
Journal of Applied Dynamic Systems and Control,Vol.8, No.2, 2025: 33-47

33

Estimating Redevelopment Costs for High-Risk
Components Using a Genetic Algorithm

Zeinab Faraji1, Faraein Aeini2*, Homayun Motameni3

Abstract–Component selection is a key challenge in component-based software systems, particularly when

integrating a mix of commercially available off-the-shelf (COTS) and in-house components. This study emphasizes the
impact of high-risk COTS components, which often require extensive modification to align with system requirements,
potentially affecting cost, efficiency, and performance. To address this, high-risk components are initially identified
based on reliability, and a genetic algorithm is then employed to compute a cost coefficient for their redevelopment. The
proposed method led to improved outcomes in component selection, as demonstrated in a case study that reported
increases in Intra-modular Coupling Density (ICD) by up to 0.05 and functionality gains of up to 1.08—validating the
effectiveness of this cost-aware optimization strategy.

Keywords: Component-Based Software Engineering (CBSE); Component Selection; High-Risk
Components; Genetic Coefficient; Software Cost Development

1. Introduction

This article gives you guidelines for preparing papers
Component-based software engineering (CBSE) is a
prevalent approach to software development, utilizing pre-
existing software components. These components are
largely independent and replaceable, designed to perform
specific tasks within well-defined contexts. Developers
employ CBSE to mitigate software complexities, streamline
change management, and enhance software reusability
[1,2,3]. Reusable software components are generally
classified into four categories [4,5]. The first category
comprises ready-made components, also known as
commercially available off-the-shelf (COTS) components.
These are obtained from third-party sources or are
integrated into existing projects and can be used in the
software development process without modification. The
second category consists of complete components, which
closely resemble new project components in terms of
specifications, design, code, and testing. Development
teams are typically familiar with these components,
considering them low-risk. The third category includes
incomplete components, or high-risk components, which
share similarities with a current project but require

substantial adjustments. Due to limited team expertise,
these components are deemed high-risk. The fourth
category is new components, which must be developed by
the team to fulfill specific project requirements. COTS
components encompass ready-made, complete, and
incomplete components, with incomplete components
classified as high-risk. High-risk components are often
selected for their initial low cost; however, they can exhibit
low reliability and negatively impact quality attributes such
as Intra-modular Coupling Density (ICD) and cohesion,
ultimately increasing system complexity. Therefore,
effective component selection necessitates identifying
component types and accurately estimating the
redevelopment cost of high-risk components. This paper
presents a method using a genetic algorithm to calculate the
development cost factor for high-risk components. The
results demonstrate the efficacy of this optimization and
calculation approach in determining the software
redevelopment cost factor for component selection. The
primary objective of this study is to differentiate component
selection and ordering strategies to enhance system
performance, minimize the inclusion of high-risk
components, and reduce redevelopment costs. Following
the recommendation in [3], we optimized ICD and a
performance function as objective functions, subject to
constraints related to cost, delivery time, reliability, and
ICD. This research investigates the following hypotheses:

1. Selecting fewer high-risk components results in a
more optimal set of components.

2. Employing a genetic optimization approach leads to

1 Department of Computer Engineering, Sar. C., Islamic Azad University,

Sari, Iran. Email:zeinab.faraji84@gmail.com

2* Corresponding Author :Department of Computer Engineering, Sar. C.,

Islamic Azad University, Sari, Iran. Email: aeini@ iausari.ac.ir

3 Department of Computer Engineering, Sar. C., Islamic Azad University,

Sari, Iran. Email: motameni@iausari.ac.ir

Received: 2025.05.08; Accepted: 2025.07.16

 Estimating Redevelopment Costs for High-Risk Components using a Genetic Algorithm

34

a more precise evaluation of the redevelopment effort
required for COTS components.

While genetic algorithms are frequently used for
component selection, their potential for optimizing

objective functions and constraints is often underutilized.
The method proposed in this paper leverages a genetic
algorithm to determine the optimal

coefficients for the cost constraint function, owing to its
robust output and mathematical foundation. The data
collection for this study includes components from various
device versions and internal parts assigned to different
software modules. Table 1 show A summary of the
methods presented by researchers in optimal components
selection of software and figure 1 is showing pie chart of
distribution of methods optimization, cost criteria and
optimization types adopt to table 1.

The remainder of this paper is organized as follows:
Section 2 reviews related work on optimal component
selection, with a focus on cost considerations. Section 3
details the proposed approach. Section 4 presents the
optimization problem within the case study. Section 5
presents the experimental results of the case study. Section
6 compares the results with other methods from the
literature. Finally, Section 7 concludes the paper and
outlines directions for future research.

Table 1: A summary of the methods presented by researchers in optimal components selection of software

Optimization type Optimization method Cost criteria (objective/constraint)

Single objective Hierarchical clustering algorithms Cost/budget in constraint

Single objective AHP based on the access frequencies of the modules Cost/budget in constraint

Single objective fuzzy optimization model Cost/budget in constraint

Single objective optimization model based on decision variables Cost in objective function

Multi objective fuzzy mathematical programming Cost in objective function

Multi objective goal programming approach Cost/budget in objective and constraint

Multi objective Multi-criteria optimization approach in fuzzy environment Cost in objective function

Multi objective fuzzy optimization model Cost/budget in constraint

Multi objective fuzzy optimization model Cost in objective constraint

Multi objective fuzzy optimization model Cost/budget in constraint

Multi objective genetic algorithm (GA)-based hybrid approach with fuzzy exponential
membership function

Cost/budget in constraint

Journal of Applied Dynamic Systems and Control,Vol.8, No.2, 2025: 33-47

35

Fig. 1.the pie chart of distribution of methods optimization, cost criteria and optimization types adopt to table 1.

2. Related work

In research focused on selecting the best
software components, cost frequently plays a key
role as either a goal to minimize or a limitation
within the optimization process. Table 1 provides an
overview of how researchers have incorporated cost
into their models. Table 2 presents statistical insights
derived from analyzing approximately 40 common
factors considered during software component
selection for optimization [6]. As highlighted in
Table 1, cost is the most prevalent factor in optimal
component selection, appearing in 17.70 of the 130
studies that considered 41 different criteria. The data
in Table 2 suggests that cost is a critical factor when
deciding whether to acquire or develop components

due to its impact on software development expenses.
Consequently, software development organizations
need to account for cost when choosing software
components, potentially even making it the primary

goal of their optimization efforts for ideal
selection. Various optimization techniques, including
multi-objective, mathematical, and genetic
algorithms, have been widely employed for optimal
component selection [7,8,9,10,11,12,16]. Numerous
researchers have reported successful outcomes using
different heuristic methods, multi-objective
optimization strategies, and genetic algorithms.
Figure 2 is show Statistical results of the cost
criterion according to the table 2.

 Estimating Redevelopment Costs for High-Risk Components using a Genetic Algorithm

36

Table 2: Statistical results on the practical use of the cost criterion in the problem of optimal selection of components

Fig. 2.Statistical results of the cost criterion according to the table 2.

Gholamshahi et al. [20] categorized different

approaches to component identification and selection. In
[11], the authors introduced a Genetic Algorithm (GA)-
based hybrid approach with a fuzzy exponential
membership function to select the best COTS component.
The researchers in [42] used genetic algorithms and fuzzy
techniques to create an optimization model for component
selection in credit models. They solved the problem using
a single-objective optimization method with three
objective functions: cost, size, and execution time. The
optimal component was determined using GA. In [44], the

authors developed a model to optimize the selection of
COTS components in the process of developing modular
software systems. In more recent studies, researchers have
increasingly focused on multi-period, multi-objective
optimization frameworks that combine cost with other
real-world constraints such as outsourcing, redundancy,
and integration [48, 49]. These newer models reflect a
growing trend toward holistic evaluation strategies that
account for dynamic and time-dependent factors in
component selection.

For instance, Gupta et al. (2019) proposed a

Criteria NP MPP Ref
Cost 23 17.7 [17, 4, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28 ,29, 30,
31, 32, 33, 14, 34, 37, 38,
39, 41]

Reliability 12 9.23 [32, 4, 20, 33, 14, 34, 23,
26, 35, 36, 37, 31]

Number of components 9 6.92 [17, 18, 15, 21,23,25, 33,
34,35]

Delivery time 6 4.60 [1, 14, 20, 23, 30, 31]
Functionality 6 4.60 [1, 18, 21, 23, 30, 34]
Number of modules in the software 5 3.85 [29,14 ,31, 32,36]
Number of provide interfaces 5 3.85 [15,18 ,33, 37,38]
Number of alternative COTS available 5 3.85 [29,31 ,36, 32,38]
Coupling 3 2.30 [1 , 24,25]
Other 56 43.10[16, 21, 33, 18, 15, 33, 30,

31, 20, 14, 30, 31 , 14, 19,
28, 1, 14, 30, 31, 29, 36, 31,
35, 22 ,35, 17]

 130 100

Journal of Applied Dynamic Systems and Control,Vol.8, No.2, 2025: 33-47

37

framework that integrates customer relationships and
outsourcing dynamics into component evaluation
decisions [49]. Mehlawat et al. (2020) extended this
approach by addressing software maintenance and
enhancement through an adaptive multi-objective model,
taking into account long-term integration costs and
performance metrics [48].

Additionally, Nabot (2024) presented an optimized
component selection criterion specifically tailored to
modern CBSE environments. This recent study introduced
refined metrics for cost, cohesion, and risk that align
closely with commercial software development constraints
[16].Table 3 presents the statistical results obtained by

analyzing 35 articles about the best way to select
components. These results reveal a variety of methods
proposed in the literature for solving optimization
problems. Among all, the evolutionary method using the
genetic algorithm was found the most popular. All of these
methods provided a solution in the form of a single-
objective system, but the genetic algorithm had a positive
impact on optimizing objective functions. This can lead to
better results when selecting the optimal components for
both single and multi-objective problems. Figure 3
illustrates Frequency chart methods that applied to solving
optimal component selection problem.

Table 3.Statistical results on applied methods in the problem of optimal selection of components

Fig. 3.Frequency chart methods to solving optimal component selection

problem

3. Proposed approach: calculating the cost
coefficients for the redevelopment of high-risk
components using a genetic algorithm

Cost is a vital consideration for management and business
in software development. Since it directly impacts their
budgets, software companies must carefully consider cost
when choosing software components. Cost can be factored
into their decision-making as either a goal to minimize or a
limitation they must stay within. In software systems built
from components, overlooking compatibility,
miscalculating extra costs, selecting unsuitable components,
or choosing high-risk options can increase system
vulnerabilities and threaten the stability of the underlying
technology. Some inexpensive components available may

also carry high risks due to a lack of extensive use and
documented history. These might not integrate well and
could require replacement to improve performance,
ultimately driving up the system's cost. Therefore, a method
to estimate the additional development costs associated
with such components is necessary. After acquiring them,
these components might need further development to
function within the intended system, which increases the
likelihood of selecting high-risk components when using
optimization techniques. This can negatively affect the
system's reliability and other related goals. To accurately
determine the true cost of these components, this paper
outlines a calculation method that considers both their
initial purchase price and potential future development
expenses. This will aid in selecting the most cost-effective
option and improve the overall component selection
process. The proposed technique employs genetic multi-

Method NPMPP Reference

Evolutionary MOO based on GA 7 20 [18,15 ,21,22,33, 34,39]

Fuzzy mathematical programming
(FMP)

3 8.571 [14,30,31]

Customized MOO (used LINGO
optimization model solver)

2 5.714 [21,41]

Goal programming 2 5.714 [36,27]

Both AHP and WSM 2 5.714 [19,45]

Fuzzy clustering 2 5.714 [35,24]

Integer Programming 2 5.714 [29,40]

Customized GA 1 2.858 [17]

Fuzzy MOO 1 2.858 [1]

Other methods (Lexicographic,
Lagrange, MCDM, Evolutionary and
WSM, AHP, WSM, SIREN method,
Neural network, C4.5, Ontology-based,
XML Query, backtracking algorithm

13 37.143[23, 46, 25, 26, 28 , 32,
37, 38, 44, 45, 47 ,42, 43]

Total 35 100

 Estimating Redevelopment Costs for High-Risk Components using a Genetic Algorithm

38

objective optimization to estimate the cost of redeveloping
components, specifically considering the impact of high-
risk components on the total cost. Overall, this approach
aims to provide a more precise cost calculation for
component redevelopment, particularly for high-risk
components, and enhance the system's reliability and other

performance metrics. This paper proposes using cost
coefficients and a genetic algorithm to more accurately
assess the cost of high-risk components. Figure 4 illustrates
the proposed approach, including the method for
calculating the genetic cost of component redevelopment
within a multi-objective optimization framework.

Fig. 4.The Schematic of the proposed approach with the approach of calculating the cost of genetics for the redevelopment of components in multi
objective optimization.

3.1 Calculating the cost of components redevelopment
Component-based systems consist of two categories of

components: build and buy. Choosing to use readily
available COTS components from the market can shorten
the system’s delivery time, but it may also compromise
security and reliability because of compatibility concerns.
On the other hand, designing in-house components may
take longer and cost more, but it results in a more reliable
and compatible system. When dealing with multi objective
systems and constraints, it is important to choose the
appropriate component that can achieve the system’s goals.
When calculating costs, most references consider three
factors. First, in [1,4] only COTS components are used, and
the total cost is simply the cost of purchasing these
components. This cost is determined by Equation 1, where
Costେ୓୘ୗ equals the sum of all costs (k) of each component.

஼ை்ௌݐݏ݋ܥ =෍ ௜ܿ௝௞

௩௜௝

௞ୀଵ
 (1)																																	௜௝௞ݔ

Second, in [1, 4], only components produced by the
development team are used. The total cost is determined by
Equation 2, where Cost୧୬୦୭୳ୱୣ equals the sum of all costs
(i) of each component (j):

Cost୧୬୦୭୳ୱୣ =෍෍(
୫

୨ୀଵ

୬

୧ୀଵ

C෨ ୧୨൫t୧୨ + τ୧୨N୧୨୲୭୲൯y୧୨																				(2)

Third, in [1,2,4], a combination of in-house and COTS

components are used. This is determined by Equation 3
Cost୘୭୲ୟ୪ = Costୡ୭ୱ୲ + Cost ୧୬_୦୭୳ୱୣ																	(3)

The final total cost is obtained by combining the buy-
build expenditures of all modules in the build-or-buy
strategy, as shown in Equation 4.

Total	cost = ෍෍(
୫

୨ୀଵ

୬

୧ୀଵ

C෨ ୧୨൫t୧୨ + τ୧୨N୧୨୲୭୲൯y୧୨ 	

+ 		෍ c୧୨୩
୴୧୨

୩ୀଵ
x୧୨୩					(4)

In Equation 4, the total cost is equal to the sum of all
costs (i) of each component (j) and its manufacturing time
(tij) plus any additional cost (τ(ij)) and quantity produced
(Nijtot) multiplied by (yij)), plus the sum of all costs (k) of
each COTS component.

3.2 Proposed approach: Calculating the cost of
redevelopment of components based on the optimal
calculation of coefficients with the genetic algorithm

As previously stated, certain COTS components are not
compatible with software systems and are considered high-
risk components. To make them compatible, changes and
redevelopment are necessary. In the case study performed
for the purposes of this study, low-cost and unreliable
components were classified as high-risk components
because of their affordability and cost constraints. However,

Journal of Applied Dynamic Systems and Control,Vol.8, No.2, 2025: 33-47

39

selecting these components may reduce the reliability of the
system and, specifically, ICD, which is directly related to
reliability. Therefore, the selection of components needs to
be evaluated based on their impacts on the objectives and
constraints of the problem. To determine the ideal
components that meet the goals of the problem, there is a
need for considering the influencing factors of other
criteria, whether they have a direct or indirect effect.
Equation 5 is used to calculate the cost of a system, which
includes the cost of high-risk components, including any
costs associated with developing or adapting the
component. Therefore, the cost of the bought component
should be calculated using the following Equations:

Total Cost = Cost In-house + Cost-COTS =
 Cost In-house + (Cost-COTS + Cost-develop)=
 Cost In-house + (Cost-COTS + w _GA* Cost In-

house) (5)

The cost of the component is calculated using
Equation5, which is derived from Equations 3 and 4 and
then using Equation6, which is derived from Equation 5.

Total	cost = ෍෍(
୫

୨ୀଵ

୬

୧ୀଵ

C෨ ୧୨൫t୧୨ + τ୧୨N୧୨୲୭୲൯y୧୨ 	

+ 		෍ c୧୨୩
୴୧୨

୩ୀଵ
x୧୨୩ 	+ Wୋ୅

∗ 			(C෨ ୧୨൫t୧୨
+ τ୧୨N୧୨୲୭୲൯y୧୨)																																									(6)

This study analyzed three factors that affect the cost of
software development: development time, delivery time,
and the number of interactive interfaces. The goal was to
determine the coefficient (W) that represents the
development cost of high-risk components. The amount of
time spent on development equals the time spent on
developing bought components (COTS). The number of
interfaces is equal to the number of connections between
high-risk components and other modules, and the cost of
redevelopment increases as these connections increase.
Delivery time is the sum of the development and buy times
of the components. We used three input parameters as the
chromosomes’ data structure and W, as the output’s
development cost coefficient in the genetic algorithm. The
findings showed that the proposed approach is effective in
selecting a combination of elements that improve the
objectives of the problem.

3.3. Genetic parameters
To find the weighting coefficients of high-risk

component costs, this paper used GA with the following
features:

Chromosome allocation: To determine the weighting
coefficient for high-risk component costs, data structures
should be created for the chromosomes that represent the

parameters affecting the component’s cost. To do this, this
study used an array with dimensions of m * n, where m
represents the initial population of the algorithm and n
represents the factors that affect software development
costs. Because of the presence of three influencing
parameters in this case (Develop time, Delivery time, and
Number of interact), an array of 3 * 50 was designed.
Finally, this variable was analyzed using the principle of
maximization. Equation 7 is also defined for the cost
influencing parameters variable as follows:
F୧ = a1Yଵ + a2Yଶ + a3Yଷ																																									(7)
a1	 + 	a2	 + 	a3 = 1																																																		(8)

Where Yi denotes a component of the cost chromosome,
and it is necessary to satisfy Equation 8 as well. To fulfill
Equation 8, the average value of each row of chromosomes
was calculated at every phase of the execution using
Equation 9. Then, the number of chromosomes was
replaced with this average value to normalize the random
amounts of the chromosomes.

Y୧ =
Y୧

∑ Y୧୧ୀଷ
୧ୀଵ

(9)

Fitness function: During each stage of the genetic
algorithm, the cost of every chromosome is calculated
based on the target functions defined in Equation 10.
W = max	(abs	(−F୧))																																																										(10)

At this stage, the chromosomes undergo evaluation
through the cost function. In the proposed approach, the
cost is a variable inversely proportional to the fitness
function of the chromosomes. The presence of negativity in
Equation 10 is a result of the potential for maximizing the
function.

Selection: The selection operator improves the overall
quality of chromosomes in the next generation by selecting
the high-quality ones. This paper uses the tournament
selection method [24, 25] because it is efficient and easy to
implement.

Crossover: During the crossover operation, parts of the
chromosomes are accidentally exchanged. This exchange
results in children inheriting high-quality traits from either
parent, which may lead to higher levels of confidence
compared to both parents. To calculate the cost weight
coefficient, a uniform composition for the intersection is
used, which is called a comprehensive recombination
intersection. In this approach, the chromosome points are
selected as the intersection points. The procedure involves
generating a random number between zero and one for each
part of the chromosome. If this number is less than a
constant value such as α, then the genes located after that
point on the chromosomes will be displaced. The
intersection rate in this paper is 1 [7].The comprehensive
recombination intersection method was chosen due to its
ability to explore a larger portion of the solution space,
which increases diversity and helps avoid premature
convergence. It is particularly effective in problems
involving multiple influencing parameters, such as the cost-
related coefficients in our model.

Mutation: To ensure diversity in the population after

 Estimating Redevelopment Costs for High-Risk Components using a Genetic Algorithm

40

the intersection, a mutation threshold is established to
calculate the best coefficients. The goal is to generate a
random number between zero and one for every
chromosome. If the number is less than a certain limit, a
random number is generated for each gene, and the
corresponding gene is mutated if the product number is
smaller than a constant value β. The default mutation rate is
0.08, as mentioned in [7].

Termination criteria:Once the algorithm completes a
certain number of iterations, it offers the optimal solution as
an output. In this study, the number of repetitions is set to
100 [7].

Algorithm1: Initialize Population with Cost-Related
Chromosomes

Input:
 - Population size (P)
 - Number of genes per chromosome (n = 3)
 - Range of values for each gene:
DevTime∈ [t_min, t_max]
DelTime∈ [d_min, d_max]
 Interfaces ∈ [i_min, i_max]
Output:
 - Initialized population of chromosomes: Pop[P][3]
Begin
 For i = 1 to P do
 // Generate one chromosome with 3 genes
 Chromosome[i][1] ← Random value in [t_min,

t_max] // Development Time
 Chromosome[i][2] ← Random value in [d_min,

d_max] // Delivery Time
 Chromosome[i][3] ← Random value in [i_min,

i_max] // Number of Interfaces
 // Normalize genes (optional step)
 For j = 1 to 3 do
 Chromosome[i][j]←

Normalize(Chromosome[i][j])
 End For
 Pop[i] ← Chromosome[i]
 End For
 Return Pop
End

3.4. Application of proposed approach to a case

study
This research conducted a detailed analysis to

investigate the way high-risk components affect costs and
to determine how accurately the suggested approach
estimates costs, especially when high-risk components are
involved [1, 4]. The cost function was considered a
constraint in the optimization problem of the case study,
and this paper aimed to demonstrate the positive role of
calculating cost coefficients in achieving the objectives of
the problem.

3.5. Case study and dataset
The present research used a case study of financial and

accounting software [2] to evaluate the effectiveness of the
proposed approach, in selecting the optimal combination of
COTS and in-house components for CBSS development.
The case study involved a software system consisting of
three modules, M1, M2, and M3. We had access to 20
software components in the market, numbered SC1 to
SC20, which could be used to create a set of ten
components, S1 to S10. Ten components could additionally
be developed in-house which were labeled SB1 to SB10.
For each software module, one component was needed to
be selected from the alternatives available to meet
operational needs. For example, S1 could be made up of
SC1, SC2

, SC3, SC4, or SB1. Therefore, we had to choose one of

these five components to satisfy the operational
requirements of S1. SC1, SC2, SC3, and SC4 were COTS
components, while SB1 was developed in-house. A more
detailed description of the case study and dataset is
presented in [1, 2]. In addition, the tables related to the data
of this case study are given in the appendices section.

4. Optimization problem

As mentioned earlier, a case study of financial and
accounting software [2] was used to assess proposed
approach effectiveness in the selection of the optimal
component of COTS or in-house components for CBSS
development. This case study is based on a case study that
considers the goals of the multi-objective optimization
model, such as ICD and functionality, as well as constraints
like cost, delivery time, reliability, and ICD.

4.1 Objective functions and constraints

When dealing with a software system made of various
components, the levels of their individual performance
should be assessed. The components can either be bought
from vendors or created in-house, and their functional
performance can be tailored to meet the unique
requirements of the organization or client.

First objective function – Functionality: The overall
functional performance of the system depends on the
functionality of each module, which is calculated using
Equation 11 [1,2]. In essence, functionality is a crucial
measure that determines the efficacy of a modular software
system.

F =෍෍(f୧୨y୧୨+෍f୧୨୩x୧୨୩

୴౟ౠ

୩ୀଵ

)
୒

୧ୀଵ

୑

୨ୀଵ

																																				(11)

Second objective function – Intra-modular coupling

density (ICD):
The intra coupling density is a measure of how coupling

and cohesion of the modules are in a modular software

Journal of Applied Dynamic Systems and Control,Vol.8, No.2, 2025: 33-47

41

system. Each module in a software system has multiple
connections to other modules, and the ICD0s objective
function is determined using Equation 12 based on both
coupling and cohesion [1,2]. While Cohesion is the number
of component interactions in the module, Coupling is the
number of interactions between components in separate
modules [1].

ICD =
Cohesion

Cuopling + Cohesion																																			(12)

First constraints – Threshold on ICD: This constraint
expresses the minimum threshold H on the value of ICD for
each module using Equation 13:

ICD =
CI୧୬ = ∑ ∑ ∑ r୧୧ᇲz୧୨z୧ᇲ୨

୒
୧ᇲୀ୧ାଵ

୒ିଵ
୧ୀଵ

୑
୨ୀଵ

∑ ∑ r୧୧ᇲ୒
୧ᇲୀ୧ାଵ

୒ିଵ
୧ୀଵ (∑ z୧୨୒

୧ᇲୀ୧ାଵ)(∑ z୧ᇱ୨ᇱ୑
୨ୀଵ)

			 ,

0 ≤ ICD ≤ 1															(13)		

Second constraints – Building decision versus buying

decision: Developers can choose from multiple instances of
COTS and one in-house example for each component, with
a calculation of build and buy decisions included Equation
14.

y୧୨ +෍x୧୨୩

୚౟ౠ

୩ୀଶ

	= z୧୨; 			i = 1,2,… , n		j

= 1,2,… ,m୧																			(14)

Third constraints – Budget constraint: One of the
most crucial considerations in system design is the cost
constraint. It is determined by adding up all the costs
associated with various modules of the build-or-buy
strategy using Equation 15.

∑ ∑ (୫
୨ୀଵ

୬
୧ୀଵ C෨ ୧୨൫t୧୨ + τ୧୨N୧୨୲୭୲൯y୧୨ +	∑ C෨ ୧୨୩

୴୧୨
୩ୀଵ x෤ ୧୨୩)≤B

(15)

Fourth constraints – Delivery time constraint: When
referring to a software component, the delivery time
indicates the duration required to prepare and make the
component available for use in a component-based software
system. This includes the time taken for development,
integration, and system testing. Commercially available
components are represented by dij, while components
developed in-house can be expressed as the delivery time of
the ith component for the jth module using Equation 16.

Table 4.cost coefficient for the high-risk components calculation by

GA

				T୧ = ቌC୧୨	൫t୧୨	 + τ୧୨	N୧୨୲୭୲൯y୧୨	 +෍d୧୨୩x୧୨୩

୚୧୨

୩ୀଵ

ቍ											(16)

Fifth constraints – Threshold on the reliability
constraint: To calculate the likelihood of the ith
component developed in-house for the jth module failing,
we can use Formula 1. In addition, by applying Equation
17, we can determine the average number of failures for
both the ith component and the jth module, which is
represented as qij.

q୧୨ = ൫1 − ρ୧୨൯y୧୨ +෍μ୧୨

୚౟ౠ

୩ୀଵ

x୧୨																						(17)

4.2. Results of the optimal components selection

The case study identified the components categorized as
high-risk and low-risk, which included the following:

High-risk components: 8,9,12,13,14,19, 21, 22, 23, 24,
33, 38,41, 43, 45, 46, 48, 49, 50, 54, 60

Low-risk components: 1, 2, 3, 4, 5, 6, 7, 10, 11, 15, 16,
17, 18

The case study used low-cost and compatible
components to identify high-risk components. By using
Equation 18, the selection of such components during the
optimum component selection process led to a lower ICD,
which was owing to their reliability, cohesion, and
affordability. The aim of this approach is to find
components with low risk and high ICD (low cost).

component High-risk Cost weight

8 9 12

13

14

19

21

22

23

24

33

38

41

43

45

46

48

49

50

54

60

Cost weight

0.
96

24

0.
17

68

0.
12

2

0.
94

8

0.
21

74

0.
31

25

0.
24

76

0.
59

63

0.
72

88

0.
16

06

0.
57

95

0.
61

87

0.
88

69

0.
59

05

0.
16

48

0.
90

55

0.
90

25

0.
08

96

0.
96

14

0.
85

33

0.
78

00

 Estimating Redevelopment Costs for High-Risk Components using a Genetic Algorithm

42

Therefore, the key issue in selecting components with the
ICD objective function is to identify low-risk components
with high ICD.

The redevelopment process is more time-consuming and
expensive because high-risk components need modification
to work with the intended software system. The suggested
approach to calculate the cost of redevelopment involves
the calculation of cost coefficients. Using the genetic
algorithm with the settings mentioned in the previous
section, the cost coefficients for high-risk components were
determined in the case study. Table 4 shows the values of
these coefficients.

Cost ∝ Reliability ∝ cohesion ∝ ICD (18)

So: Min number of high-risk component selected ∝
max ICD (19)

5. The experimental results

To select the best components, there are two main
methods: single-objective and multi-objective. Single-
objective methods, which often use genetic algorithms or
fuzzy methods, focus on changing the objective functions to
create a single goal. On the other hand, multi-objective
methods, which use the NSGA method, keep the objective
functions the same. To ensure the effectiveness of proposed
approach in optimal component selection, both multi-
objective and single-objective methods were tested in this
paper. Despite a shortage of case studies in this research
area, this paper managed to compare GA-ICD to two other
methods. To compare the effectiveness of the proposed
approach with other methods, we implemented our own
proposed approach using three methods that other authors
used in selecting the optimal component and compared the
results of this implementation with the results of others'
methods. Also, to create a comparative standard
environment, in addition to the proposed approach, we also
implemented and implemented normal conditions (other
than the approach) with these methods and presented the
results in the form of relevant tables.

5.1. Multi-objective optimal component selection by

fuzzy logic

To solve the optimal component selection problem as
explained in [1,2], the problem was formulated based on the
Belman-Zadeh maximization principle. First, the objective
functions and constraints were calculated using the
proposed approach, for high-risk cost. Next, the values of
X1 and X2 were calculated using the two objectives in the
problem. Afterward, the Functionality and ICD objective
function optimization problem was solved (see the results
in Tables 5 and 6). Then, the optimal lower limit (l) and
upper limit (u), as well as the worst-case scenarios for each,
were determined by evaluating the functionality and ICD
while taking into account the constraints of the optimization
problem obtained. The number of restrictions considered is

based on the information provided in Table 7.
 The membership functions for ICD and functionality in

the case study are equation as 20 and 21, respectively.

Table 5. Result of solving the optimization problem with the

objective of functionality in the case study

Functionality ICD Time Budget

5.40 0.8809 6s 25

Table 6.Result of solving the optimization problem with the objective
of ICD in the case study

Functionality ICD Time Budget

7.82 0.4940 6s 24

Table7.Optimization solution set of the high-risk approach for the first

and second objective function

 X1 X2

ICD 0.8809 0.4940

Functionality 5.40 7.82

(ݔ)ܦܥܫߤ

= ൞

(ݔ)ܦܥܫ																														,1	 ≥ 0.8809
−(ݔ)ܦܥܫ 	0.4940

0.3869 ,						0.4940 ≤ ≥(ݔ)ܦܥܫ 0.8809
(ݔ)ܦܥܫ																															,0 ≤ 0.4940

			(20)

(ݔ)݂ߤ

=

⎩
⎨

⎧
(ݔ)݂																																			,1	 ≥ 7.82

5.40−(ݔ)݂
2.42 ,														5.40 ≤ ≥(ݔ)݂ 7.82
(ݔ)݂																																				,0 ≤ 5.40

																		(21)

The fuzzy multi-objective optimization model for high-
risk components, based on the principle of maximizing
introduced by Bellman-Zade and the fuzzy membership
functions, defined implementing. The results of this
implementation are displayed in Table 8.

5.2. Single-objective optimal component selection by

GA approach
To ensure the efficiency of the proposed high-risk

component approach for optimal component selection, this
paper used an evolutionary and single-objective method to
select the optimal component. To transform the probleminto
a single objective problem, both objective functions were
checked to be in the direction of maximization and parallel.
Finally, the first and second goals were defined in the form
of Equation 22 by integrating Equation 11 and 12 [7]. To
ensure that both objective functions have an equal impact
on the final result, the coefficients of each function were set

Journal of Applied Dynamic Systems and Control,Vol.8, No.2, 2025: 33-47

43

to 0.5 when converting the multi-objective problem to a
single-objective one [7]. As a result, Equation22 was
redefined as Equation 24 Subject to condition 23.

ܼ = ௙ܹ ∗
ிିிಾ೔೙

ிಾೌೣିிಾ೔೙
+W௟ ∗

୍େୈିாಾ೔೙
ாಾೌೣିாಾ೔೙

											(22)

Thus:

ܹ݂ +ܹ݈ = 1																																															(23)

ܼ
= 0.5 ∗ ICD + 0.5 ∗ F − (cost + time + reliability
+ ICD)																																																																						(24)

In addition to the proposed risky cost approach, the
component selection algorithm (GA) also formulated and
solved the simple cost model presented in [1,4]. Table9
presents the results of both approaches in a comparative
way.

 5.3. Multi-objective optimal component selection by
non-dominated sorting genetic algorithm (NSGA-II)

The process of selecting components using NSGA
involves the following steps:

Step_1: An initial population of size N was randomly
generated based on objective functions and constraints. The
population of offspring Qt (t = 0) was generated from
Ptusing GA operators such as selection, crossover, and

mutation.
Step_2: Pt and Qt populations were combined to create

a new population of size 2N. Non-dominant sorting of the
population Rt was performed and classified into multiple
classes (F1, F2, F3, etc.). Crowding distance was then
calculated for a set of individuals in the population. Two
fitness functions in the maximum state, the subject of
equations 25 and 26, were defined for this problem.

Z1 = −1 ∗ (functionality)
+ (time + cost + reliability)		(25)

Z2 = −1 ∗ (ICD) + (time + cost + reliability)			(26)

Step_3: The best N individuals were selected according
to the forward dominance order and crowding distance to
form a new population Pt+1. Individuals from fronts with
low mastery rank and high distance in the same front were
chosen first.

Step_4: Selection, crossover, and mutation were
performed on the population Pt+1 to create a new offspring
Qt+1 of size N.

Step 5: If the termination criteria were met, the set of
non-dominated solutions was considered as output and the
process was stopped; otherwise, step2 would be repeated.
The results of this implementation are shown in Table 10.

Table 8.The results of this implementation fuzzy component selection
approach Functionality ICD Time Budget Module1 Module2 Module3

High-risk
redevelop cost

7.75 0.85 7.4s 30 SC5,SC6,SC17 SC11,SC7,SC4 SC14,SB7,SB9,SB10

simple cost [1] 6.49 0.50 6s 25 SC5,SC6,SC17 SC2, SC8, SB5 SB9,SC14,SC15,SB10

Table 9.Optimal selection of components in the approach by the single-objective method of genetic
algorithm
approach Functionality ICD Time Budget Module1 Module2 Module3

High-risk
redevelop cost
by GA

7.1 0.68 6s 30 SC5,SC6,SC17 SC8,SC7,SC4 SC14,SB7,SB9,SC20

simple cost 6.43 0.52 6s 25 SC4, SC5, SC6 SC8, SC11, SB6 SC15,SB8,SB9,SB10

Table 10.result of optimal components selection in the propose approach by the NSGA-II

approach functionality ICD Time Budget reliability Module1
High-risk
redevelop cost

7.13 0.76 7.1s 30 0.99 SC5,SC17,SC2,
SC6,SC7,SC11,SC14,SC19,SC15,SC20

 Estimating Redevelopment Costs for High-Risk Components using a Genetic Algorithm

44

6. Results Comparison
The technique of Component-based software

engineering (CBSE) involves using pre-made software
components to develop software systems. These
components can either be purchased as COTS or built from
scratch by software developers. The use of high-risk
components can lead to longer development time and
increased costs. Given that cost is a crucial factor in
software development, accurate computation is essential.
This study used the genetic algorithm to determine the cost
factor for redeveloping high-risk components. The results
of the case study demonstrated that the genetic algorithm
was effective in accurately estimating the cost of software

redevelopment. Table 11 compares the proposed approach
with other techniques used in the field for software system
creation. According to the table, the proposed method
selects an optimum component with a shorter execution
time than that of others. Table 12 compares the unique
features of the proposed method with the features of the
other methods.

Table 11.The results of the optimal selection of the component using

the multi-objective selection method based on the cost of redevelopment
with the GA coefficient .Figure 5 demonstrate results to bar chart.

Table 12. Comparison between the presented method and other previous methods in the field of optimal component selection and their

innovation aspect

ref Type of optimization objective constraint approach Novelty

[4] Multi objective Fuzzy-ICD,
Functionality

Fuzzy-ICD, reliability, Cost,
Delivery time

Fuzzy
approach

Compute coupling and cohesion in
Mayer’s classification by fuzzy method
for calculate ICD

[2] Multi objective ICD, Functionality ICD, reliability, Cost,
Delivery time

Fuzzy
approach

Fuzzy optimization

[5] single objective Quality ICD, reliability, Cost,
Delivery time

GA approach Joint objective using GA

[56] Multi objective ICD, Functionality Cost, Consistency Fuzzy
approach

Weighted objective

Proposed
method

Multi objective ICD, Functionality ICD, reliability, high-risk
Cost, Delivery time

GA approach Joint constraint (cost) using GA weight

approach Functionality ICD Time Budget Module1 Module2 Module3

High-risk redevelop cost + NSGA-
IIselection method

7.75 0.85 7.4s 30 SC5,SC6,SC17 SC11,SC7,SC4 SC14,SB7,SB9,S
B10

simple cost + NSGA-II selection
method

6.49 0.50 6s 25 SC5,SC6,SC17 SC2, SC8, SB5 SB9,SC14,SC15,
SB10

High-risk redevelop cost + fuzzy
component selection

7.13 0.76 7.1s 30 SC5,SC17,SC6 SC2, SC7, SC11 SC14,SC19,SC1
5,SC20

simple cost + fuzzy component
selection [1]

6.61 0.82 6s 24 SC5,SC17,SB6 SC1, SC7, SC11 SC14,SC15,SC1
9,SC20

High-risk redevelop cost + GA
component selection

7.1 0.68 6s 30 SC5,SC6,SC17 SC8,SC7,SC4 SC14,SB7,SB9,S
C20

simple cost + GA component
selection

6.43 0.52 6s 25 SC4, SC5, SC6 SC8, SC11, SB6 SC15,SB8,SB9,S
B10

Journal of Applied Dynamic Systems and Control,Vol.8, No.2, 2025: 33-47

45

Fig. 5. The bar chart for results of optimal component selection by proposes approach and other method.

7. Conclusion and future work
When optimizing a component-based problem, it is

important to consider various objective functions such as
cost, reliability, and delivery time. This is because different
types of components exist in optimization-related problems.
These include COTS components such as ready, complete,
incomplete, and new components. The aim of this study
was to improve the optimization of software systems while
reducing the developer's involvement in the calculation
process. By improving cost calculations within the
constraints, this study succeeded in reducing the selection
of high-risk components with higher costs. As a result, the
final value of performance significantly improved. The
Strengths of proposed approach is accurate cost estimation
for high-risk components, improved ICD and functionality,
integration of real-world constraints in a multi-objective
framework. The Weaknesses of proposed approach is
Performance may depend on proper parameter tuning in
GA; the method has been tested on a single case study and
needs broader validation.

 Future studies could conduct a more thorough analysis
of high-risk components, along with evaluating the cost of
other effective parameters, such as time and efficiency.
They could also explore different types of evolutionary
methods to optimize objective functions and constraints of
the problem.

References

 [1] Jha PC, Bali V, Narula S, Kalra M. Optimal component
selection based on cohesion & coupling for component

based software system under build-or-buy scheme.
Journal of Computational Science. 2014 Mar 1;
5(2):233-42.

[2] Jha SK, Mishra RK. Predicting and accessing security
features into component-based software development:
a critical survey. In Software Engineering: Proceedings
of CSI 2015 2019 (pp. 287-294). Springer Singapore.

[3] Mohan A, Jha SK. Predicting and accessing reliability
of components in component based software
development. In2019 International Conference on
Intelligent Computing and Control Systems (ICCS)
2019 May 15 (pp. 1110-1114). IEEE.

[4] Kalantari S, Motameni H, Akbari E, Rabbani M.
Optimal components selection based on fuzzy-intra
coupling density for component-based software
systems under build-or-buy scheme. Complex
\&\ Intelligent Systems. 2021 Dec; 7(6):3111-34.

[5] Pressman RS. Software engineering: a practitioner's
approach. Palgrave macmillan; 2005.

[6] Gholamshahi S, Hasheminejad SM. Software
component identification and selection: A research
review. Software: Practice and Experience. 2019 Jan;
49(1):40-69.

[7] Kwong CK, Mu LF, Tang JF, Luo XG. Optimization of
software components selection for component-based
software system development. Computers
\&\ Industrial Engineering. 2010 May 1; 58(4):618-24.

[8] Kaliraj S, Bharathi A. Path testing based reliability
analysis framework of component based software

 Estimating Redevelopment Costs for High-Risk Components using a Genetic Algorithm

46

system. Measurement.2019 Oct 1; 144:20-32.
[9] Yadav RK, Khan RA. Reliability Estimation of Object-

Oriented Design.The IUP Journal of Systems
Management. 2011 May 1; 9(2):28-41.

[10] Kaur R, Arora S, Jha PC, Madan S. Fuzzy multi-
criteria approach for component selection of fault
tolerant software system under consensus recovery
block scheme. Procedia Computer Science.2015 Jan 1;
45: 842-51.

[11] Tailor AR, Dhodiya JM. GA-Based Hybrid Approach
to Solve Fuzzy Multi-objective Optimization Model of
Multi-application-Based COTS Selection Problem.
InAdvanced Engineering Optimization through
Intelligent Techniques: Select Proceedings of AEOTIT
2018 2020 (pp. 75-86). Springer Singapore.

[12] Tang JF, Mu LF, Kwong CK, Luo XG. An optimization
model for software component selection under
multiple applications development. European Journal
of Operational Research. 2011 Jul 16; 212(2):301-11.

[13] Vescan A. Case study method and research design for
the dynamic multilevel component selection problem.
InService-Oriented Computing–ICSOC 2015
Workshops: WESOA, RMSOC, ISC, DISCO, WESE,
BSCI, FOR-MOVES, Goa, India, November 16-19,
2015, Revised Selected Papers 13 2016 (pp. 130-141).
Springer Berlin Heidelberg.

[14] Gupta P, Mehlawat MK, Verma S. COTS selection
using fuzzy interactive approach. Optimization
Letters.2012 Feb; 6: 273-89.

[15] Vescan A. An evolutionary multiobjective approach for
the dynamic multilevel component selection problem.
In Service-Oriented Computing–ICSOC 2015
Workshops: WESOA, RMSOC, ISC, DISCO, WESE,
BSCI, FOR-MOVES, Goa, India, November 16-19,
2015, Revised Selected Papers 13 2016 (pp. 193-204).
Springer Berlin Heidelberg.

[16] Nabot A. Software component selection: an optimized
selection criterion for component-based software
engineering (CBSE). Int. Arab J. Inf. Technol..
2024;21(2):211-25.

 [17] Tang JF, Mu LF, Kwong CK, Luo XG. An
optimization model for software component selection
under multiple applications development.European
Journal of Operational Research. 2011 Jul 16;
212(2):301-11.

[18] Kontio J. A Systematic Process for Reusable Software
Component Selection.Technical Report CS-TR-3478,
University of Maryland; 1995.

[19] Cortellessa V, Marinelli F, Potena P. Automated
selection of software components based on
cost/reliability tradeoff. InSoftware Architecture: Third

European Workshop, EWSA 2006, Nantes, France,
September 4-5, 2006, Revised Selected Papers 3 2006
(pp. 66-81). Springer Berlin Heidelberg.

[20] Vescan A, Grosan C. Two evolutionary multiobjective
approaches for the component selection problem.
In2008 Eighth International Conference on Intelligent
Systems Design and Applications 2008 Nov 26 (Vol.
2, pp. 395-400).IEEE.

[21] Vescan A. A metrics-based evolutionary approach for
the component selection problem. In2009 11th
International Conference on Computer Modelling and
Simulation 2009 Mar 25 (pp. 83-88). IEEE.

[22] Khan MA, Mahmood S. Optimal component selection
for component-based systems. In Innovations in
Computing Sciences and Software Engineering 2010
May 20 (pp. 467-472). Dordrecht: Springer
Netherlands.

[23] Vescan A, Şerban C. A fuzzy-based approach for the
multilevel component selection problem.InHybrid
Artificial Intelligent Systems: 11th International
Conference, HAIS 2016, Seville, Spain, April 18-20,
2016, Proceedings 11 2016 (pp. 463-474). Springer
International Publishing.

[24] Neubauer T, Stummer C. Interactive decision support
for multiobjective COTS selection. In2007 40th
Annual Hawaii International Conference on System
Sciences (HICSS'07) 2007 Jan 3 (pp. 283b-
283b).IEEE.

[25] Boonsiri S, Seacord RC, Bunting R. Automated
component ensemble evaluation. International Journal
of Information Technology. 2002 Aug; 8(1):40-53.

[26] Cortellessa V, Crnkovic I, Marinelli F, Potena P.
Driving the selection of COTS components on the
basis of system requirements. InProceedings of the
22nd IEEE/ACM International Conference on
Automated Software Engineering 2007 Nov 5 (pp.
413-416).

[27] Lozano-Tello A, Gómez-Pérez A. BAREMO: how to
choose the appropriate software component using the
analytic hierarchy process. InProceedings of the 14th
international conference on Software engineering and
knowledge engineering 2002 Jul 15 (pp. 781-788).

[28] Jha PC, Kapur PK, Bali S, Kumar UD. Optimal
component selection of COTS based software system
under consensus recovery block scheme incorporating
execution time. International Journal of Reliability,
Quality and Safety Engineering. 2010 Jun; 17(03):209-
22.

[29] Jha PC, KAUR R, BALI S, MADAN S. Optimal
component selection approach for fault-tolerant
software system under CRB incorporating build-or-

Journal of Applied Dynamic Systems and Control,Vol.8, No.2, 2025: 33-47

47

buy decision. International Journal of Reliability,
Quality and Safety Engineering. 2013 Dec 26;
20(06):1350024.

[30] Kaur R, Arora S, Jha PC, Madan S. Fuzzy multi-
criteria approach for component selection of fault
tolerant software system under consensus recovery
block scheme. Procedia Computer Science.2015 Jan 1;
45: 842-51.

[31] Verma S, Mehlawat MK. Multi-criteria optimization
model integrated with AHP for evaluation and
selection of COTS components. Optimization. 2017
Nov 2; 66(11):1879-94.

[32] Vescan A. An evolutionary multiobjective approach for
the Component Selection Problem. In2008 First
International Conference on the Applications of
Digital Information and Web Technologies
(ICADIWT) 2008 Aug 4 (pp. 252-257). IEEE.

[33] MOKARRAM AH, Isazadeh A, Izadkhah H. Early
reliability assessment of component-based software
system using coloredpetri net.Turkish Journal of
Electrical Engineering and Computer Sciences. 2019;
27(4):2681-96.

[34] Şerban C, Vescan A, Pop HF. A new component
selection algorithm based on metrics and fuzzy
clustering analysis. InHybrid Artificial Intelligence
Systems: 4th International Conference, HAIS 2009,
Salamanca, Spain, June 10-12, 2009. Proceedings 4
2009 (pp. 621-628). Springer Berlin Heidelberg.

[35] Kumar D, Jha PC, Kapur PK, Kumar UD. Optimal
component selection problem for COTS based
software system under consensus recovery block
scheme: a goal programming approach.

[36] Yessad L, Boufaida Z. A QoS ontology-based
component selection.arXiv preprint arXiv:1109.0324.
2011 Sep 1.

[37] Iribarne L, Troya JM, Vallecillo A. Selecting software
components with multiple interfaces. In Proceedings.
28th Euromicro Conference 2002 Sep 6 (pp. 26-32).
IEEE.

[38] Vescan A, Grosan C. Evolutionary multiobjective
approach for multilevel component composition.
StudiaUniversitatis Babes-Bolyai Series Informatica.
2010 Dec 1; 55(4):18-32.

[39] Pande J, Garcia CJ, Pant D. Optimal component
selection for component based software development
using pliability metric. ACM SIGSOFT Software
Engineering Notes. 2013 Jan 23; 38(1):1-6.

[40] Cortellessa V, Crnkovic I, Marinelli F, Potena P.
Experimenting the Automated Selection of COTS
Components Based on Cost and System Requirements.

J. Univers. Comput.Sci . 2008 Jan 1; 14(8):1228-55.
[41] Dhodiya JM, Tailor AR. Genetic algorithm based

hybrid approach to solve uncertain multi-objective
COTS selection problem for modular software system.
Journal of Intelligent \&\ Fuzzy Systems. 2018 Jan 1;
34(4):2103-20.

[42] Dhodiya JM, Tailor AR. Genetic algorithm based
hybrid approach to solve fuzzy multi-objective
assignment problem using exponential membership
function. Springer Plus. 2016 Dec; 5(1):1-29.

[43] Gupta P, Verma S, Mehlawat MK. Optimization model
of COTS selection based on cohesion and coupling for
modular software systems under multiple applications
environment. In Computational Science and Its
Applications–ICCSA 2012: 12th International
Conference, Salvador de Bahia, Brazil, June 18-21,
2012, Proceedings, Part III 12 2012 (pp. 87-102).
Springer Berlin Heidelberg.

[44] Alves C, Castro J. CRE: A systematic method for
COTS components selection. In Anais do XV
SimpósioBrasileiro de Engenharia de Software 2001
Oct 3 (pp. 193-207). SBC.

[45] Martinez MA, Toval A. COTSRE: A components
selection method based on requirements engineering.
In Seventh International Conference on Composition-
Based Software Systems (ICCBSS 2008) (pp. 220-
223).IEEE.

[46] Maxville V, Armarego J, Lam CP. Intelligent
component selection. In Proceedings of the 28th
Annual International Computer Software and
Applications Conference, 2004.COMPSAC 2004.
2004 Sep 28 (pp. 244-249). IEEE.

[47] Zhiqiao W, Kwong CK, Tang J, Chan JW. Integrated
model for software component selection with
simultaneous consideration of implementation and
verification. Computers \&\ Operations Research.
2012 Dec 1; 39(12):3376-93.

[48] Mehlawat MK, Gupta P, Mahajan D. A multi-period
multi-objective optimization framework for software
enhancement and component evaluation, selection and
integration.Information Sciences.2020 Jun 1; 523: 91-
110.

[49] Gupta P, Mehlawat MK, Mahajan D. Multi-objective
optimization framework for software maintenance,
component evaluation and selection involving
outsourcing, redundancy and customer to customer
relationship. Information Sciences. 2019 May 1; 483:
21-52.

