an increase in the radius of the nanodisc.
: Finally, the energy gap of a nanodisc with a huge radius
: converges to the energy gap of two-dimensional
i graphene. Our numerical results indicate that the energy

gap is dependent on the shape of the edges and the radius
of the GND. Controlling the energy gap by applying an
external field is beneficial for optical, infrared, and THz
applications. Here, using the empirical tight-binding
method for m-electrons, we have estimated the effect of
an external electric field on a set of nanodiscs. The
application of an external electric field and its impact on
the energy gap are key factors in controlling the energy
gap of nanodiscs.
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1. INTRODUCTION

Carbon is the main element in biological structures, and the two-dimensional
form of carbon is called graphene [1-2]. Graphene’s unique properties, including
extremely high strength, high transparency to light, excellent electrical and
thermal conductivity [3-5], strong excitability of charge carriers, unusual
quantum Hall effect [6, 7], and the linear relationship between electron energy
scattering at Dirac points and chirality [8], have made this crystalline solid
applicable in a variety of fields. These applications include making more
efficient transistors and wind turbines [9], creating highly sensitive gas sensors
[10, 11], use in optical screens and computers [12], fabrication of
supercapacitors [13], and incorporation into medical equipment, earning it the
designation of a ‘super-material.” The reason for the difference in its properties
compared to common two-dimensional semiconductors lies in its distinct band
structure. Consequently, charge carriers in graphene exhibit relativistic behavior
similar to Dirac’s massless fermions, whose dynamics are described by Dirac’s
equation. For this reason, graphene displays different behavior from normal
two-dimensional electron gas from a particle perspective. Graphene is the first
truly two-dimensional and stable crystal [14], and due to the aforementioned
applications [15, 16], it has garnered significant attention, particularly for the
linearity of its energy spectrum at Dirac points [17]. The absence of an energy
gap in graphene poses a challenge for controlling electronic properties in
graphene-based devices [18], a problem that can be addressed by reducing
graphene’s size and creating graphene nanodiscs (GNDs). Small strips of
graphene are called graphene nanostrips, which involve a limitation in either the
width or length of the graphene sheet, whereas a nanodisc is formed by
limitations on both sides [19, 20]. A nanodisc is a small segment of two-
dimensional graphene, with its radius typically on the nanometer scale. Because
electrons are confined to a small surface area, their physical properties differ
from those of two-dimensional graphene. The efficiency of nanodiscs stems
from the adjustment of the wavelength emitted by these structures. This
wavelength value is susceptible to the quantum size of the nanodisc. Since the
condition of periodic potential is not established for nanodiscs, they lack the
translational symmetry of two-dimensional graphene. Due to the non-periodic
potential of nanodiscs, energy levels replace energy bands [21, 22].

The tight-binding method is a suitable approach for calculating electron band
structure, utilizing the linear combination of atomic wave functions [23].
Although the tight-binding method is a one-electron model, it provides a
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foundation for more complex calculations. The first description of the strong
bonding in graphene was given by Wallace in 1947. He considered the
interaction of first and second nearest neighbors for graphene orbitals but
neglected the overlap of wave functions between different atoms [24]. A
significant advantage of this method is the derivation of simple formulas for
graphene’s band structure. The assumptions of this model include the specific
separation of energy values and the use of specific functions for an electron in a
particular atom. This approach assigns each electron to a specific atomic
location, based on the assumption that atoms are sufficiently far apart in solids,
and approximates the periodic potential through superposition [25, 26]. The
atomic potential definition can be viewed as calculating the Hamiltonian of the
entire system using the Hamiltonians of individual atoms, each situated at a
lattice point. While using this method is a reasonable approximation for the
energy bands of semiconductors, it may not be as accurate for conductors. In the
following sections, we will employ the semi-empirical tight-binding method to
describe the electronic structure of GNDs. The application of the tight-binding
method to nanodiscs is quite straightforward, as it involves disregarding the
precise atomic positions at the boundary of the nanodisc and considering them
as part of the two-dimensional graphene structure [27, 28].

When discussing the electronic applications of graphene, it’s important to
acknowledge the issue of electrical contact resistance [29]. This issue, however,
can be effectively managed in carbon-based electronic devices [30] by carefully
controlling the energy gap of nanostructures. Furthermore, carbon-based devices
offer the advantage of being easily recycled and reintegrated into the production
cycle. Consequently, manipulating the energy gap is achievable through both
structural modifications and the application of external fields. Several methods
have been proposed to control graphene’s energy gap, each with its own
advantages and disadvantages. These methods include: patterning graphene [31,
32], straining graphene [33-37], laterally confining charge carriers in one-
dimensional graphene nanostructures, and inducing vertical inversion symmetry
breaking in bilayer [38, 39] or trilayer graphene [40]. For instance, patterning
allows for higher current within the nanostructure, whereas symmetry breaking
via an external electric field enables precise adjustment of the energy gap, a
feature not attainable through patterning or carrier confinement. Recent
theoretical research has highlighted the potential of lateral and simultaneous
carrier confinement, combined with inverse symmetry breaking in double-layer
nanostructures, for precisely tuning the energy gap [41, 42].

While numerous studies have focused on applying electric fields
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perpendicular to nanostructures [33-40], an alternative approach involves
considering an intra-surface electric field parallel to the surface. Investigating
the effects of this parallel field on the properties of nanostructures is a
worthwhile endeavor. A key distinction between these two field orientations is
that the parallel field can influence the properties of single-layer systems,
whereas the perpendicular field primarily affects the physical properties of
multilayers. In this article, we aim to calculate the energy gap of nanodiscs in
the presence of an electric field, employing the tight-binding method across a
wide range of sizes and field strengths. The article is structured as follows: the
next section details the calculation of graphene energy bands using the empirical
tight-binding method, considering nearest-neighbor overlaps within the sp2
basis. The third section discusses empirical graphene nanodiscs (GNDs)
composed of © bonds, utilizing sp2 orthogonal and non-orthogonal bases for
varying radii. The fourth section examines the application of a uniform electric
field to m-bonded GNDs. Using the semi-empirical tight-binding method, we
will investigate the impact of the applied electric field on the energy levels of
nanodiscs with different radii. Finally, the conclusion will be presented in the
last section.

2. CALCULATION OF GRAPHENE ENERGY BANDS BY THE SEMI-EMPIRICAL
TIGHT-BINDING METHOD

In the tight-binding method, the elements of the Hamiltonian matrix and overlap
are sufficient to solve the problem. In this method, the electron wave function is
considered a linear combination of atomic orbitals:

1 )
o) == e *Rp(r=R) &)
R

Where ¢(r-R) is the hybrid wave function, k is the electron wave vector, and
R is the position vector of the atom in the lattice. Function ¢(r-R) can be
considered as a linear combination of individual atomic wave functions:

p(r—R) = Y b, @,(r—R) @

Here @, (7 — R) is the substituted atomic wave function at the location of the R
atom. So, the electron wave function in the crystal can be considered as follows:

1 o = =
#1() = o= ) oo™ R (=) )
n.R

In a crystalline solid, the transfer in the direction of the lattice transfer vectors
R, imposes Bloch's theorem, whose form is ¢z (7 + R) = e'*Eg. (). Using the
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tight-binding wave function, we obtain the eigen-equation Eq(k) of a common
value:

D bt [ @205 R~ 1) =600 Y. e | - - R "
n,R R

Using Eq.4 energy bands can be obtained by the tight-binding method, in
which the summation over the left integral, the elements of the Hamiltonian
matrix, and the summation over the right integral, the elements of the overlap
matrix are replaced between the atomic wave functions. By using the
Hamiltonian matrix and overlap [43] in which the parameters of the tight-
binding method in the first neighbor approximation for orthogonal and non-
orthogonal basis are replaced by the fitting method [44], we will obtain the
graphene band structure. The difference between the non-orthogonal part and
the orthogonal part is to ignore the overlaps, and the calculation of the energy
bands in this part will be possible only by considering the overlap matrix as a
single matrix, in other words, the elements of the overlap matrix are considered
equal to Kronecker's delta. The band structure diagram for the most symmetric
paths in the first Brillouin zone is shown in Fig. 1. It is good to point out that the
overlapping matrix will not only not affect the energy gap, but the linearity of
the energy band in Dirac points will remain, but it will affect the energy bands.
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Fig 1. The energy band structures of the (n: red), and (c: dashed blue) bonding using the

empirical tight-binding method (a) in the non-orthogonal basis, (b) in the
orthogonal basis

Bonds =, ¢ give bands =, =* (red bands) and o, o* (dashed bands), respectively,
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so that bands = and o (four bands at the bottom of Figure 1), valence bands and
bands n*, * (four bars at the top of Figure 1), are called conduction bands. The
most important characteristic of graphene is the linearity of the energy spectrum
in the corners of the Brillouin zones around the Dirac points (K point) and it
represents the obvious difference between two-dimensional electron gas systems
and graphene. The scattering equation for two-dimensional electron gas systems
is parabolic, while it is linear for graphene near the Dirac points, and this
difference has a significant effect on physical properties such as electrical,
magnetic, and optical. We can see that the bands in the orthogonal state will
have less energy than in the non-orthogonal state. Also, the comparison of these
methods with the strip structure of single-layer graphene using first-principles
calculations [45], which uses density functional theory to calculate it, will
remind us of the accuracy of our calculations, and there is a good qualitative
agreement.

3. CALCULATION OF ENERGY BALANCES OF GNDS BY THE SEMI-
EMPIRICAL TIGHT-BINDING METHOD

In this section, the circular GNDs with the origin of coordinates placed in their
center will be examined, considering the links 7z, @ of the closed surfaces. Due
to the non-periodic potential of nano-discs, energy balances will arise [45]. To
find the energy levels of GNDs, the Schrodinger equation must be calculated.
Therefore, a tight-binding wave function of nano-discs is necessary; in other
words, the wave function for each nano-disc is a linear combination of
individual Wave functions of atoms

Ne
o) = Zmeqon (r—R)+Z 60" (- ) (5)

i=ln=

where Nc is the number of carbon atoms and Ny is the number of hydrogen
atoms and 4 is the number of carbon atom orbitals that are added to the selected
base. Because hydrogen has only one orbital, no summation will be performed
on its orbital. The potential energy for nano-discs is not periodic and we will
also use the independent electron approximation according to the previous
chapter. With the Hamiltonian assumption H=P2/2m+V(F) and a combination of
spherical potentials ~ of  individual atoms in the  nano-disc

V() = Lo VE (7~ B+ I, V¥ (7 - R ), we have:

N

Zan,fdx H(pn +ZC]J.dx Om ﬁ ( —1_?}) ©)

i=1n=1
Ny
=Er(Zme- [ 6t G- Ry - R+ o
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E: is the energy level of the nano-disc, the integral on the left side of the
Hamiltonian matrix, and the integral on the right side of the overlap matrix. To
solve the above equation, due to the non-orthogonality of the desired base, the
overlap matrix of the right side of the above equation for carbon-carbon bonds
has non-zero non-diagonal elements, but for carbon-hydrogen bonds, non-
diagonal elements are equal to zero. The components of the Hamiltonian matrix
at the boundary of the nano-disc are made from the product of the wave
functions of the carbon atom and the wave functions of the hydrogen atom.
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Fig 2. Energy gap in terms of radius and number of hydrogenated GND atoms in sp? (a)
non-orthogonal basis, (b) orthogonal basis

Choosing a nano-disc is a way to eliminate the zero energy gap and we can
see that, in general, for GNDs, the energy gap changes according to the number
of atoms, and its size will have a regular process, that is, with the increase of the
radius, which will increase the number of atoms. The energy gap is reduced.
Finally, as the radius increases, the energy gap of the nano-disc approaches the
energy gap of two-dimensional graphene, which is equal to zero. The effects of
guantum confinement are clearly evident in these figures. We can see that in
addition to the number of atoms or the size, other factors are effective on the
energy levels of nano-discs because it is expected that with the increase in
radius, the energy gap of nano-discs will have a regular trend of decreasing and
finally tend to zero. In general, what prevents the regular reduction of the energy
gap changes will be the surface arrangement and structure of the edges as well
as the number of atoms. It can be said that the edges of nano-discs have inherent
edge irregularity. For example, in Fig. 2 for a radius of 15.94" compared to a
radius of 14A", the energy gap has increased, and the reason for that is nothing
but the arrangement of the surface and the structure of the edges. We can clearly
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see that considering the non-orthogonal base, we will have more changes in the
energy gap, and these changes will be more pronounced at smaller radii.

4. CALCULATING THE LEVELS AND ENERGY GAP OF GNDS ONLY
CONSIDERING IT BONDS

In this part, we will discuss the formation of Hamiltonian and overlapping
elements by ignoring the hydrogen atoms and the o-bonds of carbon atoms. The
exceptional thermal, optical, and electrical properties of graphene are the result
of its m-bond coupling [42]. Here, we will have an energy balance with the
number of carbon atoms forming the GND, in other words, the dimensions of
the Hamiltonian and N x N overlap matrices will be. In this case, the nano-
disc wave function is written as follows.

Ng
0@ =) boG-R) Q)
i=1

where Nc¢ is the number of carbon atoms and the potential
V() = 2;.“;51 V (7 — R,) of the system is a combination of the spherical potentials
of each carbon atom. By performing the same operations as before for the
aforementioned nano disc, we reach the following relationship:

J.’\rc ‘\rc
> b [ @ e G-RyHeG-R) =B Y b [ax e G-RpeG-R) @
i=1 =1

For both Hamiltonian and overlap matrices, we form the elements by
considering only the following values.

A B _
H ‘("ZBPZ > =-31 and @3, [¢5,.) = 0.12 o

(o5,

where indices A and B represent two neighboring carbon atoms. We will
focus our observations only on closed surfaces because if the carbon atoms
placed on the edges have a bond with other carbon atoms, they will interact with
each other or with the environment and cause the structure to be disturbed. The
energy gap for these nano-discs in terms of size and number of atoms is shown
in Fig. 3. As before, we can clearly see that the atoms in the closed levels of this
system are all individuals, and in general, the energy gap changes according to
the number of atoms, and its size will have a downward trend. What prevents
the regular and continuous reduction of the energy gap are the arrangement of
the surface and the structure of the edges.
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5.GND WITH POINT SYMMETRY

In previous calculations, the origin of coordinates was located on a carbon atom
at the center of the nano-disk, which formed an asymmetric nano-disk. What
allows us to have a symmetric structure is choosing the suitable origin. It is

enough to choose the origin as a point with coordinates ((h,%gac_c)) and form

2

the nano-disc around this point (nano-disc with point symmetry). With the help
of the information in the previous section, it is easy to calculate the energy gap
for each radius, and we will consider its changes according to the number of
atoms and size in Fig. 4. In this system, the number of atoms in the closed
surfaces will be even, and if the surfaces only contain zigzag edges, then the
energy gap will decrease with the increase of these edges, otherwise, the ratio of
the number of zigzag edges to the armature is important, will be so that by
increasing this ratio, the energy gap will decrease. Also, if the surfaces have the
same ratios, then the number of atoms will be the measurement criterion, and the
energy gap will be less for a system that has more atoms.
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Fig. 3. Energy gap in terms of radiuss and number of atoms of GNDs consisting of =
bonds in the non-orthogonal basis
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Fig. 4. Energy gap in terms of radius and number of atoms for GNDs with point
symmetry in SP? non-orthogonal basis

We have shown the energy of the valence (stars below the dashed line) and
conduction (stars above the dashed line) levels in Fig. 5 in terms of the radius of
the nano-disc. Both levels have different values and as the radius of the nano-
disc increases, they approach zero, which is the energy gap of the graphene
crystal.
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Fig. 5. Energy of valence and conduction levels for different radii for GND with
pointsymmetry in SP2 basis (a) non-orthogonal and (b) orthogonal basis

As in the previous discussions, by ignoring the overlaps (Kronecker's delta),
the results will be orthogonal. In this base, the levels are completely similar in
such a way that we will have a symmetrical diagram, and with the increase of
the radius, they both approach zero. Also, by comparing the two orthogonal and
non-orthogonal states, as before, it can be seen that the energy gap for a certain
radius will be greater in the non-orthogonal state than in the orthogonal state,
and this increase in the gap will be more pronounced in smaller radii.
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6.CALCULATION OF ENERGY LEVELS OF GNDS IN THE PRESENCE OF AN
EXTERNAL ELECTRIC FIELD

In this section, the energy levels of GNDs are investigated using the tight-
binding method in the first neighbor approximation in the presence of an
external electric field. We know that the Hamiltonian matrix elements for atoms
in the unit cell are expressed ash,; = {@, |H|¢,.;). Where i=0 for intrasite and
i=1 for the first neighbor of the carbon atom. In relation above, the Hamiltonian
of the system ¢,, is the atomic orbital of the nth atom in the unit cell. In the

presence of an external field, the Hamiltonian will be of the formH = H, + U.
Here H, is the Hamiltonian of the system in the absence of an external field and
U is the potential energy operator for a uniform electric field £, which is defined
as I = —eZ.7, then we have:

hni = hni.[} + Shni (10)

Where §h,,; = {@,|Ul@,+;) and also the applied electric field is weak. By
calculating & h,,; with the help of the hydrogen atom wave function [45] and
carbon atomic number, we see that the electric field applied on the non-diagonal
elements of the Hamiltonian matrix will have no effect and only on the diagonal
elements (within the site). By substituting of H in relation=Hy+U instead of Ho
in relation h,; = (¢, |H|@,.;), we can obtain the characteristic Hamiltonian
values and use them to calculate the energy gap of nano-discs in the presence of
an electric field. In general, the electric field applied to the non-diagonal
elements of the Hamiltonian matrix will have no effect and only affect the
diagonal elements (within the site). Now, the Hamiltonian matrix for GNDs will
be easily organized by applying an electric field. It is sufficient to use the
Hamiltonian matrix of GNDs before applying the field by considering only the =
bonds and also the nearest neighboring atoms using the sp? approximation that
was investigated and calculated in the previous chapter. It is also important to
point out that the applied electric field will not affect the overlapping matrix. In
this case, we can calculate the energy gap of different nano-discs in the presence
of electric fields. Figure 6 shows the energy gap of GNDs with non-point
symmetry and point symmetry by applying an external electric field,
respectively.

According to Figure 6, for a weak electric field, the energy gap does not
change much compared to the case where the field is zero, but the stronger the
field, the more obvious the energy gap changes. In general, for the electric field
of the gap, the energy first decreases with the increase of the radius similar to
the zero electric fields. But for the radius of 20.5A°, the decreasing trend
changes, and the energy gap increases and then decreases concerning the zero
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electric field. For a nano-disc with point symmetry, it is generally evident that
with the application of an electric field, the energy gap of the system decreases
compared to the state where no field is applied to the system, and with the
increase of the electric field, this reduction of the gap is also maintained for high
radii. In Figure 6 by comparing different fields, it can be said that, like the
system with non-point symmetry, in the low fields, for example, in the diagram
for the regular decreasing process of the energy gap changes according to the
radius, it is exactly the same as the case where no field The system is not
applied, and with the increase of the field, the failure of the regular decreasing
trend of energy gap changes according to the radius of the nano-disc, compared
to the case where no field is applied to the nano-disc, will be maintained. In
general, we can see in Fig. 6 that the trends of all the points in the form of stars,
squares, and triangles are consistent with each other.
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Fig 6. The energy gap of GNDs for different electric fields in the case of (a)
non-point and point symmetry with orthogonal sp2 basis and (b) non-
point and point symmetry with non-orthogonal sp2 basis
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By comparing the orthogonal and non-orthogonal state of this nano-disc, we
will see that when no electric field is applied to the system, the energy gap for
the non-orthogonal state increases for smaller fields or nano-discs with a smaller
radius, and this increase in the gap depends on the radius. It will be more visible
in the lower radii. For nano-discs with point symmetry, all the results of the
actions mentioned before for the orthogonal state are also true for the non-
orthogonal state. For both orthogonal and non-orthogonal basis for the
mentioned system, it can be said with certainty that the energy gap decreases
with the increase of the electric field compared to the case where there is no
electric field. In the following, we will see the energy gap of nano-discs
according to the applied electric field. For this purpose, we subject the GND
with a certain radius to different fields and investigate the effect of the electric
field and the gap changes. The energy gap of GNDs in terms of applied electric
fields for the system with non-point symmetry considering overlaps is shown in

Fig. 7. The considered radii for these nano-discs are 24.7, 20.5, and 144, which
are shown in black, blue, and red colors, respectively, in Figure 7.

0.5 T T

T T ¥ T
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Fig. 7. Energy gap of GNDs with non-orthogonal sp2 basis (a) with non-point
symmetry and (b) with point symmetry

We can clearly see that in the nano-disc with non-point symmetry for smaller
radii, the process of energy gap changes in terms of the electric field will be
more regular. For smaller radii, which are prevented from being drawn in the
diagram due to preventing the merging of the diagrams together, the application
of the field in the system will cause small oscillations in it so that the gaff
changes in terms of the electric field. It will be linear or open curves. For larger
radii, where the graph takes the form of successive curves, it can be said that
these changes will constantly have ascended and descending points, and these

Journal of Optoelectronical Nanostructures. 2025; 10(3): 1- 20 13



Calculation of the energy levels of graphene Nano-discs using the semi-empirical ...

ascending and descending points occur more often for larger radii. If we repeat
the mentioned operation for the orthogonal basis, which means considering the
overlap matrix as a unit matrix, we see that applying the overlaps itself will
cause changes in the energy gap and that for the applied fields, the energy gap
for the states The non-orthogonal will be more, but due to the small differences
between these two basis and the presentation problems of the diagrams, we
refrain from drawing this diagram for the orthogonal state. Also, in general, in
the orthogonal state, more irregularities will rule the system, but since the state
non-orthogonal is a more realistic mode for considering such systems, the most
attention can be directed to non-orthogonal modes. In the investigation of
systems with point symmetry, the energy gap of these nano-discs for different
radii and electric fields is also shown in Figure 6. For this system, we have
considered the radii of 23.3, 19.2, and 17.1A°, which are shown in black, blue,
and red colors respectively in Figure 6. It can be seen that with the increase of
the electric field, the energy gap first decreases until it reaches a minimum
value, then the energy gap increases until it reaches a maximum value and these
changes are repeated. We also see that in the nano-disc with point symmetry for
the radii, the smaller the change process of the energy gap in terms of the
electric field, the more regular it will be. The changes in the gap in terms of the
electric field for small nano-discs will be either linear or open curves. For larger
radii, where the graph takes the form of successive curves, we see that these
changes will have ascending and descending points, and these ascending and
descending points will happen earlier for larger radii. By summarizing all the
results and investigations, it can be said that the system with point
symmetry will generally have a higher order than the nano-disc with non-
point symmetry. Finally, it can be said with certainty that choosing a
nano-disc and applying an electric field to it is one of the ways to create
an energy gap.

7. CONCLUSION

An important goal of nanotechnology is to create structures of materials in
which the arrangement of atoms is pre-designed. Finding suitable production
techniques in nanotechnology is a topic that has been of great interest to
researchers and scientists in recent years. In this article, we calculated the
electronic structure of GNDs using the empirical tight-binding method in the
first neighbor approximation with orthogonal and non-orthogonal basis. From
these approximations, we obtained the energy gap of nano-discs with different
radii. It was observed that the energy gap decreases with the increase of the
radius of the nano-disc. Finally, with the increase of the radius, the energy gap
of the nano-disc will approach the energy gap of two-dimensional graphene.
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Nano-disc selection is a method to eliminate the zero energy gaps in graphene.
We also observed that for GNDs, the energy gap changes according to its size
and will generally have a regular trend. What prevents the regular reduction of
the energy gap changes is the arrangement of the surface and the structure of the
edges, as well as the number of atoms, and it was observed that the energy gap
depends on the geometric shape and structure of the edge. In the end, the effect
of the electric field on the energy gap was investigated and we showed that
applying the electric field to the nano-disc will be another method to control the
energy gap. Our numerical results showed that in nano-discs with a smaller
radius, the energy gap change process in terms of the electric field will have less
fluctuation than in nano-discs with a larger radius.

As can be seen from Fig. 3, the energy gap of GNDs depends on the radius of
the nano-discs, and as the radius of the nano-discs increases, the energy gap of
the nano-discs decreases. The effects of quantum confinement are clearly
evident in this figure. We can see that in addition to the number of atoms or the
size, other factors are effective on the energy levels of nano-discs because it is
expected that with the increase in radius, the energy gap of nano-discs will have
a regular trend of decreasing and finally tend to zero. In general, what prevents
the regular reduction of the energy gap changes will be the surface arrangement
and structure of the edges as well as the number of atoms. It can be said that the
edges of nano-discs have inherent edge irregularity. For example, a nano-disc
with a radius of 14 A" has an energy gap of 0.43 eV, while a nano-disc with a
radius of 15.9 A’ has an energy gap of 0.46 eV, and this means that the energy
gap for a nano-disc with a larger radius is has increased to a nano-disc with a
smaller radius. The reason for this increase in the energy gap is related to the
shape of the atoms placed on the boundary. The shape of the edge is a
combination of zigzag and armchair. For a nano-disc with a radius of 14 A, the
zigzag shape of the edges is more than that of a nano-disk with a radius of 15.9
A, and vice versa, the armchair shape of the edges is less. In general, the ratio
of the number of zigzags to the armchair edges will be important, such that the
energy gap decreases as this ratio increases. In other words, the physical
properties of GNDs are strongly dependent on the size and topology of their
edge structures.

Therefore, we can say that two-dimensional graphene has a zero-energy gap
and the energy spectrum is linear in the corners and edges of the Brillouin zones
or the Dirac points and the areas close to them, and considering overlaps or
ignoring them, on the energy gap and the linearity of the energy spectrum is
unaffected. The choice of nano-disc is a method to eliminate the zero-energy
gap, and the hydrogen atoms on the surface of the hydrogenated GND and the
sigma bonds of carbon atoms will not affect the energy gap. Also, considering
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the overlaps or ignoring them will cause changes in the levels and energy gap of
the nano-discs in such a way that by choosing the non-orthogonal base, we will
witness more changes in the energy gap and as the nano-discs grow, the energy
gap will approach the energy gap of 2D graphene. Applying an electric field to
the nano-disc will be another method to control the energy gap, and in general,
nano-discs with point symmetry have a higher order in the presence of the
external electric field than nano-discs with non-point symmetry.
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