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Artificial Intelligence (Al) is increasingly adopted in agricultural extension services to

enhance knowledge sharing, improve decision-making, and promote sustainable
farming methods. This study presentsabibliometric analysis of the global research landscape
on the application of Al in agricultural extension. Using data from two major sources, Web
of Science and Scopus databases, we analyzed publication trends, co-authorship network,
bibliographic coupling, and co-occurrence network from 1997 to 2024. The findings reveal
a slow but steady rise in publications. Indonesia, the United States of America, India, China,
and the United Kingdom emerged as the top five countries in publication count, with notable
contributions from developed and underdeveloped countries. The co-authorship and

i%}’;ﬁ;ﬁs bibliographic coupling networks represent a high level of collaboration among the
Intelligence, participating coqntri_es \_/vith global access to_ research on AI in_ agricu_lture_ll extens_ion.
Agricultural Keyword analysis highlights a strong emphasis on technological innovation in Al-driven
Extension, agricultural extension, with an emerging focus on areas such as machine learning, farmers’
M achine knowledge, adoption, agricultural practices, and climate-smart agriculture. We recommend
Learning, that stakeholders in the agricultural sectorinvestin the development of localized and context-
Smart aware Al applications. In addition, strengthen capacity -building efforts to ensure widespread
Farming and equitable adoption of these technologies in rural advisory services.

1. Introduction

Agricultural extension has played a key role in educating farmers on the best farming practices worldwide.
However, the limited number of these extension officers, as well as rural accessibility in developing countries, has
greatly affected their functions. Unfortunately, the majority of the farmers reside in the rural areas, and a greater
percentage of the farmlands are in the rural communities. Agricultural extension workers serve as a bridge between
academia, the industry, and the farmers, thus bringing the latest technology and best farming techniques to the farmers.
As emphasized by Madaswamy (2020), farmers require timely, customized, and location-specific information to
effectively manage their production, reduce risks, and market their produce to suitable market opportunities.

Artificial intelligence (Al) according to IBM (2024), is the technology that allows computers and machines to
mimic human abilities such as learning, understanding, solving problems, making decisions, being creative, and
operating independently. Al has evolved through derivative concepts that have emerged for a long time from Al to
machine learning, deep learning, and generative Al (Gen Al). Alin agricultural extension is therefore, the use of Al
technologies to support and enhance the delivery of agricultural extension services. Al helps in providing decision
support services, predictive analytics, chatbots and virtual assistants, disease diagnostic Apps for crops and animals
using image recognition, and so on. In short, Al in agricultural extension aims to make advisory services more
efficient, accessible, and tailored to farmers’ needs. Agricultural advisory systems and agricultural data analysis are
effectively done using machine learning algorithms (Logesh & Domnic, 2024). In modern agriculture practices,
machine learning facilitates data-driven decision making by enabling precise crop management, resource-efficient
farming, yield optimization, and the early detection of potential crop failures. Ben-Ayed and Hanana (2021)
highlighted that to achieve food security with the projected world population coupled with climate change, a harsh
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socioeconomic situation, and resource scarcity, the intervention of forecasting strategy and computational tools like
Al is needed.

Information and Communication Technology (ICT) has acted as a cataly st for modern agricultural practices such
as smart farming, precision agriculture, digital agriculture, and e-agriculture which serve as the foundation for Al
applications in agriculture. Al has become a household name with its application in almost every field of human
endeavor, and agricultural extension is not an exception. This study uses literature from the Web of Science Core
Citation and Scopus databases to analyze the trend of research publications on the application of Al in agricultural
extension services. The study therefore, seeks to answer these research questions (RQs):

i.  Whathas beenthe growth pattern of scientific publications on the application of Al in agricultural extension,
and how has Al been applied in agricultural extension so far?

ii.  Which countries have made the most significant contributions in the area of application of Al in agricultural
extension, and what have been their collaboration patterns?

iii. Whatis the current research focus on the application of Al in agricultural extension?

2. Materials and Methods

The advanced search option on the Web of Science Core  Collection  database
(https://www.webofscience.com/wos/woscc/advanced-search) and Scopus database
(https://www.scopus.convsearch/form.uri?display=advanced) were used to collect relevant articles for the study on
the 8th of April, 2025. The Web of Science Core Collection database and Scopus were chosen because of the high
quality and credibility of their content with a global coverage. They also have powerful tools for citation analysis.
This makes it easier to track research outputand trends in a particular research area. The Web of Science Core
Collection and Scopus databases covera wide range of disciplines. Figures 1and 2 represent the detailed approach to
how this bibliometric analysis of the application of Al in agricultural extension was conducted. A search query was
logically formed to ensure that only relevant articles were returned.

2.1 Inclusion and Exclusion Criteria

The following inclusion and exclusion criteria were applied to filter the results returned by the query statement.
The article's publication language was restricted to the English language, thus excluding articles published in non-
English languages. Also, journal articles, conference papers, and book chapters were chosen as the document type.
Review articles, editorial materials, letters, meeting abstracts,and others were excluded. Although 2025 has already
witnessed a reasonable number of publications in its first quarter, it was excluded. Therefore, the publication years
were set from 1997 to 2024 for the bibliometric analysis. After downloading the documents from the Web of Science
Core Collection database and Scopus, the records were merged in Microsoft Excel, and duplicates were removed as
detailed in Figure 2.

2.2 Bibliometric Analysis Tool

The VOSviewer bibliometric analysis tool was used to visualize the results. The final records after removing the
duplicates, were imported into VOSviewer for the bibliometric analysis. Its strength in visual mapping, coupled with
advanced bibliometric tools, makes it highly valuable for identifying research trends, uncovering relationships, and
knowledge gaps in scholarly publications.

ToPIC *  KEYWORDS/PHRASES
FORM DATABSE
SEARCH SELECTION
QUERY
FILTER THE DOWNLOAD
RESULTS ’ RESULTS
ANALYZE THE VISUALIZE THE
RESULTS . RESULTS
CONCLUSION

Figure 1. Bibliometric Analysis Flow Diagram
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Identification of studies via databases
Database 1: Web of Science (WoS) Database 2: Scopus
Search Query: (TS=(" Artificial SeaIc_h Query: (TITLE-ABS-KEY("Artificial
Intelligence*" OR "AI" OR “Large Intelligence®" OR "AT" OR "Large Language
Language Models®*” OE “LLM™ OR Models*" OR "LLM" OR "Robots*" OR
“Robots®” OR "Deep Leaming®" OR "Deep Learning®" OR "Machine Learning™®"
- "Machine Learning®" OR "Computer OR "Computer Vision*" OR "Internet of
a Vision®" OR "Internet of Things*" OR Things*" OR "IoT" OR "Precision Farming*"
.Lg 0% "igﬁifﬁﬂrezf;fmg*" o OR "Smart Agriculture*")) AND TITLE-
N - - T " : 1 *kn
8 | | TS("Agricultural Extension®" OR "e- e
& | | Agricultural Extension*" OR "Digital e-Agricultural e T 'Digital
" | | Agricultural Extension®*' OR "Digital Agricultural  Extension™ OR  "Digital
Farming  Advisory*' OR  "Cyber Farming ‘L‘_Ldnsory*" DIf. "Cyber Extension®"
Extension*" OR "Agricultural Advisory OR "Agricultural Advisory Systems*" OR
Systems*" OR "Agricultural Knowledge "Agricultural Knowledge dissemination®" )
dissemination®" )
* v
Eecords identified from WoS Records identified from Scopus
Databazes (n=87) Databazes (n=21T7)
1 :
Becords downloaded from WoS Eecords downloaded from Scopus
after applying database filters after applying database filters (n =
(n=73) 190}
'g” v J
E Becords merged from the two databases (n = 263)
v
Duplicate records removed after merging the data from the two
databaszes (n=47)

— v

Records included for the bibliometric
analysis (n =216)

Included

Figure 2. Literature Search Strategy

3. Results and Discussion

3.1 Publication Trend and Areas of Application

RQ1: What has been the growth pattern of scientific publications on the applicationof Al in agricultural extension,
and how has Al been applied inagricultural extension so far?

The retrieved documents show a slow and fluctuating number of publications from 1997 to 2018 but a rising
trajectory in publication count from 2019 to 2024, with little variation in the yearly publications output relating to Al
in agricultural extension services. Similarly, the records indicate a growing number of citations from 2016 to 2023,
with a decline in 2024. The consistentgrowth in publication count from 2019 to date results from the overwhelming

acceptance of Al in our daily routines.
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Figure 3. Publication Trend on Application of Al in Agricultural Extension
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Figure 4. Citations Trend on Application of Alin Agricultural Extension

We review the screened articles to appraise how Al has been applied in agricultural extension services. Different
areas of agriculture, such as crop production, animal husbandry, market predictions, weather forecasting, disease
detection, and irrigation requirements, have applied Al through machine learning (ML) algorithms, thereby educating
farmers on the best farming practices. Chatbots that assume the position of an agricultural extension officer are
developed to provide automated, quick responses to farmers' queries, which gives the farmers the impression of
virtually communicating with an extension officer. In India, they have the KissanAl (https://kissan.ai), a sophisticated
multilingual Al platform that offers personalized, voice-based support for every agricultural need, empowering
farmers, agribusinesses, governments, and nonprofit organizations around the globe. The International Crop Research
Institute for Semi-Arid Tropics (ICRISAT) in collaboration with Microsoft India, also developed an Al Sowing App
(Bizna, 2016; FAO, 2017) to guide farmers in Asia and Sub-Saharan Africa. The Al Sowing App provides
participating farmers with sowing recommendations on the best dates for planting. These advisories are delivered via
text messages to their mobile phones. Another Al-powered App that provides agricultural extension services to
farmers is Plantix (plantixnet). Ithelps farmers to diagnose and treat crop diseases, thus improving farming knowledge
and productivity.
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The introduction of large language models (LLMs) suchas ChatGPT and Deepseek has been explored by farmers
in search of agricultural advisory support. Ibrahim et al. (2024) evaluated the responses by ChatGPT to farmers’
questions on irrigated lowland rice cultivation from farmers in Kano State, Nigeria. It was observed that ChatGPT
provided the best responses compared to the selected agricultural extension officers. Even though ChatGPT failed in
other areas, such as seed rate, fertilizer application rate, and planting time. It implies that Al chatbots specifically
trained for such a purpose could offer alternative support to agricultural extension officers. This correlates with the
findings of Tzachor et al. (2023), who explored ChatGPT for generating technical guidance for cassava farmers in
Nigeria. They suggested an ideal development process that involves human experts at every stage to provide a safe
and responsible use of LLMs in global agriculture. Due to the sparse application of LLMs in the agricultural extension
domain based on the unstructured nature of agricultural data, Kpodo et al. (2024) proposed a novel question and
answers benchmark dataset called agricultural extension question and answers (AgXQA). This novel dataset enhances
the development of specialized language models for agricultural extension and the agricultural domain in general.

Anotherrecent application of Al in agricultural extension services is the use of the Internet of Things (IoT) based
devices. 10T devices have been applied in helping farmers in pestand insect detection, unmanned aerial vehicles for
crop surveillance, irrigation, crop status, and even used forsoil preparation (Ayaz etal., 2019), thereby aiding farmers
in adopting best farming practices. Habibie et al. (2021) suggested that satellite remote sensing, geographical
information systems (GIS), and analytical hierarchy process (AHP) based multicriteria analysis can be effectively
applied in agricultural extension services to identify suitable land for enhancing maize production.

In disease diagnoses and management, Al has been extensively applied in developing various crop and animal
disease detection systems through machine learning algorithms and computer vision techniques. Some are designed
as mobile applications (Johannes et al., 2017; Loyani & Machuve, 2021; Mrisho et al., 2020; Petrellis, 2019;
Ramcharan et al., 2019; Ranjith et al., 2017; Sanga et al., 2020; Verma et al., 2019) to facilitate access to these
programs, allowing farmers and agricultural extension workers to utilize their phones for access. Samuel (2022)
introduced an ensemble Seasonal AutoRegressive Integrated Moving Average (SARIMA)-Compact Classification
Tree (CCT) machine learning algorithm. The SA-CCT model was designed to provide agricultural extension agents
and farmers in South-West Nigeria with early and reliable predictions of black pod disease.

Robotics has also been investigated in crop disease detection and classification. Anwar et al. (2021) explored
designing a robotic arm system for detecting and classifying various tomato leaf diseases using an experimental
framework. The systemexhibited advanced capabilities by detecting and classifying tomato plant diseases, indicating
a high level of diagnostic accuracy and computational intelligence. Furthermore, robots are applied in the harvesting
of crops (Aljanobi etal., 2010; Bac, 2015; Bechar & Vigneault, 2016; De-An etal., 2011; Ling etal., 2004; Wan Ishak
etal., 2010). These harvesting robots can harvestcrops using the best harvesting practices. In addition, numerous plant
factories utilize robotic systems for sorting, transferring, and handling plants, as well as for quality control and post-
harvest operations (Shamshiri et al., 2018).

3.2 Analysis of Countries' Publications and Collaboration

RQ2: Which countries have made the most significant contributions in the application of Al in agricultural
extension,and what have been their collaboration patterns?

Indonesia, the United States of America (USA), India, China, and the United Kingdom (UK) were ranked the top
5 Countries with many publications on Al applications in agricultural extension services. However, the USA, UK,
China, India, and Kenya are ranked the top 5 countries based on the total link strength computed by VOSviewer as
represented in Table 2. The co-authorship network shows a high collaboration among the participating countries.
However, these country pairs have the highest collaborations as indicated by the thick lines linking them together:
USA-China, India-Japan, China-Thailand, UK-China, Uganda-USA, Kenya-Uganda, and USA-Germany. This may
largely be attributed to the technological advancement of most of these countries, coupled with their interest in
agricultural production. In addition, most of these countries have some of the highest populations in the world. The
bibliographic coupling network shows six major clusters as indicated by the color codes: green, yellow, red, blue,
purple, and light blue, represented in Figure 6. The network points to a global research access in the applications of
Al in agricultural extension services, where different countries reference other countries’ research output.
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Table 1. Top 10 Countries Ranked by Publication Count

SN Country Documents Percentage (%)
1 Indonesia 32 14.81
2 United States of America 27 12.50
3 India 23 10.65
4 China 15 6.94
5 United Kingdom 14 6.48
6 Kenya 11 5.09
7 Nigeria 10 4.63
8 Australia 9 417
9 South Africa 9 417
10 Bangladesh 8 3.70
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Figure 5. Co-authorship Network by Countries
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Table 2. Top 15 Countries Ranked by Total Link Strength

Country Documents Citations Total link strength
United States of America 27 617 920.04
United Kingdom 14 216 639.98
China 15 440 523.67
India 23 253 495.25
Kenya 11 280 453.49
Australia 9 334 397.77
Bangladesh 8 161 395.89
Japan 7 180 392.77
Germany 5 84 370.00
Nigeria 10 93 313.93
Uganda 7 584 312.79
South Africa 9 172 227.01
Ghana 7 140 198.13
Netherlands 5 325 195.67
Zimbabwe 3 80 192.5
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Figure 6. Bibliographic Coupling by Countries
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3.3 Keyword Co-occurrence Analysis

RQ3: What is the current research focus on the application of Al in agricultural extension?

Figures 7 and 8 represent the keyword co-occurrence on the application of Al in agricultural
extension. Research on Al in agricultural extension services has covered many aspects of
agriculture. These studies focus on developing Al-driven solutions that improve farm efficiency,
reduce environmental impact, and support adaptation to climate variability. Dominant keywords
include agricultural robots, agricultural extension, climate change, artificial intelligence, farming
systems, irrigation, adaptive management, machine learning, food security, technology adoption,
and crop production. The light green and yellow colored keywords in Figure 8 represent the
trending terms. These keywords include machine learning, remote sensing, smart agriculture,
farmers' attitude, adoption, climate smart agriculture, smallholder farmers, decision support
systems, food security, human resource management, crop yield, agricultural technology, etc.
Researchers are consistently exploring novel methods to leverage Al for boosting agricultural
productivity, promoting sustainable farming practices, and enhancing climate resilience.
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Figure 7. Network Analysis of Co-occurrence Keywords
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The integration of Al in agricultural extension services is of utmost importance, considering the wide adoption of
smart devices and Al technology into our daily activities. According to the International Telecommunication Union
(ITU), fourout of five people own a phone,and about 70% of these people use the internet (ITU, 2024). This implies
that Al-based agricultural extension services can reach remote areas very easily, thus making it accessible to more
farmers. The prospects of Al in agricultural extension are overwhelming. However, the majority of the farmers in
developing nations lack basic ICT skills, hence the need to train them to properly harness this technology. Al-driven
agricultural advisory services powered by mobile platforms, chatbots, and cloud-based systems can extend agricultural
extension services to remote and underserved regions. This enhances scalability and ensures that timely, personalized
support reaches a broader population of farmers.

5. Conclusion and Recommendations

In summary, the bibliometric analysis highlights the rapid development of Al applications in agricultural extension
services while identifying knowledge gaps and collaboration needs. There has been a notable increase in publications
on the application of Al in agricultural extension, particularly since 2019. This surge reflects the rising interest in
digital agriculture, advancements in Al technologies, and the integration of big data into the agricultural sector.
Similarly, there has been a corresponding increase in citations from 2016 onwards, reflecting the researchers' high
interestin applying Al in agricultural extension services. The research output covers the use of mobile and web -based
applications for crop and animal disease diagnosis and management; the use of LLMs for seeking agricultural advisory
services; robots in harvesting, crop monitoring, weeding, spraying and irrigation, seeding and planting, and
autonomous tractors; thus bringing the best farming practices to the farmers.

The co-authorship network represents a high level of collaboration among the participating countries with a global
coverage. However, more collaboration between the developed and developing nations is required to tap into the rich
technological advancements in building local solutions. The bibliographic coupling network also reveals a global
access to research on Al in agricultural extension. Keyword analysis highlights a strong emphasis on technological
innovation in Al-driven agricultural extension, with an emerging focus on areas such as machine learning, farmers’
knowledge, adoption, agricultural practices, and climate smart agriculture. Future studies should focus on local content
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development and scalable solutions to ensure that Al-based systems effectively address the diverse needs of farmers
and extension workers across different agricultural environments.
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