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Abstract–Component selection is a key challenge in component-based software systems, particularly when 

integrating a mix of commercially available off-the-shelf (COTS) and in-house components. This study emphasizes the 
impact of high-risk COTS components, which often require extensive modification to align with system requirements, 
potentially affecting cost, efficiency, and performance. To address this, high-risk components are initially identified 
based on reliability, and a genetic algorithm is then employed to compute a cost coefficient for their redevelopment. The 
proposed method led to improved outcomes in component selection, as demonstrated in a case study that reported 
increases in Intra-modular Coupling Density (ICD) by up to 0.05 and functionality gains of up to 1.08—validating the 
effectiveness of this cost-aware optimization strategy. 
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1. Introduction 
 

This article gives you guidelines for preparing papers 
Component-based software engineering (CBSE) is a 
prevalent approach to software development, utilizing pre-
existing software components. These components are 
largely independent and replaceable, designed to perform 
specific tasks within well-defined contexts. Developers 
employ CBSE to mitigate software complexities, streamline 
change management, and enhance software reusability 
[1,2,3]. Reusable software components are generally 
classified into four categories [4,5]. The first category 
comprises ready-made components, also known as 
commercially available off-the-shelf (COTS) components. 
These are obtained from third-party sources or are 
integrated into existing projects and can be used in the 
software development process without modification. The 
second category consists of complete components, which 
closely resemble new project components in terms of 
specifications, design, code, and testing. Development 
teams are typically familiar with these components, 
considering them low-risk. The third category includes 
incomplete components, or high-risk components, which 
share similarities with a current project but require 

substantial adjustments. Due to limited team expertise, 
these components are deemed high-risk. The fourth 
category is new components, which must be developed by 
the team to fulfill specific project requirements. COTS 
components encompass ready-made, complete, and 
incomplete components, with incomplete components 
classified as high-risk. High-risk components are often 
selected for their initial low cost; however, they can exhibit 
low reliability and negatively impact quality attributes such 
as Intra-modular Coupling Density (ICD) and cohesion, 
ultimately increasing system complexity. Therefore, 
effective component selection necessitates identifying 
component types and accurately estimating the 
redevelopment cost of high-risk components. This paper 
presents a method using a genetic algorithm to calculate the 
development cost factor for high-risk components. The 
results demonstrate the efficacy of this optimization and 
calculation approach in determining the software 
redevelopment cost factor for component selection. The 
primary objective of this study is to differentiate component 
selection and ordering strategies to enhance system 
performance, minimize the inclusion of high-risk 
components, and reduce redevelopment costs. Following 
the recommendation in [3], we optimized ICD and a 
performance function as objective functions, subject to 
constraints related to cost, delivery time, reliability, and 
ICD. This research investigates the following hypotheses: 

1.  Selecting fewer high-risk components results in a 
more optimal set of components. 

2.  Employing a genetic optimization approach leads to 
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a more precise evaluation of the redevelopment effort 
required for COTS components. 

While genetic algorithms are frequently used for 
component selection, their potential for optimizing 

objective functions and constraints is often underutilized. 
The method proposed in this paper leverages a genetic 
algorithm to determine the optimal 

coefficients for the cost constraint function, owing to its 
robust output and mathematical foundation. The data 
collection for this study includes components from various 
device versions and internal parts assigned to different 
software modules. Table 1 show A summary of  the 
methods presented by researchers in optimal components 
selection of software and figure 1 is showing pie chart of 
distribution of methods optimization, cost criteria and 
optimization types adopt to table 1. 

The remainder of this paper is organized as follows: 
Section 2 reviews related work on optimal component 
selection, with a focus on cost considerations. Section 3 
details the proposed approach. Section 4 presents the 
optimization problem within the case study. Section 5 
presents the experimental results of the case study. Section 
6 compares the results with other methods from the 
literature. Finally, Section 7 concludes the paper and 
outlines directions for future research.

 
 

Table 1: A summary of the methods presented by researchers in optimal components selection of software 

 

Optimization   type Optimization method Cost criteria (objective/constraint) 

Single objective  Hierarchical clustering algorithms Cost/budget in  constraint 

Single objective  AHP based on the access frequencies of the modules Cost/budget in  constraint 

Single objective  fuzzy optimization model Cost/budget in  constraint 

Single objective  optimization model based on decision variables Cost in objective function 

Multi  objective  fuzzy mathematical programming Cost in objective  function 

Multi  objective  goal programming approach Cost/budget in objective and constraint 

Multi  objective  Multi-criteria optimization approach in fuzzy environment Cost in objective  function 

Multi  objective  fuzzy optimization model Cost/budget in  constraint 

Multi  objective  fuzzy optimization model Cost in objective constraint 

Multi  objective  fuzzy optimization model Cost/budget in constraint 

Multi  objective  genetic algorithm (GA)-based hybrid approach with fuzzy exponential 
membership function 

Cost/budget in  constraint 
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Fig. 1.the pie chart of distribution of methods optimization, cost criteria and optimization types adopt to table 1. 

 
2. Related work 
 

In research focused on selecting the best 
software components, cost frequently plays a key 
role as either a goal to minimize or a limitation 
within the optimization process. Table 1 provides an 
overview of how researchers have incorporated cost 
into their models. Table 2 presents statistical insights 
derived from analyzing approximately 40 common 
factors considered during software component 
selection for optimization [6]. As highlighted in 
Table 1, cost is the most prevalent factor in optimal 
component selection, appearing in 17.70 of the 130 
studies that considered 41 different criteria. The data 
in Table 2 suggests that cost is a critical factor when 
deciding whether to acquire or develop components 

due to its impact on software development expenses. 
Consequently, software development organizations 
need to account for cost when choosing software 
components, potentially even making it the primary  

goal of their optimization efforts for ideal 
selection. Various optimization techniques, including 
multi-objective, mathematical, and genetic 
algorithms, have been widely employed for optimal 
component selection [7,8,9,10,11,12,16]. Numerous 
researchers have reported successful outcomes using 
different heuristic methods, multi-objective 
optimization strategies, and genetic algorithms. 
Figure 2 is show Statistical results of the cost 
criterion according to the table 2. 
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Table 2: Statistical results on the practical use of the cost criterion in the problem of optimal selection of components 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 2.Statistical results of the cost criterion according to the table 2. 
 
 
Gholamshahi et al. [20] categorized different 

approaches to component identification and selection. In 
[11], the authors introduced a Genetic Algorithm (GA)-
based hybrid approach with a fuzzy exponential 
membership function to select the best COTS component. 
The researchers in [42] used genetic algorithms and fuzzy 
techniques to create an optimization model for component 
selection in credit models. They solved the problem using 
a single-objective optimization method with three 
objective functions: cost, size, and execution time. The 
optimal component was determined using GA. In [44], the 

authors developed a model to optimize the selection of 
COTS components in the process of developing modular 
software systems. In more recent studies, researchers have 
increasingly focused on multi-period, multi-objective 
optimization frameworks that combine cost with other 
real-world constraints such as outsourcing, redundancy, 
and integration [48, 49]. These newer models reflect a 
growing trend toward holistic evaluation strategies that 
account for dynamic and time-dependent factors in 
component selection. 

For instance, Gupta et al. (2019) proposed a 

Criteria NP MPP Ref 
Cost 23 17.7 [17, 4, 19, 20, 21, 22, 23, 

24, 25, 26, 27, 28 ,29, 30, 
31, 32, 33, 14, 34, 37, 38, 
39, 41] 

Reliability 12 9.23 [32, 4, 20, 33, 14, 34, 23, 
26, 35, 36, 37, 31] 

Number of components 9 6.92 [17, 18, 15, 21,23,25, 33, 
34,35] 

Delivery time 6 4.60 [1, 14, 20, 23, 30, 31] 
Functionality 6 4.60 [1, 18, 21, 23, 30, 34] 
Number of modules in the software 5 3.85 [29,14 ,31, 32,36] 
Number of provide interfaces 5 3.85 [15,18 ,33, 37,38] 
Number of alternative COTS available 5 3.85 [29,31 ,36, 32,38] 
Coupling 3 2.30 [1 , 24,25] 
Other 56 43.10[16, 21, 33, 18, 15, 33, 30, 

31, 20, 14, 30, 31 , 14, 19, 
28, 1, 14, 30, 31, 29, 36, 31, 
35, 22 ,35, 17] 

 130 100  
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framework that integrates customer relationships and 
outsourcing dynamics into component evaluation 
decisions [49]. Mehlawat et al. (2020) extended this 
approach by addressing software maintenance and 
enhancement through an adaptive multi-objective model, 
taking into account long-term integration costs and 
performance metrics [48]. 

Additionally, Nabot (2024) presented an optimized 
component selection criterion specifically tailored to 
modern CBSE environments. This recent study introduced 
refined metrics for cost, cohesion, and risk that align 
closely with commercial software development constraints 
[16].Table 3 presents the statistical results obtained by 

analyzing 35 articles about the best way to select 
components. These results reveal a variety of methods 
proposed in the literature for solving optimization 
problems. Among all, the evolutionary method using the 
genetic algorithm was found the most popular. All of these 
methods provided a solution in the form of a single-
objective system, but the genetic algorithm had a positive 
impact on optimizing objective functions. This can lead to 
better results when selecting the optimal components for 
both single and multi-objective problems. Figure 3 
illustrates Frequency chart methods that applied to solving 
optimal component selection problem. 

 
Table 3.Statistical results on applied methods in the problem of optimal selection of components 

 

 

 
Fig. 3.Frequency chart methods to solving optimal component selection 

problem 
 
 

 
 
3. Proposed approach: calculating the cost 
coefficients for the redevelopment of high-risk 
components using a genetic algorithm 
 
Cost is a vital consideration for management and business 
in software development. Since it directly impacts their 
budgets, software companies must carefully consider cost 
when choosing software components. Cost can be factored 
into their decision-making as either a goal to minimize or a 
limitation they must stay within. In software systems built 
from components, overlooking compatibility, 
miscalculating extra costs, selecting unsuitable components, 
or choosing high-risk options can increase system 
vulnerabilities and threaten the stability of the underlying 
technology. Some inexpensive components available may 

also carry high risks due to a lack of extensive use and 
documented history. These might not integrate well and 
could require replacement to improve performance, 
ultimately driving up the system's cost. Therefore, a method 
to estimate the additional development costs associated 
with such components is necessary. After acquiring them, 
these components might need further development to 
function within the intended system, which increases the 
likelihood of selecting high-risk components when using 
optimization techniques. This can negatively affect the 
system's reliability and other related goals. To accurately 
determine the true cost of these components, this paper 
outlines a calculation method that considers both their 
initial purchase price and potential future development 
expenses. This will aid in selecting the most cost-effective 
option and improve the overall component selection 
process. The proposed technique employs genetic multi-

Method NPMPP Reference 

Evolutionary MOO based on GA 7 20 [18,15 ,21,22,33, 34,39] 

Fuzzy mathematical programming 
(FMP) 

3 8.571 [14,30,31] 

Customized MOO (used LINGO 
optimization model solver) 

2 5.714 [21,41] 

Goal programming 2 5.714 [36,27] 

Both AHP and WSM 2 5.714 [19,45] 

Fuzzy clustering 2 5.714 [35,24] 

Integer Programming 2 5.714 [29,40] 

Customized GA 1 2.858 [17] 

Fuzzy MOO 1 2.858 [1] 

Other methods (Lexicographic, 
Lagrange, MCDM, Evolutionary and 
WSM, AHP, WSM, SIREN method, 
Neural network, C4.5, Ontology-based, 
XML Query, backtracking algorithm 

13 37.143[23, 46, 25, 26, 28 , 32, 
37, 38, 44, 45, 47 ,42, 43]

Total 35 100  
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objective optimization to estimate the cost of redeveloping 
components, specifically considering the impact of high-
risk components on the total cost. Overall, this approach 
aims to provide a more precise cost calculation for 
component redevelopment, particularly for high-risk 
components, and enhance the system's reliability and other 

performance metrics. This paper proposes using cost 
coefficients and a genetic algorithm to more accurately 
assess the cost of high-risk components. Figure 4 illustrates 
the proposed approach, including the method for 
calculating the genetic cost of component redevelopment 
within a multi-objective optimization framework. 

 

Fig. 4.The Schematic of the proposed approach with the approach of calculating the cost of genetics for the redevelopment of components in multi 
objective optimization. 

3.1 Calculating the cost of components redevelopment 
Component-based systems consist of two categories of 

components: build and buy. Choosing to use readily 
available COTS components from the market can shorten 
the system’s delivery time, but it may also compromise 
security and reliability because of compatibility concerns. 
On the other hand, designing in-house components may 
take longer and cost more, but it results in a more reliable 
and compatible system. When dealing with multi objective 
systems and constraints, it is important to choose the 
appropriate component that can achieve the system’s goals. 
When calculating costs, most references consider three 
factors. First, in [1,4] only COTS components are used, and 
the total cost is simply the cost of purchasing these 
components. This cost is determined by Equation 1, where 
Costେ୓୘ୗ equals the sum of all costs (k) of each component. 

஼ை்ௌݐݏ݋ܥ =෍ ௜ܿ௝௞

௩௜௝

௞ୀଵ
 (1)																																	௜௝௞ݔ

Second, in [1, 4], only components produced by the 
development team are used. The total cost is determined by 
Equation 2, where Cost୧୬୦୭୳ୱୣ  equals the sum of all costs 
(i) of each component ( j ): 

Cost୧୬୦୭୳ୱୣ =෍෍(
୫

୨ୀଵ

୬

୧ୀଵ

C෨ ୧୨൫t୧୨ + τ୧୨N୧୨୲୭୲൯y୧୨																				(2) 

Third, in [1,2,4], a combination of in-house and COTS 

components are used. This is determined by Equation 3 
Cost୘୭୲ୟ୪ = Costୡ୭ୱ୲ + Cost ୧୬_୦୭୳ୱୣ																	(3) 

The final total cost is obtained by combining the buy-
build expenditures of all modules in the build-or-buy 
strategy, as shown in Equation 4. 

Total	cost = ෍෍(
୫

୨ୀଵ

୬

୧ୀଵ

C෨ ୧୨൫t୧୨ + τ୧୨N୧୨୲୭୲൯y୧୨ 	

+ 		෍ c୧୨୩
୴୧୨

୩ୀଵ
x୧୨୩					(4) 

In Equation 4, the total cost is equal to the sum of all 
costs (i) of each component (j) and its manufacturing time 
(tij) plus any additional cost (τ(ij)) and quantity produced 
(Nijtot) multiplied by (yij) ), plus the sum of all costs (k) of 
each COTS component. 

3.2 Proposed approach: Calculating the cost of 
redevelopment of components based on the optimal 
calculation of coefficients with the genetic algorithm 

As previously stated, certain COTS components are not 
compatible with software systems and are considered high-
risk components. To make them compatible, changes and 
redevelopment are necessary. In the case study performed 
for the purposes of this study, low-cost and unreliable 
components were classified as high-risk components 
because of their affordability and cost constraints. However, 
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selecting these components may reduce the reliability of the 
system and, specifically, ICD, which is directly related to 
reliability. Therefore, the selection of components needs to 
be evaluated based on their impacts on the objectives and 
constraints of the problem. To determine the ideal 
components that meet the goals of the problem, there is a 
need for considering the influencing factors of other 
criteria, whether they have a direct or indirect effect. 
Equation 5 is used to calculate the cost of a system, which 
includes the cost of high-risk components, including any 
costs associated with developing or adapting the 
component. Therefore, the cost of the bought component 
should be calculated using the following Equations: 

Total Cost = Cost In-house + Cost-COTS = 
    Cost In-house + (Cost-COTS + Cost-develop)= 
    Cost In-house + (Cost-COTS + w _GA* Cost In-

house)                                                                    (5) 
 

The cost of the component is calculated using 
Equation5, which is derived from Equations 3 and 4 and 
then using Equation6, which is derived from Equation 5. 

Total	cost = ෍෍(
୫

୨ୀଵ

୬

୧ୀଵ

C෨ ୧୨൫t୧୨ + τ୧୨N୧୨୲୭୲൯y୧୨ 	

+ 		෍ c୧୨୩
୴୧୨

୩ୀଵ
x୧୨୩ 	+ Wୋ୅

∗ 			(C෨ ୧୨൫t୧୨
+ τ୧୨N୧୨୲୭୲൯y୧୨)																																									(6) 

This study analyzed three factors that affect the cost of 
software development: development time, delivery time, 
and the number of interactive interfaces. The goal was to 
determine the coefficient (W) that represents the 
development cost of high-risk components. The amount of 
time spent on development equals the time spent on 
developing bought components (COTS). The number of 
interfaces is equal to the number of connections between 
high-risk components and other modules, and the cost of 
redevelopment increases as these connections increase. 
Delivery time is the sum of the development and buy times 
of the components. We used three input parameters as the 
chromosomes’ data structure and W, as the output’s 
development cost coefficient in the genetic algorithm. The 
findings showed that the proposed approach is effective in 
selecting a combination of elements that improve the 
objectives of the problem. 

3.3. Genetic parameters 
To find the weighting coefficients of high-risk 

component costs, this paper used GA with the following 
features: 

Chromosome allocation: To determine the weighting 
coefficient for high-risk component costs, data structures 
should be created for the chromosomes that represent the 

parameters affecting the component’s cost. To do this, this 
study used an array with dimensions of m * n, where m 
represents the initial population of the algorithm and n 
represents the factors that affect software development 
costs. Because of the presence of three influencing 
parameters in this case (Develop time, Delivery time, and 
Number of interact), an array of 3 * 50 was designed. 
Finally, this variable was analyzed using the principle of 
maximization. Equation 7 is also defined for the cost 
influencing parameters variable as follows: 
F୧ = a1Yଵ + a2Yଶ + a3Yଷ																																									(7) 
a1	 + 	a2	 + 	a3 = 1																																																		(8) 

Where Yi denotes a component of the cost chromosome, 
and it is necessary to satisfy Equation 8 as well. To fulfill 
Equation 8, the average value of each row of chromosomes 
was calculated at every phase of the execution using 
Equation 9. Then, the number of chromosomes was 
replaced with this average value to normalize the random 
amounts of the chromosomes. 

Y୧ =
Y୧

∑ Y୧୧ୀଷ
୧ୀଵ

(9) 

Fitness function: During each stage of the genetic 
algorithm, the cost of every chromosome is calculated 
based on the target functions defined in Equation 10. 
W = max	(abs	(−F୧))																																																										(10) 

At this stage, the chromosomes undergo evaluation 
through the cost function. In the proposed approach, the 
cost is a variable inversely proportional to the fitness 
function of the chromosomes. The presence of negativity in 
Equation 10 is a result of the potential for maximizing the 
function.  

Selection: The selection operator improves the overall 
quality of chromosomes in the next generation by selecting 
the high-quality ones. This paper uses the tournament 
selection method [24, 25] because it is efficient and easy to 
implement. 

Crossover: During the crossover operation, parts of the 
chromosomes are accidentally exchanged. This exchange 
results in children inheriting high-quality traits from either 
parent, which may lead to higher levels of confidence 
compared to both parents. To calculate the cost weight 
coefficient, a uniform composition for the intersection is 
used, which is called a comprehensive recombination 
intersection. In this approach, the chromosome points are 
selected as the intersection points. The procedure involves 
generating a random number between zero and one for each 
part of the chromosome. If this number is less than a 
constant value such as α, then the genes located after that 
point on the chromosomes will be displaced. The 
intersection rate in this paper is 1 [7].The comprehensive 
recombination intersection method was chosen due to its 
ability to explore a larger portion of the solution space, 
which increases diversity and helps avoid premature 
convergence. It is particularly effective in problems 
involving multiple influencing parameters, such as the cost-
related coefficients in our model. 

Mutation: To ensure diversity in the population after 



 Estimating Redevelopment Costs for High-Risk Components using a Genetic Algorithm 
 

40

the intersection, a mutation threshold is established to 
calculate the best coefficients. The goal is to generate a 
random number between zero and one for every 
chromosome. If the number is less than a certain limit, a 
random number is generated for each gene, and the 
corresponding gene is mutated if the product number is 
smaller than a constant value β. The default mutation rate is 
0.08, as mentioned in [7]. 

Termination criteria:Once the algorithm completes a 
certain number of iterations, it offers the optimal solution as 
an output. In this study, the number of repetitions is set to 
100 [7].  

Algorithm1: Initialize Population with Cost-Related 
Chromosomes 

Input: 
    - Population size (P) 
    - Number of genes per chromosome (n = 3) 
    - Range of values for each gene:  
DevTime∈ [t_min, t_max] 
DelTime∈ [d_min, d_max] 
        Interfaces ∈ [i_min, i_max] 
Output: 
    - Initialized population of chromosomes: Pop[P][3] 
Begin 
    For i = 1 to P do 
        // Generate one chromosome with 3 genes 
        Chromosome[i][1] ← Random value in [t_min, 

t_max]     // Development Time 
        Chromosome[i][2] ← Random value in [d_min, 

d_max]     // Delivery Time 
        Chromosome[i][3] ← Random value in [i_min, 

i_max]     // Number of Interfaces 
        // Normalize genes (optional step) 
 For j = 1 to 3 do 
         Chromosome[i][j]← 

Normalize(Chromosome[i][j]) 
        End For 
        Pop[i] ← Chromosome[i] 
    End For 
    Return Pop 
End 
 
3.4. Application of proposed approach to a case 

study 
This research conducted a detailed analysis to 

investigate the way high-risk components affect costs and 
to determine how accurately the suggested approach 
estimates costs, especially when high-risk components are 
involved [1, 4]. The cost function was considered a 
constraint in the optimization problem of the case study, 
and this paper aimed to demonstrate the positive role of 
calculating cost coefficients in achieving the objectives of 
the problem. 

 

3.5. Case study and dataset 
The present research used a case study of financial and 

accounting software [2] to evaluate the effectiveness of the 
proposed approach, in selecting the optimal combination of 
COTS and in-house components for CBSS development. 
The case study involved a software system consisting of 
three modules, M1, M2, and M3. We had access to 20 
software components in the market, numbered SC1 to 
SC20, which could be used to create a set of ten 
components, S1 to S10. Ten components could additionally 
be developed in-house which were labeled SB1 to SB10. 
For each software module, one component was needed to 
be selected from the alternatives available to meet 
operational needs. For example, S1 could be made up of 
SC1, SC2 

 
, SC3, SC4, or SB1. Therefore, we had to choose one of 

these five components to satisfy the operational 
requirements of S1. SC1, SC2, SC3, and SC4 were COTS 
components, while SB1 was developed in-house. A more 
detailed description of the case study and dataset is 
presented in [1, 2]. In addition, the tables related to the data 
of this case study are given in the appendices section. 
 
4. Optimization problem 
 

As mentioned earlier, a case study of financial and 
accounting software [2] was used to assess proposed 
approach effectiveness in the selection of the optimal 
component of COTS or in-house components for CBSS 
development. This case study is based on a case study that 
considers the goals of the multi-objective optimization 
model, such as ICD and functionality, as well as constraints 
like cost, delivery time, reliability, and ICD. 

4.1 Objective functions and constraints 
 

When dealing with a software system made of various 
components, the levels of their individual performance 
should be assessed. The components can either be bought 
from vendors or created in-house, and their functional 
performance can be tailored to meet the unique 
requirements of the organization or client. 

First objective function – Functionality: The overall 
functional performance of the system depends on the 
functionality of each module, which is calculated using 
Equation 11 [1,2]. In essence, functionality is a crucial 
measure that determines the efficacy of a modular software 
system. 

F =෍෍(f୧୨y୧୨+෍f୧୨୩x୧୨୩

୴౟ౠ

୩ୀଵ

)
୒

୧ୀଵ

୑

୨ୀଵ

																																				(11) 

 
Second objective function – Intra-modular coupling 

density (ICD):  
The intra coupling density is a measure of how coupling 

and cohesion of the modules are in a modular software 



Journal of Applied Dynamic Systems and Control,Vol.8, No.2, 2025: 33-47 
 

41 

 

 

system. Each module in a software system has multiple 
connections to other modules, and the ICD0s objective 
function is determined using Equation 12 based on both 
coupling and cohesion [1,2]. While Cohesion is the number 
of component interactions in the module, Coupling is the 
number of interactions between components in separate 
modules [1]. 

ICD =
Cohesion

Cuopling + Cohesion																																			(12) 

First constraints – Threshold on ICD: This constraint 
expresses the minimum threshold H on the value of ICD for 
each module using Equation 13: 

ICD =
CI୧୬ = ∑ ∑ ∑ r୧୧ᇲz୧୨z୧ᇲ୨

୒
୧ᇲୀ୧ାଵ

୒ିଵ
୧ୀଵ

୑
୨ୀଵ

∑ ∑ r୧୧ᇲ୒
୧ᇲୀ୧ାଵ

୒ିଵ
୧ୀଵ (∑ z୧୨୒

୧ᇲୀ୧ାଵ )(∑ z୧ᇱ୨ᇱ୑
୨ୀଵ )

			 ,

0 ≤ ICD ≤ 1															(13)		 

 
Second constraints – Building decision versus buying 

decision: Developers can choose from multiple instances of 
COTS and one in-house example for each component, with 
a calculation of build and buy decisions included Equation 
14. 

y୧୨ +෍x୧୨୩

୚౟ౠ

୩ୀଶ

	= z୧୨; 			i = 1,2,… , n		j

= 1,2,… ,m୧																			(14) 

Third constraints – Budget constraint: One of the 
most crucial considerations in system design is the cost 
constraint. It is determined by adding up all the costs 
associated with various modules of the build-or-buy 
strategy using Equation 15. 

∑ ∑ (୫
୨ୀଵ

୬
୧ୀଵ C෨ ୧୨൫t୧୨ + τ୧୨N୧୨୲୭୲൯y୧୨ +	∑ C෨ ୧୨୩

୴୧୨
୩ୀଵ x෤ ୧୨୩)≤B    

(15) 
 

Fourth constraints – Delivery time constraint: When 
referring to a software component, the delivery time 
indicates the duration required to prepare and make the 
component available for use in a component-based software 
system. This includes the time taken for development, 
integration, and system testing. Commercially available 
components are represented by dij, while components 
developed in-house can be expressed as the delivery time of 
the ith component for the jth module using Equation 16. 

 
Table 4.cost coefficient for the high-risk components calculation by 

GA 
 

 

 

				T୧ = ቌC୧୨	൫t୧୨	 + τ୧୨	N୧୨୲୭୲൯y୧୨	 +෍d୧୨୩x୧୨୩

୚୧୨

୩ୀଵ

ቍ											(16) 

Fifth constraints – Threshold on the reliability 
constraint: To calculate the likelihood of the ith 
component developed in-house for the jth module failing, 
we can use Formula 1. In addition, by applying Equation 
17, we can determine the average number of failures for 
both the ith component and the jth module, which is 
represented as qij. 

q୧୨ = ൫1 − ρ୧୨൯y୧୨ +෍μ୧୨

୚౟ౠ

୩ୀଵ

x୧୨																						(17) 

 

4.2. Results of the optimal components selection 

The case study identified the components categorized as 
high-risk and low-risk, which included the following: 

High-risk components: 8,9,12,13,14,19, 21, 22, 23, 24, 
33, 38,41, 43, 45, 46, 48, 49, 50, 54, 60 

Low-risk components: 1, 2, 3, 4, 5, 6, 7, 10, 11, 15, 16, 
17, 18 

The case study used low-cost and compatible 
components to identify high-risk components. By using 
Equation 18, the selection of such components during the 
optimum component selection process led to a lower ICD, 
which was owing to their reliability, cohesion, and 
affordability. The aim of this approach is to find 
components with low risk and high ICD (low cost). 

component High-risk Cost weight 
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Therefore, the key issue in selecting components with the 
ICD objective function is to identify low-risk components 
with high ICD. 

 
The redevelopment process is more time-consuming and 
expensive because high-risk components need modification 
to work with the intended software system. The suggested 
approach to calculate the cost of redevelopment involves 
the calculation of cost coefficients. Using the genetic 
algorithm with the settings mentioned in the previous 
section, the cost coefficients for high-risk components were 
determined in the case study. Table 4 shows the values of 
these coefficients. 

Cost  ∝  Reliability ∝  cohesion   ∝   ICD         (18)     

So: Min number of high-risk component selected ∝  
max ICD   (19)     
 
5. The experimental results 

To select the best components, there are two main 
methods: single-objective and multi-objective. Single-
objective methods, which often use genetic algorithms or 
fuzzy methods, focus on changing the objective functions to 
create a single goal. On the other hand, multi-objective 
methods, which use the NSGA method, keep the objective 
functions the same. To ensure the effectiveness of proposed 
approach in optimal component selection, both multi-
objective and single-objective methods were tested in this 
paper. Despite a shortage of case studies in this research 
area, this paper managed to compare GA-ICD to two other 
methods. To compare the effectiveness of the proposed 
approach with other methods, we implemented our own 
proposed approach using three methods that other authors 
used in selecting the optimal component and compared the 
results of this implementation with the results of others' 
methods. Also, to create a comparative standard 
environment, in addition to the proposed approach, we also 
implemented and implemented normal conditions (other 
than the approach) with these methods and presented the 
results in the form of relevant tables. 

 
5.1. Multi-objective optimal component selection by 

fuzzy logic 

To solve the optimal component selection problem as 
explained in [1,2], the problem was formulated based on the 
Belman-Zadeh maximization principle. First, the objective 
functions and constraints were calculated using the 
proposed approach, for high-risk cost. Next, the values of 
X1 and X2 were calculated using the two objectives in the 
problem. Afterward, the Functionality and ICD objective 
function optimization problem was solved (see the results 
in Tables 5 and 6). Then, the optimal lower limit (l) and 
upper limit (u), as well as the worst-case scenarios for each, 
were determined by evaluating the functionality and ICD 
while taking into account the constraints of the optimization 
problem obtained. The number of restrictions considered is 

based on the information provided in Table 7. 
 The membership functions for ICD and functionality in 

the case study are equation as 20 and 21, respectively. 
  

 
Table 5. Result of solving the optimization problem with the  

objective of functionality in the case study 
 

Functionality ICD Time Budget 

5.40 0.8809 6s 25 

 
 

Table 6.Result of solving the optimization problem with the objective 
of ICD in the case study 

 
Functionality ICD Time Budget 

7.82 0.4940 6s 24 

 
 
Table7.Optimization solution set of the high-risk approach for the first 

and second objective function 
 

 X1 X2 

ICD 0.8809 0.4940 

Functionality 5.40 7.82 

 
 

(ݔ)ܦܥܫߤ

= ൞

(ݔ)ܦܥܫ																														,1	 ≥ 0.8809
−(ݔ)ܦܥܫ 	0.4940

0.3869 ,						0.4940 ≤ ≥(ݔ)ܦܥܫ 0.8809
(ݔ)ܦܥܫ																															,0 ≤ 0.4940

			(20) 

(ݔ)݂ߤ

=

⎩
⎨

⎧
(ݔ)݂																																			,1	 ≥ 7.82

5.40−(ݔ)݂
2.42 ,														5.40 ≤ ≥(ݔ)݂ 7.82
(ݔ)݂																																				,0 ≤ 5.40

																		(21) 

The fuzzy multi-objective optimization model for high-
risk components, based on the principle of maximizing 
introduced by Bellman-Zade and the fuzzy membership 
functions, defined implementing. The results of this 
implementation are displayed in Table 8. 

 
5.2. Single-objective optimal component selection by 

GA approach 
To ensure the efficiency of the proposed high-risk 

component approach for optimal component selection, this 
paper used an evolutionary and single-objective method to 
select the optimal component. To transform the probleminto 
a single objective problem, both objective functions were 
checked to be in the direction of maximization and parallel. 
Finally, the first and second goals were defined in the form 
of Equation 22 by integrating Equation 11 and 12 [7]. To 
ensure that both objective functions have an equal impact 
on the final result, the coefficients of each function were set 
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to 0.5 when converting the multi-objective problem to a 
single-objective one [7]. As a result, Equation22 was 
redefined as Equation 24 Subject to condition 23. 

ܼ = ௙ܹ ∗
ிିிಾ೔೙

ிಾೌೣିிಾ೔೙
+W௟ ∗

୍େୈିாಾ೔೙
ாಾೌೣିாಾ೔೙

											(22) 

Thus: 

ܹ݂ +ܹ݈ = 1																																															(23) 

ܼ
= 0.5 ∗ ICD + 0.5 ∗ F − (cost + time + reliability
+ ICD)																																																																						(24) 

In addition to the proposed risky cost approach, the 
component selection algorithm (GA) also formulated and 
solved the simple cost model presented in [1,4]. Table9 
presents the results of both approaches in a comparative 
way. 

 5.3. Multi-objective optimal component selection by 
non-dominated sorting genetic algorithm (NSGA-II) 

The process of selecting components using NSGA 
involves the following steps: 

Step_1: An initial population of size N was randomly 
generated based on objective functions and constraints. The 
population of offspring Qt (t = 0) was generated from 
Ptusing GA operators such as selection, crossover, and 

mutation. 
Step_2: Pt and Qt populations were combined to create 

a new population of size 2N. Non-dominant sorting of the 
population Rt was performed and classified into multiple 
classes (F1, F2, F3, etc.). Crowding distance was then 
calculated for a set of individuals in the population. Two 
fitness functions in the maximum state, the subject of 
equations 25 and 26, were defined for this problem. 

 

Z1 = −1 ∗ (functionality)
+ (time + cost + reliability)		(25) 

Z2 = −1 ∗ (ICD) + (time + cost + reliability)			(26) 

Step_3: The best N individuals were selected according 
to the forward dominance order and crowding distance to 
form a new population Pt+1. Individuals from fronts with 
low mastery rank and high distance in the same front were 
chosen first. 

Step_4: Selection, crossover, and mutation were 
performed on the population Pt+1 to create a new offspring 
Qt+1 of size N. 

Step 5: If the termination criteria were met, the set of 
non-dominated solutions was considered as output and the 
process was stopped; otherwise, step2 would be repeated. 
The results of this implementation are shown in Table 10. 

 

Table 8.The results of this implementation fuzzy component selection  
approach Functionality  ICD Time Budget Module1 Module2 Module3 

High-risk 
redevelop cost 

7.75 0.85 7.4s 30 SC5,SC6,SC17 SC11,SC7,SC4 SC14,SB7,SB9,SB10 

simple cost [1] 6.49 0.50 6s 25 SC5,SC6,SC17 SC2, SC8, SB5 SB9,SC14,SC15,SB10 

 
Table 9.Optimal selection of components in the approach by the single-objective method of genetic 
algorithm 
approach Functionality  ICD Time Budget Module1 Module2 Module3 

High-risk 
redevelop cost 
by GA 

7.1 0.68 6s 30 SC5,SC6,SC17 SC8,SC7,SC4 SC14,SB7,SB9,SC20 

simple cost   6.43 0.52 6s 25 SC4,  SC5, SC6 SC8, SC11, SB6 SC15,SB8,SB9,SB10 

 
Table 10.result of optimal components selection in the propose approach by the NSGA-II 

approach  functionality ICD Time Budget reliability Module1 
High-risk 
redevelop cost 

7.13 0.76 7.1s 30 0.99 SC5,SC17,SC2, 
SC6,SC7,SC11,SC14,SC19,SC15,SC20 
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6.  Results Comparison 
The technique of Component-based software 

engineering (CBSE) involves using pre-made software 
components to develop software systems. These 
components can either be purchased as COTS or built from 
scratch by software developers. The use of high-risk 
components can lead to longer development time and 
increased costs. Given that cost is a crucial factor in 
software development, accurate computation is essential. 
This study used the genetic algorithm to determine the cost 
factor for redeveloping high-risk components. The results 
of the case study demonstrated that the genetic algorithm 
was effective in accurately estimating the cost of software 

redevelopment. Table 11 compares the proposed approach 
with other techniques used in the field for software system 
creation. According to the table, the proposed method 
selects an optimum component with a shorter execution 
time than that of others. Table 12 compares the unique 
features of the proposed method with the features of the 
other methods.  

 
Table 11.The results of the optimal selection of the component using 

the multi-objective selection method based on the cost of redevelopment 
with the GA coefficient .Figure 5 demonstrate results to bar chart. 

 
 

 
 
Table 12. Comparison between the presented method and other previous methods in the field of optimal component selection and their 

innovation aspect 

  

ref Type of optimization objective constraint approach Novelty 

[4] Multi objective Fuzzy-ICD,  
Functionality 

Fuzzy-ICD, reliability, Cost, 
Delivery time 

Fuzzy 
approach 

Compute coupling and cohesion in 
Mayer’s classification by fuzzy method 
for calculate ICD 

[2] Multi objective ICD,  Functionality ICD, reliability, Cost, 
Delivery time 

Fuzzy  
approach 

Fuzzy optimization 

[5] single objective Quality ICD, reliability, Cost, 
Delivery time 

GA  approach Joint objective using GA 

[56] Multi objective ICD,  Functionality Cost, Consistency Fuzzy  
approach 

Weighted objective 

Proposed 
method 

Multi objective ICD,  Functionality ICD, reliability, high-risk 
Cost, Delivery time 

GA  approach Joint constraint (cost) using GA weight 

approach Functionality ICD Time Budget Module1 Module2 Module3 

High-risk redevelop cost + NSGA-
IIselection method 

7.75 0.85 7.4s 30 SC5,SC6,SC17 SC11,SC7,SC4 SC14,SB7,SB9,S
B10 

simple cost + NSGA-II selection 
method 

6.49 0.50 6s 25 SC5,SC6,SC17 SC2, SC8, SB5 SB9,SC14,SC15,
SB10 

High-risk redevelop cost +  fuzzy  
component selection 

7.13 0.76 7.1s 30 SC5,SC17,SC6 SC2, SC7, SC11 SC14,SC19,SC1
5,SC20 

simple cost + fuzzy  component 
selection [1] 

6.61 0.82 6s 24 SC5,SC17,SB6 SC1, SC7, SC11 SC14,SC15,SC1
9,SC20 

High-risk redevelop cost +  GA 
component selection 

7.1 0.68 6s 30 SC5,SC6,SC17 SC8,SC7,SC4 SC14,SB7,SB9,S
C20 

simple cost + GA component 
selection 

6.43 0.52 6s 25 SC4,  SC5, SC6 SC8, SC11, SB6 SC15,SB8,SB9,S
B10 
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Fig. 5.  The bar chart for results of optimal component selection by proposes approach and other method. 

7. Conclusion and future work 
When optimizing a component-based problem, it is 

important to consider various objective functions such as 
cost, reliability, and delivery time. This is because different 
types of components exist in optimization-related problems. 
These include COTS components such as ready, complete, 
incomplete, and new components. The aim of this study 
was to improve the optimization of software systems while 
reducing the developer's involvement in the calculation 
process. By improving cost calculations within the 
constraints, this study succeeded in reducing the selection 
of high-risk components with higher costs. As a result, the 
final value of performance significantly improved. The 
Strengths of proposed approach is accurate cost estimation 
for high-risk components, improved ICD and functionality, 
integration of real-world constraints in a multi-objective 
framework. The Weaknesses of proposed approach is 
Performance may depend on proper parameter tuning in 
GA; the method has been tested on a single case study and 
needs broader validation. 

 Future studies could conduct a more thorough analysis 
of high-risk components, along with evaluating the cost of 
other effective parameters, such as time and efficiency. 
They could also explore different types of evolutionary 
methods to optimize objective functions and constraints of 
the problem. 
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