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Abstract  

This article presents an optimal shape design methodology for 2D diffuse-walled radiant enclosures. In this study, the shape of the 

enclosure is parameterized by means of non-uniform rational B-spline (NURBS) surfaces, and their control points represent the design 

variables. The enclosure geometry is discretized by choosing the parameters of NURBS surfaces as generalized curvilinear coordinates, and 

the radiosity equation is solved using the infinitesimal-area analysis technique developed by Daun and Hollands [1]. The simplified 

conjugate-gradient method (SCGM) is used as the optimization method to obtain the optimal shape and adjust the design variables 

intelligently. The methodology is demonstrated by optimizing the shape profile of a cavity with the objective of enhancing the apparent 

emittance. 
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1. Introduction  

Optimal shape design for heat transfer problems is of 

great importance, since using an optimal design reduces 

the consumption of energy, matter and time. The aim of 

optimal shape design for a heat transfer system is to 

improve the performance of the system or to meet some 

specific heat transfer requirements such as specified heat 

flux or temperature distribution. 

Extensive work has been done in shape design problems, 

such as fin profile optimization [2-4], shape design for 

heat conduction problems [5,6], shape design of a 

cylinder with heat transfer [7], shape design of millimeter-

scale air channels [8], geometric optimization of radiative 

enclosures [9], shape optimization of convective periodic 

channels [10], shape optimization of a heat exchanger 

[11] and optimization of steady fluid-thermal systems 

[12]. 

In general, optimal shape design problems require a great 

amount of computation time and memory space. This 

paper is aimed at describing a robust and efficient method 

for shape optimization of radiative enclosures by reducing 

the computation time and improving the accuracy and the 

quality of the optimal design.  

In the discussion that follows, a parametric representation 

of the enclosure geometry is presented. A computational 

method for solving the radiosity equation is then 

discussed. Subsequently, the simplified conjugate-

gradient method (SCGM) is described as the optimization 

method. Finally the methodology is demonstrated by 

optimizing the shape profile of a cavity with the objective 

of enhancing the apparent emittance. 

2. Parametric Representation of the Enclosure 

Geometry  

The first step in optimal shape design for radiative 

enclosures is to specify the enclosure geometry. The shape 

profile of the enclosure could be either represented 

parametrically or built by using a point-by-point approach 

[5,6]. Parametric representation of the shape profile 

reduces the overall number of design variables and 

consequently the computation time. However, the point-

by-point approach gives a wider range of shape 

alternatives. 

 

Fig 1. Transformation of the physical domain (a) into the 

computational domain (b). 
 

In the present study, the shape of the enclosure is 

parameterized by means of non-uniform rational B-spline 
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(NURBS) surfaces, and their control points represent the 

design variables. These parametric surfaces allow free-

form representation with total geometry control over the 

surface. The number of control points, and hence the 

number of degrees of freedom (DOFs) of the shape profile 

could be increased, if a finer description of the shape and 

more flexibility in shape design are required. 

A non-uniform rational B-spline (NURBS) surface is 

defined as 

𝐒(𝐮) = 𝐒(𝑢, 𝑣) =
∑ ∑ 𝑁 , (𝑢)𝑁 , (𝑣)𝑤 , 𝐏 , 

 
   

 
   

∑ ∑ 𝑁 , (𝑢)𝑁 , (𝑣) 
   

 
   

               

     0 ≤ 𝑢, 𝑣 ≤ 1                                                                      (1) 
where the 𝐏 ,  are the control points that form a 

bidirectional control net. The 𝑛 and 𝑚 are the number of 

control points in the 𝜉 and 𝜂 directions, respectively. 

The 𝑤 ,  are the weights. The 𝑁 , (𝑢) and 𝑁 , (𝑣) are the 

non-rational B-spline basis functions of degree 𝑝 and 

degree 𝑞, respectively, defined on the non-decreasing knot 

vectors 

𝑈 = {0,… , 0⏟  
 +1

, 𝑢 +1, … , 𝑢𝑟− −1, 1, … , 1⏟  
 +1

}                           (2) 

𝑉 = {0,… , 0⏟  
 +1

, 𝑣 +1, … , 𝑣𝑠− −1, 1, … , 1⏟  
 +1

}                            (3) 

where 𝑟 = 𝑛 + 𝑝 + 1 and 𝑠 = 𝑚 + 𝑞 + 1.  

The 𝑖-th B-spline basis function of degree 𝑝, denoted 

by 𝑁 , (𝜉), is defined recursively by the Cox-De Boor 

formula as 

𝑁 , (𝑢) = {
1          if 𝑢 ≤ 𝑢 < 𝑢 +1

0          otherwise          
                                           

𝑁 , (𝑢) =
 −  

    −  
𝑁 , −1(𝑢) +

      − 

      −    
𝑁 +1, −1(𝑢)      (4)  

The shape of NURBS surfaces could be locally changed 

by moving the control points or modifying the weights. 

These surfaces have several unique properties that are 

effective and well suited for shape optimization. The 

surface interpolates the four corner control points, i.e. 

𝐒(0, 0) = 𝐏 , , 𝐒(1, 0) = 𝐏 , , 𝐒(0, 1) = 𝐏 , , and 

𝐒(1, 1) = 𝐏 , . Furthermore, the control points 

approximate the surface and the surface is contained in 

the convex hull of its control points. This property is very 

useful, especially in defining the geometric constraints. 

An example of a NURBS surface with its defining control 

points is depicted in Fig. 1. A complete description of 

NURBS surfaces can be found in [13].  

3. Solution of the Radiasity Equation 

The second step in optimal shape design for radiative 

enclosures is to solve the radiosity equation in the 

specified geometry. To this end, the enclosure should be 

discretized first. As in this study the enclosure geometry is 

represented parametrically, through NURBS surfaces, it 

can be discretized by choosing the parameters of NURBS 

surfaces as generalized curvilinear coordinates. This 

method reduces the CPU time needed for grid generation 

significantly. The use of generalized curvilinear 

coordinates transforms an irregular region in the physical 

domain into a rectangular region in the computational 

domain (Fig. 1). 

The radiosity equation in generalized coordinates can be 

expressed as [1] 

𝑞 (𝐮) = 𝐵(𝐮) + 𝐺(𝐮)∫ ∫ 𝑞 (𝑢
 )𝐾(𝐮, 𝐮 )

1

 

1

 

𝑑𝑢 𝑑𝑣          (5) 

where, if 𝑇(𝐮) is specified, 

𝐵(𝐮) = 𝜀(𝐮)𝜎𝑇4(𝐮),       𝐺(𝐮) = 1 − 𝜀(𝐮)                     (6)  

or, if 𝑞(𝐮) is specified, 

𝐵(𝐮) = 𝑞(𝐮),       𝐺(𝐮) = 1                                                 (7)  

The kernel, 𝐾(𝐮, 𝐮 ), is equal to the shape factor between 

the differential area element at 𝐮 and the differential area 

element at 𝐮 , divided by 𝑑𝑢 𝑑𝑣 . 

In the present study, an iterative solver is used to obtain 

the radiosity distribution. When the radiosity distribution 

has been found, the unknown heat flux or temperature 

distribution can be determined by the following relations 

[14]. 

𝑞(𝐮) =
𝜀(𝐮)

1 − 𝜀(𝐮)
[𝜎𝑇4(𝐮) − 𝑞 (𝐮)],                                (8) 

𝜎𝑇4(𝐮) =
1 − 𝜀(𝐮)

𝜀(𝐮)
𝑞(𝐮) + 𝑞 (𝐮)                                    (9) 

4. Optimization Method 

The last step in optimal shape design for radiative 

enclosures is to use an optimization method to adjust the 

design variables intelligently. The two most commonly 

used optimization methods for shape design problems are 

the genetic algorithms and the gradient-based 

optimization algorithms. The genetic algorithms are 

robust, and can be used for multi- objective problems. 

However, the main drawback to them is the reduced 

convergence rate. The gradient-based optimization 

algorithms are computationally efficient. But, the 

drawback of these methods is their tendency to get 

trapped in local optima. To remedy this problem, multiple 

optimizations should be performed, each starting from 

different values of design variables. 

In this study, the simplified conjugate gradient method 

(SCGM), proposed by Cheng and Chang [16], is used as 

the optimization method. The SCGM is capable of dealing 

with various forms of the objective functions, and thus it 

is a well suited method for shape optimization. The 

iterative procedure of SCGM for finding the optimum 

design variables �⃗�  and hence the optimal shape can be 

stated as follows: 

(1) Define an objective function 𝑓(�⃗� ) that the 

minimum point of it corresponds with the 

optimal shape. 

(2) Make an initial guess for �⃗�  (as initial point). Set 

iteration number as 𝑖 = 1. 

(3) Solve the radiosity equation and find the heat 

flux or objective function 𝑓(�⃗� ) associated with 

the latest values of design variables. 

(4) Compute the gradient of the objective function, 

∇⃗⃗ 𝑓 , at the point �⃗�  , by means of the direct 

numerical sensitivity analysis [15]. 

(5) Compute the conjugate gradient coefficients 𝛽 , 

and the search directions 𝑆   as 
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𝛽 =
∇⃗⃗ 𝑓 

𝑇 ∇⃗⃗ 𝑓 

∇⃗⃗ 𝑓 −1
𝑇  ∇⃗⃗ 𝑓 −1

,                                                (10) 

𝑆  = − ∇⃗⃗ 𝑓 + 𝛽 𝑆  −1                                           (11) 

(6) Assign an appropriate fixed value to the step 

sizes 𝜆 
∗, and update the design variables as 

�⃗�  +1 = �⃗�  + 𝜆 
∗𝑆                                                   (12) 

(7) Test the new point �⃗�  +1 for optimality. If �⃗�  +1 is 

optimal, terminate the iteration process. 

Otherwise, set the new iteration number 𝑖 = 𝑖 +
1, and go to step (3). 

5. Implementation 

To demonstrate the performance of the methodology 

presented in this paper, the shape profile of a cavity is 

optimized with the objective of enhancing the apparent 

emittance. The cavity geometry is shown in Fig. 2. For 

simplicity, the shape profile of the cavity is assumed 2-D, 

and it is presented parametrically, through a B-spline 

surface of degree five in the 𝑢 direction and degree two in 

the 𝑣 direction. B-spline surfaces are a special subclass of 

NURBS surfaces with 𝑤 , = 1 and the uniform knots 

distribution. The wall emissivity is set equal to 0.5. The 

temperature and the emissivity of the surrounding have 

been assumed constant and equal to 0 K and 1, 

respectively. 

As shown in Fig. 2, the coordinates of selected control 

points represent the design variables �⃗� . The following 

constraints have been imposed on the design variables �⃗�  
to restrict the cavity dimensions and to force the enclosure 

to remain unobstructed. 

0.0 ≤ 𝜙1 ≤ 0.07, 
0.01 ≤ 𝜙2 ≤ 𝜙3,                                                                  (13) 

0.01 ≤ 𝜙3 ≤ 0.05 

Now, in order to find vector of unknowns �⃗� , an objective 

function 𝑓(�⃗� ) is defined as 

𝑓(�⃗� ) =
1

𝐶𝜀𝑎 +
1
𝐴

                                                                 (14) 

 
Fig 2. Shape profile of the cavity 

where 𝐴 is the area of the cavity surface, 𝐶 is a constant 

that its value depends on the requirement of the design 

purpose and 𝜀𝑎 is the apparent emittance, given by 

𝜀𝑎 =
𝑄 

𝐴 𝜎𝑇𝑐
4
                                                                         (15) 

where 𝑄  is the total heat transfer rate leaving the opening 

of the cavity, 𝐴  is the cavity opening area and 𝑇𝑐 is the 

cavity temperature. 

The minimum point of function 𝑓 corresponds to the 

solution �⃗�  of the problem. As explained previously, the 

computational method of the minimization procedure 

consists of two main modules; the direct problem solver 

and the search modules. The heat flux distribution along 

the wall of the optimal cavity profile is shown in Fig. 3. 

Considering both the accuracy and the computational 

cost, the calculations were performed on a 200×1 grid 

system. Finer grids have been tested without finding any 

significant changes in the results.  

A personal computer with a Pentium IV 3.2GHz processor 

has been used to perform the calculations. The CPU time 

required for the shape optimization problem is 

approximately 10 seconds. Fig. 4 shows the dependence 

of optimal shape on the value of 𝐶. The reduction history 

of the objective function 𝑓 is shown in Fig. 5. The 

convergence criterion is set at ‖∇𝑓‖ ≤ 10−1 . 

 
Fig 3. Heat flux distribution in the optimal cavity profile 

(𝐶=1000) 

 
Fig 4. Dependence of optimal shape on the value of 𝐶 
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Fig 5. Reduction history of the objective function per each cycle 

of the SCGM 

6. Conclusion 

In this paper a method is presented for shape optimization 

of radiative enclosures. The shape of the enclosure is 

represented parametrically, through non-uniform rational 

B-spline (NURBS) surfaces, and their control points 

represent the design variables. These parametric surfaces 

allow free-form representation with total geometry control 

over the surface. Moreover, parametric representation of 

the shape profile reduces the overall number of design 

variables and consequently the computation time. The 

simplified conjugate-gradient method (SCGM) is used as 

the optimization method to obtain the optimal shape and 

adjust the design variables intelligently. The SCGM is 

capable of dealing with various forms of the objective 

functions, and thus it is a well suited method for shape 

optimization. The performance of the proposed method is 

demonstrated by optimizing the shape profile of a cavity 

with the objective of enhancing the apparent emittance.  

Nomenclature 
𝐴 = area of the cavity surface, m2 

𝐴  = cavity opening area, m2 

𝐵(𝐮) = generalized emissive power term, W/m2 

𝐶 = weighting factor 

𝑓 = objective function 

𝐺(𝐮) = generalized reflectivity term 

𝐾(𝐮, 𝐮 ) = kernel function 

𝑚 = 
number of NURBS surface control points in the 𝜂  

direction 

𝑁 = NURBS basis function 

𝑛 = 
number of NURBS surface control points in the 𝜉  

direction 

𝐏 = NURBS surface control net 

𝑝 = NURBS degree in the 𝑢 direction 

𝑄  = heat transfer rate of the cavity, W 

𝑞  = radiosity, W/m2 

𝑞 = heat flux, W/m2 

𝑞 = NURBS degree in the 𝑣 direction 

𝐒(𝜉, 𝜂) = NURBS surface 

𝑆  = search direction 

𝑇 = temperature, K 

𝑇𝑐 = temperature of the cavity, K 

𝐮 = two-component vector equivalent to (𝑢, 𝑣) 

(𝑢, 𝑣) = computational coordinates 

(𝑥, 𝑦) = physical coordinates, m 

Greek symbols 

𝛽  = conjugate gradient coefficient 

𝜀  = emissivity 

𝜀𝑎 = apparent emissivity 

𝜆∗ = optimal step size 

𝜙 = design variable 

∇ = gradient 

Superscripts 

→ = vector 

𝑇 = transpose symbol 

Subscripts 

𝑖 = iteration number 

𝑖, 𝑗 = control point indices 
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