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 Background and Objectives: Power aggregators have different effects on 
network parameters, including line power. The effect of this equipment can 
cause congestion of network lines in peak load conditions.  
Methods: In this paper, the effect of electric vehicle aggregators on power 
changes in grid lines is calculated using a method based on market analysis in 
low- and peak-load conditions. In addition, the demand response program is 
considered in this paper to reduce lane congestion in peak load conditions. 
The proposed method is implemented on a standard 24-bus network, and the 
results are analyzed.  
Results: The results state that the effect of each aggregator has a different 
effect on the grid lines.  
Conclusion: By using the proposed method, the network operator can 
prevent the formation of phenomena such as market power and line 
congestion. 
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Introduction 

Today, the introduction of renewable energy and electric 

vehicles (EVs) has had a significant impact on changes in 

network congestion [1]. So that the lack of proper 

management of network congestion can cause 

phenomena such as market power and load 

unresponsiveness. On the other hand, demand-side 

management (DSM) is one of the most powerful tools to 

optimize energy consumption, the results of which 

include increased reliability, lower costs, fewer outages, 

and greater customer satisfaction [2]. Demand response 

(DR) is a type of demand-side management that uses 

methods such as load shifting and peak cutting [3]. One of 

the concerns created for subscribers and users of the 

network is how to properly manage controllable devices 

in order to participate in consumption management 

programs on the demand side. With the advancement of 

technology in the age of communication, the potential of 

implementing intelligent planning has been realized, but 

a suitable model that can take into account both the level 

of satisfaction of subscribers and achieve high flexibility 

for their participation has not yet been presented. In fact, 

the effective approach should be in such a way that by 

applying incentives, it provides the motivation of the 

subscribers to participate as much as possible in the 

demand response programs and on the other hand, it can 

provide conditions that the operator or the aggregator 

can ensure that the ability to control the consumption of 

equipment in residential houses is legally possible. Such 

accurate information can be very effective in the 

economic distribution of power for the next day. In this 

regard, the purpose of this paper is to provide a 

framework for planning the demand response of 

residential houses by considering the level of customer 

satisfaction.  

Many studies have been presented in the field of demand 

response with different objective functions. For example, 

in [4], a new home equipment power management 

method has been used to plan electrical equipment by 

considering the current consumption with the aim of 

minimizing the cost of subscribers. In [5], convex 

programming has been used to plan the consumption of 

household equipment and storage systems. The method 
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used in this study has been able to reduce the level of 

consumer dissatisfaction and the cost of electricity 

consumption. In [6], a method to reduce the cost of 

energy consumption with the help of intelligent 

integration of renewable energy and storage systems has 

been designed and has been used to minimize the ratio of 

electricity purchases during peak hours. However, in the 

mentioned studies, the limitations caused by the high 

volume of electric vehicle management on the 

distribution networks have not been investigated. In [7], 

a new method has been used to manage renewable 

energy from energy storage sources and electric vehicles, 

which significantly reduces the cost of network users with 

the help of energy produced by local renewable sources. 

However, the discharge mode of electric vehicles to 

minimize the energy costs is not considered in this study. 

In [8–9], the authors have used the energy storage unit 

and electric vehicles on a larger scale, considering the 

bidirectional power distribution, to establish coordination 

between the load consumption timing operations of 

home users. In this study, they have proven that the 

proposed system is able to significantly reduce the 

electricity supply costs for large-scale smart homes. The 

authors have mentioned in [10] that the use of energy 

management systems in residential houses is a 

fundamental pillar for the beneficial use of energy 

produced in power plants and renewable sources. In this 

regard, a flexible management system is also provided 

that is able to manage multiple energy carriers in 

residential houses in an integrated manner.  

In [11], energy management systems have been used to 

control and optimize the amount of energy consumption 

and help supply the required energy to the equipment. 

The purpose of this approach is to minimize the cost of 

operating costs. In [12], photovoltaic systems along with 

energy storage for commercial customers have been used 

to manage energy consumption. In addition, in order to 

provide the error of the difference between the 

requested energy and the produced amount, a gas 

microturbine has been used. In [13], an exact composite 

linear programming method has been proposed that aims 

to manage consumer satisfaction, equipment power 

consumption, and renewable resource performance. In 

fact, it provides optimal planning under dynamic 

constraints by considering the welfare conditions of 

subscribers. In addition, a method based on a new 

planning algorithm for managing household energy 

consumption costs by considering the uncertainty of 

household equipment operation and the intermittency of 

renewable resource production has been presented in 

[14]. In this study, evaluations have been done to 

determine the optimal capacity of a production system on 

the user side, which operates based on random variables 

such as wind speed and consumption load and reduces 

the energy consumption costs of subscribers. In [15], the 

authors have stated that the management systems placed 

on the common side are of great help in obtaining 

information on the amount of energy consumption; 

however, they cannot cause the participation of 

consumers in peak load reduction planning on a large 

scale. In this study, continuous monitoring is used to 

provide reports to users. In [16], the authors stated that 

in addition to reducing energy consumption and choosing 

to consume energy off-peak, consumers can be 

responsive by changing the type of energy consumed. In 

[17], a review of the literature on demand response and 

its advantages and disadvantages has been done. The 

benefits mentioned in this study include balancing the 

fluctuations of renewable generation, improving 

economic efficiency, and reducing production capacity.  

In [18], the authors have reviewed the demand response 

literature and identified some of the key barriers to 

deployment and demand response challenges. In this 

regard, suggestions about evaluation methods have been 

presented. In [19], the flexibility of the load response 

program for the integration of renewable energy sources 

in Al-Elem has been investigated based on two proposed 

steps. Reference [20] introduces the tools that electric 

companies use to encourage their consumers to 

reprogram their energy consumption patterns. Then, it 

examines the mathematical models in this field from 

previous studies and suggests more effective solutions to 

address this issue. In [21], to reduce costs and greenhouse 

gas emissions using wind turbines, photovoltaic units 

have been used in an improved micro-energy grid. In 

addition, incentive programs for network users to achieve 

better performance on behalf of consumers are 

considered in this study. Also, in order to achieve more 

accurate results, the uncertainty of wind and solar energy 

has been considered. Reference [22] has proposed a two-

level optimization in which consumers who are equipped 

with their own energy sources can manipulate electricity 

market prices by implementing a demand response 

program to meet the needs of electricity, heating, and 

cooling simultaneously. Reference [23] presents a 

method for multi-energy optimization in central buildings 

in the presence of active demand response programs. In 

[24], incentive and price-based incentive programs are 

used to encourage microgrids to transact electricity, 

heating, and cooling carriers. In this study, a two-level 

optimization method is used for future planning. In [25], 

a motivation-based model has been used in order to 

reach a certain level of response on the consumption side, 

which is based on two-stage planning. 

In [26], one of the methods based on demand response 

based on price encourages consumers to use household 

appliances during low load hours instead of peak load 

conditions. Reference [27] used mathematical modelling 
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using demand-side management to optimize microgrid 

performance. This study has used the load response 

program to design the microgrid from the customers' 

point of view. In [28], a simulation method has been used 

to minimize electricity consumption and cost. In addition, 

the time-based program is used in the optimization 

problem in this study. In [29], a new method of pricing 

based on quality of service is presented so that owners of 

electric vehicles can cope with travel uncertainties. In this 

study, different prices offered by electric vehicles have 

been used. In [30], the level of consumer load in response 

to the price of electricity is presented by an optimization 

model. The main goal of this study is to maximize the 

consumer's profit. Reference [31] describes the structural 

barriers to the correct implementation of load response 

and introduces several solutions that will make it perform 

better in the future. 

A general classification of demand response management 

is reviewed in [32], which breaks down the different parts 

of demand response management. In [33], mathematical 

modelling has been developed considering load response, 

which is based on price elasticity and user profit. As 

mentioned, many studies have been conducted in the 

field of demand response with different objectives. On 

the other hand, the presence of electric vehicles as power 

generators has attracted the attention of many countries 

that have been less studied in this field. Accordingly, this 

paper evaluates responsive load management in the 

presence of electric vehicles. The proposed method in this 

paper is based on mathematical modelling that is 

completely analytical. Among the advantages of the 

proposed method, the following can be mentioned: 

 Calculation of the contribution of each network load 

to changes in the congestion of network lines in low 

and peak network load conditions 

 Considering different steps of demand response to 

reduce congestion on congested lines 

 Evaluating the behavior of electric vehicles in low and 

peak load conditions 

 There is no need to perform consecutive power flows 

to calculate the contribution of each load to line flow 

changes 

 High computational speed due to the analytical 

nature of the problem 

 

The whole paper is divided into five sections. The basic 
formulation and the formulation of the proposed method 
are presented in Section 2. Then, the results of the 
proposed method are analyzed in Section 4. Finally, the 
conclusion of the paper is made in Section 5. 
 

Problem formulation 

In this section, first, the basic formulation of the 

problem is presented. Then, the proposed formulation 

related to the impact of electric vehicles on line 

congestion in peak and low load conditions is presented 

by considering the demand response program. The 

objective function of the problem is the cost of generation 

units, which, according to (1), is a quadratic function. 
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which Pui is the generation power of the unit i, and mi 

and ni are the cost function coefficients of the ith unit. In 

addition, Nu is the number of generation units. The 
equality constraints of the problem include equality and 
inequality constraints. According to (2) and (8), equality 
constraints include generation and demand constraints 
and flow passing through network lines. 
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which are defined as follows: 
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The matrices Cu and CL, which represent the location 

of generation units and network lines, are defined as 

follows: 
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In which, 0 means the absence of equipment and 1 

means the presence of equipment. Another equality 

constraint related to the flow of the line is presented in 

(8). 

1( ) 0Li a b abP x    

                                                                         

(8) 

 
Also, the unequal constraints of the problem, which 

include the generation power of the units and the power 

of crossing the lines, must be in their minimum and 

maximum ranges. 
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In the next step, using the Lagrange function and the 

method used in [1], the influencing factors on the power 

changes of the network lines are defined as follows: 

 

flowdflow dq  

                                                                 

(11) 

 

which dflow is the power change matrix of the line 

network, and dq is defined as follows: 
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Which Nz are all factors influencing the power changes 

of the lines. In addition, the matrix
flow is defined as 

follows: 

 
min max max, Limrg B

flow NL Nz
    


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(13) 

 

Which B is the network load influence matrix on the 

power changes of the network lines, which is defined as 

follows: 

 

,

B B

i j NL NB
 


   

                                                           (14) 

 

Which 
,

B

i j is the power change of line i by 1 MW for 

load increase in bus j. As a result, power changes due to 

load changes on each bus are defined as follows: 

 
B B

Bdflow dP                                                            (15) 

 

In this section, the formulation related to the electric 

vehicle as a power aggregator in peak load and low load 

conditions is presented. In addition, uncertainty is used to 

determine the capacity of the power aggregator, which 

will be discussed further. As mentioned, uncertainty is 

used to determine the capacity of electric vehicle 

aggregators. The uncertainty used includes Nm samples, 

and the capacity of the aggregators is determined as 

follows: 
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1
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j
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(16) 

which i

fixed is the fixed capacity for electric vehicle i 

and 
( )

i

rand j  is a random value for uncertainty for electric 

vehicle i. Finally, 
iEVdq is the obtained capacity for the 

aggregator of electric vehicle i. The behavior of electric 

vehicles in low-load conditions is similar to network load. 

Therefore, their impact is calculated through the matrix
B mentioned in (14), which is as follows: 
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Which EV

low is the matrix of aggregating coefficients of 

electric vehicles on line power changes in low load 

condition. 
,

EV

i j is the power change of line i per electric 

vehicle placed in bus j, and NEV is the number of electric 

vehicles in the network. As a result, the number of 

changes in the power of grid lines caused by electric 

vehicles is defined as follows: 

 
EV EV

low low EVdflow dq 

                                                     

(18) 

 

In peak conditions, electric vehicles inject the power 

stored in them into the grid due to the high price of 

electricity. In this paper, the amount of power injected by 

electric vehicles into the network is represented by γ, 

which can be a number between 0 and 1. Also, since the 

power is injected into the network, its impact is 

associated with the network load matrix with a negative 

sign, which is defined as follows: 
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peak i i j NL NEV
EV    


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(19) 

 

Which EV

peak is the matrix of aggregating coefficients of 

electric vehicles on line power changes in peak load 

conditions. Similarly, power changes caused by electric 

vehicles in high load conditions are as follows: 

 
EV EV

peak peak EVdflow dq 

                                                      

(20) 

 

Demand response means the ability of subscribers to 

transfer load from peak load periods to low load periods 

to improve the power consumption pattern. In this paper, 

the modified load model is used for the demand response 

program [34]. 
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(21) 

 

which ( )L t and L(t) are the modified load at time t 

and the instantaneous load at low load time ( t ). In 

addition, M is the maximum load during peak load, and C 

is the amount of added load at low load, which is defined 

as follows [34]: 
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which   is the percentage of the load removed in the 

high load period and added in the low load period. In the 

following, the results obtained from the proposed 

method will be presented. 

 

Results and Discussion 

In this section, first, the standard 24-bus network 

information is presented, including network line data and 

network load in low-load and peak-load conditions. Then, 

the results of the proposed method are analyzed in low 

and peak-load conditions. The optimal answer is obtained 

by quadratic programming in MATLAB software. As 

shown in Table 1, the information about network lines 

(location, reactance, and capacity of each line) is as 

follows: 

 
Table 1: Network line data 

Line From bus To bus X Capacity (MW) 

1 1 2 0.01 1.75 

2 1 3 0.21 1.75 

3 1 5 0.08 1.75 

4 2 4 0.13 1.75 

5 2 6 0.19 1.75 

6 3 9 0.12 1.75 

7 24 3 0.08 4 

8 9 4 0.10 1.75 

9 10 5 0.09 1.75 

10 10 6 0.06 1.75 

11 7 8 0.06 1.75 

12 9 8 0.17 1.75 

13 10 8 0.17 1.75 

14 11 9 0.08 4 

15 12 9 0.08 4 

16 11 10 0.08 4 

17 12 10 0.08 4 

18 13 11 0.05 5 

19 14 11 0.04 5 

20 13 12 0.05 5 

21 23 12 0.10 5 

22 23 13 0.09 5 

23 16 14 0.06 5 

24 16 15 0.02 5 

25 21 15 0.05 5 

26 21 15 0.05 5 

27 15 24 0.05 4.5 

28 17 16 0.03 5 

29 16 19 0.02 5 

30 18 17 0.01 5 

31 22 17 0.11 5 

32 21 18 0.03 5 

33 21 18 0.03 5 

34 20 19 0.04 5 

35 20 19 0.04 5 

36 23 20 0.02 5 

37 23 20 0.02 5 

38 22 21 0.07 5 

 

Also, network load data is defined in Table 2 for low 

and peak network conditions: 

 
Table 2: Networl load data in low and peak load  conditions 

Bus Low load (MW) Peak load (MW) 
1 0.86 2.16 
2 0.77 1.94 
3 1.44 3.60 
4 0.59 1.48 
5 0.56 1.42 
6 1.08 2.72 
7 1.00 2.50 
8 1.36 3.42 
9 1.40 3.50 
10 1.56 3.90 
11 0.00 0.00 
12 0.00 0.00 
13 2.12 5.30 
14 1.55 3.88 
15 2.53 6.34 
16 0.80 2.00 
17 0.00 0.00 
18 2.66 6.66 
19 1.44 3.62 
20 1.02 2.56 
21 0.00 0.00 
22 0.00 0.00 
23 0.00 0.00 
24 0.00 0.00 

 

In this paper, four aggregators of EVCS are considered, 

which are placed in the buses of 3, 9, 16, and 22. The 

capacity of each aggregator of EVCS is calculated using the 

average of 500 considered samples, which is shown in Fig. 

1. Therefore, the capacity of EVCSs 1 to 4 is equal to 0.502 

MW, 0.500 MW, 0.498 MW, and 0.500 MW. In the 

following, the impact of the EVCS aggregator on peak load 

conditions is investigated. In peak load conditions, EVCS 

aggregators act as power generators because the price of 

electricity is high during these hours. The power of 

network lines in peak load conditions is shown in Fig. 2. In 

addition, Fig. 3 shows the state of each line in terms of 

density, indicating that lines 10, 23, and 28 are congested. 

As mentioned, electric vehicle accumulators inject their 

excess power into the grid in peak load conditions. The 

effect of the aggregator of the electric vehicle 1, which is 

placed in bus 3, is shown in Fig. 4. It can be clearly seen 

that the greatest effect of this aggregator is on line 6, with 

a value of 1.83 MW, which increases the power of this 

line. In addition, the negative effect of this aggregator on 

lines 7 and 27 has a value of 1.94 MW. In other words, it 

reduces the power of these lines. 
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Fig. 1:  The capacity of EVCSs in specific buses 

 

 
Fig. 2:  Power of network lines in peak load conditions 

 

 
Fig. 3:  The condition of network lines in terms of density 

 

In addition, the effect of aggregator 2, which is placed 

in bus 9, on the power changes of the grid lines is shown 

in Fig. 5. The greatest and most optimal impact of this 

aggregator is on lines 12 and 15, with values of 0.87 MW 

and -1.5 MW, respectively. 

 
Fig. 4: Changes in the power of network lines caused by the 

aggregator of EVCS 1 in peak load condition 

 

Similarly, the effect of aggregators 3 and 4, which are 

placed in buses 16 and 22, respectively, has been shown 

in Figs. 6 and 7.  

 

 
Fig. 5: Changes in the power of network lines caused by the 

aggregator of EVCS 2 in peak load condition 

 

 
Fig. 6: Changes in the power of network lines caused by the 

aggregator of EVCS 3 in peak load condition 

 

 
Fig. 7: Changes in the power of network lines caused by the 

aggregator of EVCS 4 in peak load condition 
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The greatest impact of the two aggregates is on lines 

24 and 38, with values of 1.43 MW and 3.00 MW, 

respectively. On the other hand, the least impact of these 

two aggregators is on lines 32, 33, and 30, with values of 

-0.32 MW and -2.00 MW, respectively. 

Table 3 shows the density of network lines for different 

percentages of load reduction in peak hours and adding 

to low load hours. For example, the density of line 11 has 

increased for different μ. In other words, the transfer of 

load from peak to low load hours has increased the 

density of line 11. On the other hand, the density of line 

12 decreases for different percentages of μ. In other 

words, the load shift from peak to off-peak hours reduces 

the density of this line. Therefore, the changes in the 

density of network lines for different percentages of load 

transfer from peak load to low load are shown in this 

table: some lines have decreased density and some lines 

have increased density. 

Table 3: Density of grid lines in peak load condition 
Line 

= 0 
 = 

0.05 
 = 

0.1 
 = 

0.15 



= 0.2 
1 0.053 0.054 0.054 0.055 0.055 
2 0.010 0.009 0.008 0.007 0.007 
3 0.685 0.685 0.685 0.685 0.685 
4 0.431 0.431 0.431 0.430 0.430 
5 0.554 0.544 0.544 0.544 0.544 
6 0.086 0.088 0.089 0.091 0.090 
7 0.933 0.934 0.936 0.937 0.936 
8 0.415 0.415 0.415 0.415 0.415 
9 0.127 0.127 0.127 0.127 0.127 

10 1.000 1.000 1.000 1.000 1.000 
11 0.649 0.713 0.776 0.840 0.957 
12 0.757 0.725 0.693 0.662 0.603 
13 0.549 0.517 0.485 0.453 0.394 
14 0.574 0.568 0.561 0.555 0.543 
15 0.775 0.768 0.760 0.752 0.738 
16 0.753 0.747 0.741 0.734 0.722 
17 0.955 0.947 0.939 0.932 0.918 
18 0.838 0.881 0.924 0.966 1.000 
19 0.244 0.224 0.224 0.224 0.224 
20 0.555 0.599 0.644 0.688 0.724 
21 0.829 0.836 0.842 0.849 0.855 
22 0.621 0.604 0.587 0.570 0.556 
23 1.000 1.000 1.000 1.000 1.000 
24 0.113 0.075 0.038 0.000 0.000 
25 0.848 0.850 0.853 0.855 0.857 
26 0.848 0.850 0.853 0.855 0.857 
27 0.830 0.831 0.832 0.833 0.832 
28 1.000 1.000 1.000 1.000 1.000 
29 0.046 0.035 0.025 0.015 0.007 
30 0.451 0.513 0.575 0.637 0.699 
31 0.549 0.554 0.558 0.562 0.567 
32 0.278 0.273 0.268 0.264 0.259 
33 0.278 0.273 0.268 0.264 0.259 
34 0.339 0.334 0.349 0.355 0.359 
35 0.339 0.344 0.349 0.355 0.359 
36 0.595 0.600 0.605 0.611 0.615 
37 0.595 0.600 0.605 0.611 0.615 
38 0.651 0.646 0.642 0.638 0.633 

In the following, the impact of electric vehicle 

aggregators in low-load conditions is investigated. In 

general, electric vehicle aggregators play the role of 

network load in low-load conditions. In other words, they 

try to get power from the network during these hours. Fig. 

8 shows the power of network lines in low-load 

conditions, where only line 28 is dense. 

The effect of electric vehicle aggregator 1 on line 

power changes in low load conditions is shown in Fig. 9. It 

can be clearly seen that the greatest impact of this 

equipment is on lines 7 and 27, with a value of 2.33 MW. 

In addition, the most optimal effect of this equipment is 

on line 6, with a value of -1.83 MW. On the other hand, it 

can be determined that the mentioned equipment has no 

effect on the power changes of lines 11 and 28. 

 

 
Fig. 8: Power of network lines in low load conditions 

 

 
Fig. 9: Changes in the power of network lines caused by the 

aggregator of EVCS 1 in low load condition 
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Fig. 10: Changes in the power of network lines caused by the 
aggregator of EVCS 2 in low load condition 

As shown in Fig. 10, electric vehicle aggregator 2 

similarly does not affect the power changes of lines 11 

and 28. The greatest and most optimal effect of this 

equipment is on lines 15 and 29, with values of 1.75 MW 

and -0.78 MW, respectively. Finally, the effect of two 

electric vehicle aggregators on the changes in grid lines is 

shown in Fig. 11. Also, the maximum and minimum 

impact of each piece of equipment can be clearly seen. It 

can be clearly seen that EVCS 4 has not had any effect on 

most of the network lines. In low-load conditions, where 

the amount of load in each bus is presented in Table 3, 

the effect of load shifting from peak. 

 

 
Fig. 11: Changes in the power of network lines caused by the 

aggregator of EVCS 3 and EVCS4 in low load condition 

 
Table 3: Density of grid lines in low load condition 

 
Line 

= 0 
 = 

0.05 

 = 

0.1 

 = 

0.15 



= 0.2 
1 0.215 0.217 0.220 0.222 0.225 
2 0.631 0.636 0.642 0.647 0.653 
3 0.077 0.074 0.071 0.068 0.066 
4 0.198 0.198 0.197 0.196 0.195 
5 0.029 0.027 0.025 0.024 0.022 
6 0.465 0.477 0.488 0.500 0.512 
7 0.839 0.847 0.854 0.862 0.869 
8 0.537 0.536 0.535 0.534 0.533 
9 0.402 0.399 0.396 0.393 0.390 

10 0.651 0.649 0.647 0.645 0.643 
11 0.571 0.571 0.571 0.571 0.571 
12 0.785 0.786 0.786 0.787 0.788 
13 0.567 0.567 0.566 0.565 0.564 
14 0.362 0.360 0.359 0.357 0.356 
15 0.362 0.359 0.355 0.351 0.347 
16 0.549 0.549 0.549 0.549 0.549 
17 0.549 0.547 0.545 0.542 0.540 
18 0.107 0.117 0.126 0.136 0.146 
19 0.621 0.631 0.642 0.652 0.663 
20 0.106 0.119 0.132 0.145 0.158 
21 0.623 0.631 0.638 0.646 0.654 
22 0.637 0.639 0.640 0.642 0.643 
23 0.931 0.942 0.952 0.963 0.973 
24 0.310 0.330 0.349 0.368 0.388 
25 0.745 0.744 0.744 0.744 0.744 
26 0.745 0.744 0.744 0.744 0.744 
27 0.671 0.677 0.683 0.689 0.695 
28 1 1 1 1 1 
29 0.590 0.599 0.608 0.617 0.626 
30 0.437 0.462 0.487 0.511 0.536 

31 0.562 0.564 0.566 0.568 0.570 
32 0.373 0.372 0.371 0.371 0.370 
33 0.373 0.372 0.371 0.371 0.370 
34 0.150 0.155 0.159 0.164 0.168 
35 0.150 0.155 0.159 0.164 0.168 
36 0.048 0.052 0.057 0.061 0.066 
37 0.048 0.052 0.057 0.061 0.066 
38 0.637 0.635 0.633 0.631 0.629 

 

load hours to low load hours is presented in Table 4. 

You can clearly see the density changes of grid lines for 

different μ. For example, the density of lines 1 and 2 

increases with the increase in load shift. So that the 

density of line 1 at μ =0 is equal to 0.215, and μ = 0.2 is 

equal to 0.225. In other words, the density of line 1 at      

μ = 0 and μ = 2 increases by 0.215 MW and 0.225 MW, 

respectively. Therefore, some lines have an increase in 

density and some lines have a decrease in density for 

different values of μ, which can be seen in the table. As a 

result, the contribution of each electric vehicle aggregator 

to changes in line density can be calculated with the help 

of the proposed method, which can be a suitable tool for 

the network operator. 

 

Conclusion 

The presence of power aggregators in the network 

causes a change in the density of the network lines, so 

that it brings the possibility of densification of the 

network lines. On the other hand, the demand response 

program is one of the most effective ways to reduce 

network line congestion during peak hours. In this paper, 

using a method based on market analysis, the effect of 

electric vehicle power aggregators on line power changes 

in the presence of a demand response program is 

investigated. The obtained results are analyzed under two 

conditions: low load and peak load. In addition, 

uncertainty has been used by EVCSs to bring the problem 

closer to reality. The proposed method can be a suitable 

tool for the network operator to predict the future state 

of the network. In other words, the network operator can 

avoid phenomena such as congestion of lines and the 

formation of market power. 
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