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essential to divide the total electrical consumption of the home into its component
elements, which are the individual signals utilized by every appliance. Likewise,
estimating the energy consumption of the appliances is a very efficient means of
foreseeing how much energy each device would consume in the future and, if
necessary, controlling it. In this research, a Fuzzy Wavelet- and Convolutional
Network-based method is established as a way of decomposing the signals generated
by individual home appliances from the overall (composite) signal. In addition, the
proposed algorithm is employed in conjunction with two well-known and strong
algorithms in Time-series data analysis, Long-Short Term Memory (LSTM) and
Multilayer Perceptron (MLP). Hence, the proposed approach is compared to the
aforementioned two renowned algorithms as well as other techniques from previous
studies. The proposed neural network is trained using the Stochastic Gradient
Descent (SGD) optimization approach at each stage, and the Nesterov Accelerated
Gradient (NAG) optimization method is also investigated. In comparison with
previous approaches, the findings demonstrate that the algorithm's prediction
accuracy is greater and its error is noticeably lower. It means that the proposed
algorithm is a top contender among the existing algorithms for predicting of energy
consumption in residential buildings.
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For policymakers and allied institutions, modeling and forecasting energy consumption are
crucial to a country's growth and success. When energy consumption is not taken into
consideration, a power outage might occur, resulting in loss of life and economic devastation.
In addition to wasting money, overestimating energy demands might result in unneeded
features being implemented. Therefore, to minimize expensive errors, it is preferable to
employ algorithms that forecast energy consumption with greater precision. Moreover, the
models that can include non-linear energy consumption data in forecasting are preferable (Liu
and etal , 2018). Research shows that Artificial Intelligence (Al) approaches are the most
widely used technique for forecasting energy consumption. As a result, the metaheuristic
algorithm approach is more alluring and consequential to target audiences, such as energy
engineers. Since it allows for the option of developing more reliable energy applications,
independent of time savings . Advantages such as fast calculation, greater affordability,
simple implementation, and design by operators with minimal technical abilities are added
bonuses of this technique (Council, 2013& Sehatpour, Kazemi, Sehatpour,2017). Energy is a
crucial factor in almost all commercial endeavors. Most countries cannot guarantee their own
safety without a steady supply of energy. Hence, the efficient generation, use, and application
of energy sources in the future are of paramount importance (Salvi, Subramanian,
Panwar,2013).

Growing energy needs throughout the world need the creation of intelligent forecasting
models and algorithms. Allocation of energy resources may be estimated and optimized
utilizing economic and non-economic variables that can be derived from linear and non-linear
statistical approaches, mathematics, and simulation models. Intelligent methods, including
genetic algorithms, fuzzy regression, and neural networks, have been explored due to the
nonlinear nature of these metrics and energy demand. In addition, nonlinear modeling and
prediction employ the application of artificial neural networks (Liu and etal, 2018). While
attempting to foresee future energy use, it is common practice to look at historical use
patterns; these patterns in turn have connections to other elements like economy, population,
climate, and so on. The widespread interest in energy modeling in recent years has focused
the attention of scientists and engineers on the subject of energy generation and consumption.
Several sectors of application may benefit greatly from the use of modeling in the process of
establishing policies and strategies (Council, 2013)

Over 40% of global power consumption and greenhouse gas emissions are attributable to
buildings, according to recent studies. In truth, growing populations and higher living
standards are driving forces behind the relentless increase in energy use (Chaudhuri, Soh, Li,
Xie 2019 & Himeur, Alsalemi, Bensaali, Amira, 2020). To effectively control grid loads, data on
how much electricity home electrical appliances usage must be gathered. The power system
stability might be threatened without understanding the energy usage of electrical devices in
homes. When considering the social and cultural aspects of energy use, identifying which
appliances consume the most power might assist reduce overall electricity consumption,
particularly during peak usage times (Wojcik and etal ,2019)

DSM, or "demand side management”, is the practice of continuously monitoring and
controlling electrical energy utilization at the end-user level. This allows planners to more
effectively control and balance electrical energy generation and consumption (Usman and
etal,2022). Hart established the notion of Non-Intrusive Load Monitoring (NILM) in 1992 as a
strategy to minimize electrical energy consumption (Hart,1992). With the use of a smart
meter's waveform output, NILM is able to isolate and classify various consumer-side
electrical loads. With this, it is no longer necessary to install smart meters for each individual
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part of the network, which in turn increases the network's overall cost-effectiveness and
simplicity of use (Nguyen, Dekneuvel, Jacquemod,2017)

In this scenario, as seen in Figure 1, a cumulative meter is used for the upstream network
rather than using individual meters for each device, and the waveform of each consumer is
collected by decomposing the whole waveform (Puente and etal,2020). Several researchers
have attempted to address the NILM problem utilizing different techniques throughout the
preceding two decades. Despite its outstanding efficiency, the machine learning (ML)
approach has limitations, thus researchers often strive to eliminate computation errors by
integrating it with other methods (Wu & Gao, 2019)

A key application of this study is the extraction of individual electrical device waveforms
from the overall waveform of a residential building. By isolating and comparing these signals
with standard waveforms, valuable insights can be gained about each appliance such as
operational accuracy, energy consumption levels, and potential faults. Addressing any
identified issues can lead to cost reductions and improved stability of the electrical grid.

The motivation behind this research is to find a method for identifying the type of electrical
energy consumers from the aggregate waveform of a residential building. This enables power
network planners and supervisors to implement macro-level policies for effective control and
network stability, while also detecting irregular or unauthorized energy usage within the
electrical grid.

e Advancement in Non-Intrusive Load Monitoring (NILM): This research contributes
to the theoretical foundation of NILM by demonstrating how aggregated electrical
waveforms can be decomposed to identify individual appliance signatures, enhancing
our understanding of energy disaggregation techniques.

« Signal Processing Frameworks: The study supports the development of novel signal
processing models that interpret overlapping load patterns, reinforcing theories that
combine time-series analysis, pattern recognition, and machine learning in electrical
systems.

« Behavioral Modeling of Energy Consumers: By correlating waveform characteristics
with appliance usage, the research lays theoretical groundwork for modeling
consumer behavior through power consumption trends—a step toward smarter, more
predictive energy analytics.

« Implications for Smart Grid Theory: Findings underscore the importance of real-time
data analytics and consumer-level monitoring in maintaining grid reliability and
stability, aligning with broader theoretical constructs around decentralized energy
management.
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Figure 1: Cumulative meter for upstream network

By analyzing residential sector energy consumption records and the load status
decomposition method constructed a Gaussian mixture model with time information for
probability distribution called BH-Factorial Hidden Markov Model (BH-FHMM), which was
then evaluated using the REDD dataset (Yin, Li, Xu,2022). For a real-time, low-cost solution
that can address these algorithms' challenges Nguyen, Dekneuvel, Jacquemod proposed a Non-
Intrusive Appliance Load Monitoring (NIALM) method (Nguyen, Dekneuvel, Jacquemod,2017).
This idea utilizes on-chip technologies to connect multiple processors simultaneously. By
decomposing the complex current into independent loads and determining the switching time
using a BP neural network, Wu and Lo were able to identify individual loads. This strategy
was used in order to modify load detection ( Wu and Lo ,2020). In assisting electric energy
supply companies in monitoring and analyzing household energy consumption data, Li and
Dick analyzed four multiple tagging algorithms to distinguish electrical equipment
consumption based on a cumulative waveform (Li and Dick ,2021). The comparison of the
four algorithms allowed them to determine which one was more effective on the household
dataset. For independent classifiers Liu et al proposed a data tagging method and a non-
homogeneous design and data framework connected to load decomposition (Liu et al , 2020).
Finally, Independent loads were decomposed out of a larger group of loads using a multiple-
criterion assessment based on a decision-making method. Using data on the equipment's total
energy usage, Hu et al framed the load decomposition problem as an optimization problem
and solved it using a genetic algorithm employing parallel supplemental computations (Wu et
al ,2020). A multilayer artificial neural network, in addition to the previously indicated
algorithm, was utilized for machine learning.Wu et al presented a technique for non-intrusive
load monitoring that used a high-frequency mode to retrieve electrical data (Wu et al ,2020) .
This method is able to decompose loads automatically and in real time. Using a convolutional
neural network to identify the waveforms after they have been decomposed allows for more
precise load detection. To detect non-intrusive load, (Wu et al proposed a multi-label
classification technique using a Random Forest (RF) algorithm. (Wu and et al,2019) These
characteristics are sorted and compared based on their relative significance, and the approach
is robust against load signals with no mixed signals. For the purpose of managing and
decomposing load consumption from the perspective of end users, Cavdar and Faryad
proposed a multi-component model based on deep machine learning. (Cavdar and Faryad
,2019) The CNN-RNN model is used in conjunction with real data from residential buildings
to get an estimate of the current consumption rate. Using an Artificial Neural Network and
Particle Swarm Optimization (ANN-PSO) for consumer-side non-intrusive load monitoring
(NILM), Lin and Hu presented an Internet of Things (loT)-based energy management
system.( Lin and Hu,2018) A home system evaluation was used to assess the efficacy of this
novel combination. Alotaibi presented machine learning and explainable Al to predict heating
and cooling loads in residential buildings (Alotaibi,2024). It uses data from 768 buildings and
applies models like Gaussian Process Regression and Boosted Trees. The GPR-M3 model
showed the highest accuracy in both heating and cooling scenarios. Results were validated
using performance metrics like RMSE and PCC. The model was also tested in Ecotect
software for energy simulation. Azim et al. presented new artificial neural networks to predict
energy use in Tabriz homes based on resident behavior (Azim et al,2024). Key influencing
factors include number of walls, housing direction, family size, and occupation. Regression
analysis helped select input variables for the ANN model. Seasonal variations were
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considered in the prediction. The model achieved accurate forecasts using real consumption
data. Khodadadi et al. presented a hybrid deep learning model combining three CNNs and a
DNN using a voting mechanism (Khodadadi,2024). It was trained on the WiDS Datathon
dataset for residential energy prediction. The ensemble model outperformed traditional ML
methods like Random Forest and Linear Regression. Results showed high accuracy and
robustness against new data. The approach is scalable for future smart building applications.
Neshat et al. presented an adaptive ensemble learning models (Bagging, Stacking, Voting)
with evolutionary hyperparameter tuning (Neshat et al,2025). It uses sensor data
(temperature, humidity, lighting) from a smart building in Belgium. The proposed model
outperformed 15 other ML models in accuracy and error reduction. It demonstrated strong
performance in predicting appliance-level energy use. The method supports real-time energy
management in smart homes. Alam presented a stacked deep learning model combining
CNN, LSTM, and DNN for energy demand forecasting (Alam,2024). It emphasizes feature
engineering and normalization for improved accuracy. The model was trained on real-world
datasets and achieved high performance metrics. It supports short- and long-term forecasting
for residential buildings. The framework aims to aid energy conservation and smart grid

planning.

2-1-1. Why Machine learning and Fuzzy wavelet

Machine learning algorithms can uncover hidden and nonlinear patterns in energy
consumption data something traditional methods often miss. These models analyze past
building behavior under various conditions (temperature, time of day, day of the week, etc.)
to provide accurate predictions. ML models can be updated and refined with new data,
meaning they improve over time. Energy consumption is often a time-varying and complex
signal. Wavelet transforms are highly effective at decomposing these signals into various
frequency components. Fuzzy logic allows for reliable decisions even with uncertainty or
measurement errors (like consumption fluctuations). Combining wavelets for feature
extraction with fuzzy logic for decision-making enhances the model’s accuracy in real-world
conditions.

Home appliance energy consumption data may be decomposed by receiving a cumulative
signal from the building's energy system and then separating that signal into data relevant to
each appliance. As a mathematical problem, it may be stated as:

PO =pi(O) + p(OD+, .., + pu(D), 1)

In the preceding equation, the variable p;(t) represents the energy used by the device over
time. The goal is to decompose the overall consumption pattern (denoted by P(t)) of a
household into its component parts p;(t). Hence, the total energy consumption of all
machines is determined. Moreover, depending on the power consumption of each device, a
customized power management scheme may be put into place.

There are two methods for calculating estimated electrical consumption. 1) An average
consumption estimates for each consumer's (home's) power usage; IlI) Micro-electricity
consumption modeling to predict individual users' power usage (each electrical device in the
house). Decomposing energy in this context might involve two distinct phases: the first
would involve reestablishing the device's power consumption patterns upon startup. The
second is how much energy the equipment used on average between the beginning and end of
the task (Kelly & Knottenbelt,2015).

Datasets, like those of home appliance power usage, that exhibit substantial fluctuation
over time are, in general, more difficult to analyze and assess in time series. In light of this, it
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stands to reason that sub-time series derived from the signals of the main or total time series
would exhibit less noticeable variations and be simpler to analyze than the main time series
itself. Hence, the wavelet approach is used to decompose the ground truth into sub-datasets
and get it ready for the algorithm's analysis and training phases. Figure 2 depicts the method
by which the house's overall signal is converted to the signals used by the various electrical
devices located inside the home.
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Figure 2. Converting the house's main signal to the signals used by individual home appliances.

Wavelet basically breaks the primary signals into two subgroups, one containing low
frequencies and the other with high frequencies. After a series of wavelet transforms, the
original signal is divided into "partial” and "approximate" sub-parts. The wave's basic
tendency may be found in the approximate section, while the severe fluctuations can be found
in the partial part. Daubechies wavelet methodology has been utilized for signal
decomposition (Zhao and Song,2021).

Figure 3 depicts the signal-breaking process. The data is first divided into its constituent
parts, or "partial signals,” or "D;," and "approximate values,” or "A;." The high-frequency
and low-frequency wavelets for this part are generated by further decomposing the D, wavelet
into D1-High and D1-Low wavelets. Moreover, wavelet A is decomposed into its constituent
sub-wavelets, A5, D3, and D,. Thereafter, the sub-wavelets (labeled A5, D5, D,, D; — Low,
and D; — High) are entered into the algorithm's convolution layer of a neural network.
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Figure 3. Sub-signal decomposition refers to the procedure of taking ground truth
and breaking it down further

In this study, the authors' custom-built estimation network was employed for all estimation-
required components. The layers of this network are what make it a neural network.
However, convolutional networks are two-dimensional (2D). The 2D nature of each
convolutional layer is what makes these networks ideal for processing images. Unfortunately,
two-dimensional convolutional layers cannot be used for time series analysis. For this reason,
the convolutional network's layers have been designed in a 1-dimensional (1D) structure that
is well-suited to time-series data. The TensorFlow and Keras libraries include the necessary
functions for creating 1D convolutional layer.

Figure 4 depicts the neural network architecture utilized in the final step of the algorithm
and the estimation of power consumption, as well as in the signal decomposition stage for
each piece of equipment. The performance of the created network is compared to that of
various neural networks already present in the academic literature. That is, the wavelet
decomposes the original signal into smaller signals, and then the data from those signals is
evaluated using Long-Short Term Memory (LSTM) and Multilayer Perceptron (MLP)
networks in conjunction with the proposed convolution network algorithm.

Data set or Total The results and estimated value
energy consumption for each home appliance
Signal decomposition Transmitting data into neural network and
by neural network energy consumption estimation of each device

Y !

Achieved signals related to | Applying fuzzy wavelet and breaking
each home appliance " | each equipment signals into sub-signals

Figure 4. Decomposing a dataset into individual signals for each machine that uses energy.
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As shown in Table 1, the developed convolutional network algorithm has the following
structure.

Table 1. The layers of the proposed neural network

Dense Layers (hidden units = window length, activation= linear )

Dense Layers (hidden units = window length*5, activation = ReLU )

1D Convolutional Layer (filter num. = 3, filter size = 4, stride = 1, activation = ReLU)
Dense Layers (hidden units = window length*4, activation = ReLU )

Dense Layers (hidden units = window length*4, activation = ReLU )

Dense Layers (hidden units = window length*4, activation = ReLU )

Dense Layers (hidden units = window length*4, activation = ReLU )

1D Convolutional Layer (filter num. = 16, filter size = 4, stride = 1,activation = ReLU)
1D Convolutional Layer (filter num. = 32, filter size = 4, stride = 1, activation = ReL.U)
1D Convolutional Layer (filter num. = 64, filter size = 4, stride = 1, activation = ReLU)
SpatialDropout1D(rate, **kwargs)

1D Convolutional Layer (filter num. = 128, filter size = 4, stride = 1, activation = ReLU)
1D Convolutional Layer (filter num. = 128, filter size = 4, stride = 1, activation = ReLU)
SpatialDropout1D(rate, **kwargs)

1D Convolutional Layer (filter num. = 256, filter size = 4, stride = 1, activation = ReLU)
1D Convolutional Layer (filter num. = 2586, filter size = 4, stride = 1, activation = ReLU)
1D Convolutional Layer (filter num. = 512, filter size = 4, stride = 1, activation = ReL.U)
1D Convolutional Layer (filter num. = 512, filter size = 4, stride = 1, activation = ReL.U)
1D Convolutional Layer (filter num. = 1024, filter size = 4, stride = 1, activation = ReLU)
1D Convolutional Layer (filter num. = 1024, filter size = 4, stride = 1, activation = ReLU)

After the individual components of the fuzzy wavelet convolutional neural network
(FWCNN) technique have been outlined, the underlying mathematical equation may be
formulated as follows:

2 = ) P 0O + @) ® + b1, @
Time-series data computation is described by the equation (2), in which y, and y, refer to the
output part of the deep representation, respectively. Weights of w, and w, also denote the output
of the fuzzy representation. Then, the nonlinear function modifies the reaction result in the
reaction layer. As such, the following expression defines the value predicted at period t — th.

IPNCES
9= g(x") = ®
1-e 3

Where xi(”l) refers to the combined result of both fuzzy and neural representations. In
addition, the Hyperbolic Tangent (Tanh) of the activation function is defined as g. Tanh
ensures that the output values range between —1 and1. That is, close to the normalized input
values.

By minimizing the mean squared error between the predicted and actual values, the
FWCNN model may be trained to predict energy consumption from input series data.

The reconstruction error can be achieved as follows:

L(O) = lly, - 9,112 @

In whichy,, y. and 6 describe observed value, predicted value, and all the learnable
parameters in the FWCNN model, respectively. Before making any predictions, it is essential
to develop the FWCNN model by establishing initial values for its parameters and then
adjusting it to perfection. The convergence of the neural network to a desirable minimum
may be aided by greater preparation. Parameterization of the FWCNN model involves both
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the FN and CNN. The CNN's weights are initially randomized for convenience, based on the
uniform distribution principle.

@~V |- s | 5)
Where n~V s the number of (1 — 1) — th layer nodes on node i in the [ — th layer. From
the start, each node has an orientation b of 0. In both the FN and CNN sections, the number
of nodes required for the pooling layer is present in the final layer. Weights between layers,
as well as the mean value pi and variance oi 2of the membership function, are all parameters
that must be initialized in the FN portion of the FWCNN. The weight between the
"Fuzzification," layers and "Operation” layers is adjusted to 1. The value of pi is set by a
statistical approach, and 6i2 may be calculated from the mean value. Tuning settings for the
FWCNN model may be adjusted in a task-oriented manner once its components have been
correctly set up. The FWCNN model is trained using back-propagation and the Adam
algorithm to ensure that the parameters are properly adjusted. The Adam algorithm excels in
non-convex maximum optimization and is therefore well-suited to problems involving big
datasets and high-dimensional spaces. The procedure for updating parameters is outlined
below:
The gradient b.of the parameters is calculated concerning the equation (6):

l A
p, = 2LO) _ 5 2LO) ay® ax® ©)
t ™ e T 4n f’yi(l) -axi(o'ae(l)

Where L(6) refers to the reconstruction error defined in equation 7, and 6 reflects the FWCNN model's general

parameter adjustment. The activation function and the neuron's output yl.(l) are used to derive the last two
components in equation (6), the first of which is the back-propagation term.
Estimates for the first and second moments of orientation may be found in equations (7) and (8), respectively.

me = fr.mey + (1 — B1)b; (7
Ve = Bp. vy + (1= B)b 8

In which B, and B, reflect exponential decline (decay) rates for the first and second instant
estimates, respectively. Vector m;_, is the first moment, while v, represents the second raw
moment vector. Generally, m, and v, are defined as having an initial value of O.
Also, B4, 52 € [0,1).

With the use of equations (7) and (8), it determines a revised estimate for the elapsed time
since the first instant and a new estimate for the time since the first moment (second initial
moment estimate). Updates to the parameters are calculated using equations (9) and (10),

e =m/(1 = Bi) )
v, =v:/(1— B5) (10)

In equations (8) and (9), m; and v, represent the first torque vector and the second raw

torque vector, respectively. Updates to the parameters are calculated using equation 11.

0, =0, —a.m /(D + ¢, (12)

Where parameter values at time t — 1 are denoted by 8;_,, the learning rate is given by a,
and the constant of 8-10 is designated by €. The FWCNN model has the following sets of
parameters: 6 = {W, b, u, c}.

In most cases, the algorithm'’s performance may be measured via different metrics. There are
a variety of functions that may be employed to determine either the algorithm's error or its
accuracy, with the decision ultimately falling to the algorithm architect and the condition of
the problem under consideration. Several approaches are explored in this investigation, as
shown below. The following metrics are used to assess the precision and recall of classified




Abdolreza Rahmanifar, Mehran Khalaj, Ali Taghizadeh Harat & Asghar Darigh

data, as well as the overall accuracy of the neural network’s classification (Kulkarni, Chong,
Batarseh,2020). Within the realm of information retrieval, the practical criteria of accuracy and
recall determine how well the documents retrieved by the system meet the user's
requirements. The following are some definitions of these metrics:

[Accuracy=Related document number after retrieval / the number of documents retrieved in
total]

[Recall=Related document number after retrieval / the number of documents retrieved in total
in the database]

Table 2. A table for determining the algorithm's accuracy: the confusion matrix

Model-assigned class
Positive Negative
Positive True Positive (TP) False Negative (FN)
Actual class - — -
Negative False Positive (FP) True Negative (TN)

According to Table 2, there are some descriptions as follows (Khodadadi, Riazi, Yazdani,2024):
True Positive (TP): it identifies the correctly classified positive samples.

True Negative (TN): it identifies the correctly classified negative samples.

False Positive (FP): it identifies samples that are being falsely classified as positive.

False Negative (FN): it identifies samples that are being falsely classified as negative.

[Recall (Sensitivity): The number of system true positive samples/ Total number of true
positive samples=TP/(TP+FN)]

[Precision: The number of system true positive samples/ Total number of predicted positive
samples=TP/(TP+FP)]

[Accuracy: (TP + TN)/(TP + TN + FP + FN)].

The algorithm error has been determined in two different ways in this study, and both metrics
are equivalent in their application. For the sake of facilitating comparisons between the
proposed algorithm and other studies, both approaches are used. This is due to the fact that
research papers use different approaches. That is to say, some authors have used one
approach and others have utilized another one. Both approaches are presented as equations
(12) and (13).

N (p,—
RMSE = [2=10ty0? (12)
N

1 ~
MAE = p ZZ=1|Yt = Vel (13)

This dataset is a standard one, and it was taken from Kelly and Knottenbelt (Kelly,
Knottenbelt,2015) . Several recent high-quality studies have utilized this dataset to train and
test Al and ML models. Included in this dataset are details about the electrical use of five
different London homes, each of which has been assigned a unique "Household" identifier.
Simply put, the household-related data in this dataset is organized as Household 1, Household
2, Household 3, Household 4, and Household 5. This dataset contains records that
individually indicate the entire amount of power used by a single residence's worth of
equipment, including but not limited to TVs, washing machines, refrigerators, and more. The
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data in this dataset was gathered over the course of a year, making it a time-series dataset. A
24-hour time series plot of all available data is shown in Figure 5 (Kelly& Knottenbelt,2015)

Mains (active power)
Fridge freezer

Other submeters
Dish washer

Washer dryer

Kettle

Home theatre PC

Power (kW)

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Time (hour of day)

Figure 5. Data from the DLAE dataset depicting the overall electrical appliance consumption over 24
hours [27]

3. Results and discussion

3-1. The proposed neural network results in signal decomposition

It is at this stage that the results of the convolutional neural network technique used to
decompose the appliance data from the whole signal are shown. At this point, what follow is
the results of processing the data from each appliance through the convolutional neural
network algorithm, which decomposed the individual appliance signals from the whole. The
accuracy and error of the algorithm for each electrical appliance are included in the findings.
Values for Accuracy, Precision, and Recall regarding the signal separation of electrical
appliances are shown in Table 3. These values are associated with the assessment of the
convolution network’s output in decomposing the produced data as belonging to a certain
appliance.

Table 3. Error and accuracy in signal decomposition for each electrical device

Device name Precision Recall Accuracy MAE
Dishwasher 0.88% 0.99% 0.97% 16%
Kettle 1.00% 0.96% 0.99% 14%
Fridge 0.84% 0.82% 0.86% 16%
Microwave 0.96% 0.87% 0.99% 5%
Washing m. 0.51% 0.99% 0.78% 35%

3-2. Training neural networks to estimate energy consumption

The proposed neural network's training has extensively used the Stochastic Gradient Descent
(SGD) optimization approach, and the Nesterov Accelerated Gradient (NAG) optimization
method has been tested as a secondary option for the new algorithm at the end of the process.
Table 4 lists the outcomes achieved by the proposed method while using both optimization
techniques.
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Table 4. Comparing the output of the proposed algorithm using SGD and NAG optimization methods

Home appliances Accuracy Loss MAE

NAG SGD NAG SGD NAG SGD

Dishwasher 0.96 0.97 7.6 7.3 9.8 9.4
Kettle 0.99 1.0 3.9 3.9 5.2 5.3
Fridge 0.90 0.89 2.9 3.1 12.8 12.0
Microwave 0.95 0.99 6.6 6.3 111 10.11
Washing m. 0.94 0.97 8.7 8.8 16.9 14.0

Average 0.948% 0.964% 5.94% 5.88% 11.16% 10.162%

Estimates generated by various algorithms and the proposed technique are graphically
shown in Figure 6 to 8. In each graph, the black lines indicate the ground truth, while the
colored lines represent the algorithms' estimates. In fact, the black lines in the figures
typically represent the test data. Estimates for the test data have been made using the
proposed algorithm, which has been trained using the training data. The test compares the
estimated results to the ground truth in order to evaluate the algorithms' performance in a
future simulation.
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Figure 6. FWCNN estimation for Fridge Consumption.
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Figure 7. LSTM estimation for Fridge Consumption.
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Figure 8. MLP estimation for Fridge Consumption

This section compares the main algorithm described in this thesis to other algorithms used to
estimate energy consumption in order to establish the effectiveness of the proposed main
algorithm. Also, a comparison is made with other methodologies using a similar dataset.
Table 5 illustrates the results of this comparison.

Table 5. Comparison between the proposed algorithm and other algorithms

Algorithm dataset | Accuracy (%) | MAE (%) Ref.
The proposed FWCNN Uk-dale 96.4 10.162 [*]
Faustine, Pereira, Bousbiat,
CNN Uk-dale - 14.86 Kulkarni, 2020
Faustine, Pereira, Bousbiat,
U-NET Uk-dale - 11.174 Kulkarni, 2020
ARIMA Uk-dale - 15.5670 Yan & et al.2018
SVR Uk-dale - 10.6512 Yan & et al.2018
Persis. Uk-dale - 13.6995 Yan & et al.2018

Multi-Step Short-Term Hybrid

Deep Learning Uk-dale - 10.1582 Yan & et al.2018

SVM Uk-dale 79.35 - Singh ,2018

unsupervised data clustering and

frequent pattern mining analysis Uk-dale 89.58 i Singh ,2018
seq2seq Uk-dale - 17.999 Zhang, Zhong, Wang,2018
seq2point Uk-dale - 15.472 Zhang, Zhong, Wang,2018
Markov model (AFHMM) Uk-dale - 82.79 Zhang, Zhong, Wang,2018
seq2seq(Kelly) Uk-dale - 93.488 Kelly and Knottenbelt,2015
VDOCNN Uk-dale 85.84 - Kim, Lim,2021
Xception Uk-dale 85.84 - Kim, Lim,2021
Concatenate-DenseNet121 Uk-dale 90.25 - Kim, Lim,2021
hﬁ%ﬁ:ldrg;r;;y Uk-dale 86.49 - Hu, Lin, Gururaj,2021
Autoencoder Uk-dale 94.00 - Kelly, Knottenbelt,2015
FFNN Uk-dale 95.385 - Franco & et al, 2021

LPH Uk-dale 98.51 - Himeur& et al ,2021
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CNN-LSTM Uk-dale 97.995 - Zhou, Feng, Li,2021

Table 5 indicates that various algorithms have produced varying outcomes, with CNN-based
algorithms showing the most improvement in recent years. Nevertheless, the fact that the
algorithms are not being compared on identical datasets makes the comparisons slightly
challenging. For instance, the number of samples used in the publication discussed in the
CNN-LSTM algorithm differs from the number of samples used in this research and other
papers. The result of the algorithm may be viewed to provide insight into how well it
performs when classifying relevant data since; in general, all algorithms utilize relatively
similar datasets. This means that the proposed algorithm is a top contender among the
existing algorithms.

The absence of a concrete criterion for evaluating the presented algorithms is only one of the
numerous obstacles in the way of these tests. While it is important to know how many
samples were used for training and testing an algorithm, in some research studies, this
information is left vague. Owing to the significance of this factor in comparing algorithms, it
is almost impossible to identify with precision which algorithm is superior to others. This
provides a foundation for future research into the means of addressing these difficulties and
into the means of various combinations to improve this algorithm. Furthermore, improved
approaches for optimizing the descending gradient may be obtained to increase the
algorithm's accuracy by incorporating contemporary optimization techniques including SGD
and NAG.

Future NILM studies can benefit from integrating loT data such as temperature, humidity,
and occupancy sensors to enhance appliance detection accuracy. Employing deep learning
models like RNNSs or transformers can improve time-series analysis of consumption behavior.
Researchers should focus on distinguishing appliances with similar usage profiles using
higher-level features such as operational sounds or specific frequency patterns. Real-time
NILM systems could enable early detection of anomalies and faults. Developing region-
specific algorithms tailored to cultural and climatic energy-use patterns can improve
adaptability. Lastly, behavioral research should explore how detailed consumption feedback
affects user habits and energy efficiency.

NILM research faces several limitations, including difficulty in distinguishing between
appliances with similar energy signatures such as refrigerators and air conditioners and
vulnerability to signal and environmental noise, which can reduce algorithm accuracy.
Scalability is another concern, as models effective in one building type may not perform
equally well in different settings. The lack of diverse, standardized datasets restricts the
replicability and comparison of results. Privacy concerns also emerge when collecting
detailed consumption data, particularly in real-time scenarios. Furthermore, accurately
separating multiple devices operating simultaneously presents a challenge due to signal
overlap. Finally, the computational cost and complexity of advanced models, like deep
learning, may limit their practical deployment in low-resource devices.
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