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1. Introduction

2eln) - PTD 4ax,Dw(x 1) 0<x<,
+b(x, T)w(X,7 — 0) + h(x, 1), 0<7<T,;

Fractional partial differential equations have pervasive ap-
plications in varied scientific disciplines and play an im- @(x,0) = wo(x), @(0,7) =3 (1), 0<7T<Ts (D
portant role in modeling most of natural phenomena [1-3]. @(1,7) = (1),
Over the past decades, due to the crucial roles of fractional
partial differential equations, solving them has been the cen- @ (x,7) = ¢(x,7) —0<7<0,
ter of attention of many researchers [4—7]. where a(x, 7), b(x, 7), vo(x), 9 (), %2 () and h(x, 7) are

given functions with 0 < @ < 1 and 6 > 0 is delay term.

0w (X,7)

This paper deals with the numerical solution of the fol- Here, =575 is the Caputo derivative that is defined by

lowing time-fractional delay reaction-diffusion equation: %@ (x, 1) 1 /T 1 0w (x, )
ot T(l-a)Jy (t-0)* 0
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for 0 < a < 1, I'(z) being the Gamma function. Moreover,
x € [0, 1] is a variable in space and 7 € [0,T] c Ris a
variable in time.

Delay differential equations are widely considered in the
modeling of a variety of phenomena in the natural sciences
and mathematical models, e.g., transportation scheduling,
engineering control [8], nuclear engineering [9]. Research
on delay differential equations has been the focus of much
research and there are valuable resources available for find-
ing the numerical solution of ODEs and PDEswith delay
[10-20]. A fractional reaction-diffusion equation with de-
lay can model complex biological systems like neural net-
works or epidemics where the effects of past events (delay)
and non-local diffusion (fractional derivative) are signifi-
cant. The interplay between these factors can lead to intri-
cate patterns and behaviors that are not captured by standard
models. Rihan [21] studied the time-fractional parabolic
PDEs based on the v-methods. The homotopy perturbation
method was used to numerically solve time-fractional PDEs
with proportional delays in [22]. The semilinear convection-
reaction-diffusion equation with fractional derivative and
delay term was solved by a linearized compact finite differ-
ence scheme and spectral collocation methods in [23, 24].
Hosseinpour et al. [25] proposed a collocation scheme for
solving time-fractional delay reaction-diffusion equations,
and Sun [26] solved this kind of equations with a linearized
compact difference scheme.

The reproducing kernel method (RKM) is a powerful
numerical method to investigate various scientific models.
This method has been improved by many researchers to
arrive at an efficient and fast algorithm for solving differ-
ent types of problems such as perturbed problems [27],
integro-differential equations [28], Telegraph equation [29]
and space-time-fractional equations [30].

To overcome the problem of time-consumption of the
Schmidt orthogonalization process, Xu and Lin [31] pro-
posed the simplified reproducing kernel method (SRKM)
for solving delay fractional differential equations. Then,
this method was utilized to solve impulsive delay differen-
tial equations [32]. Recently, Niu et al. [33] used SRKM for
the numerical solution of heat conduction equations with
delay.

The main aim of the present work is to develop an nu-
merical method based on the SRKM for the time-fractional
delay reaction-diffusion equation given in Eq. (2). To set
the initial and boundary conditions in (1) into W(32)(Q),
which is constructed in the following section, these condi-
tions are needed to homogenized. Put v(x,7) = w(x,7) —
wo(x)—H(x, 7)+Hy where H(x, 1) = 9 (1) (1-x)+(1)x
and Hy(x) = H(x,0). Hence Eq (1) transformed to the fol-
lowing equation

—aar"),;)‘;’r) = azszT) +a(x, 7)v(x,7) 0<T<T;
+b(x, T)v(x, T — 0) + F(x, 1),
v(x,0)=0, v(0,7)=0, o<r<T: @
v(l,7) =0,
v(x,7) = O(X, 7). —-9<1<0,

¢ https://doi.org/10.71932/1IM.2025.1205922

where
92
F(x,7) = h(x,7)+ ﬁ(fl(x, )+ wo(x) = Ho(x)|
+c')“101—();,7) +a(x,T)H(Xx,7) +b(x, T)H(x, 7 — 6),
d(x,7) = ’ o(X,7) + H(X, 7) + wo(X) — Hy(x).

For convenience, we should homogenize the delay condi-
tion v(x,7) = ©(x, 1) in Eq. (2). To thisend, set U (x,7) =
v(x,T) — p(x, ), where

0<7t<T

o) =| %
pXT) = d(x,7), -<71<0.

Hence, the problem (2) can be transformed to the following
homogeneous problem:

A% U(x, U, .
gt = ZUCD yax, UK T) 0<7<T

+b(X, T)UX, T-0) + G(X,T),

UKx,0)=0, U0, 7)=0, 0<7<Ts (3)
U, 1) =0,
U(x,T) =0 -0<1t<0.
where
| Fx, 1) +®(x,7-0), 0<t<0,
Q(X’T)_{F(X,T), <t<T.

The novelty of our work is as follows. First, a novel repro-
ducing kernel space that matches with the structure of (2)
is derived. Second, the idea of transforming the original
problem (1) to the homogeneous problem (3) is new. Third,
the logic behind the derivation of the proposed method is
proved via two theorems.

In Section 2, we recall some required concepts and prop-
erties of some reproducing kernel Hilbert spaces. In Sec-
tion 3, we give a brief description of the SRKM approach
and bring the detailed theorems and formulations of the
SRKM for the problem (3). Several examples are solved us-
ing the SRKM in Section 4. Finally, conclusions are given
in 5.

2. Reproducing kernel spaces

To solve the problem (3) using the SRKM, we derive a new
reproducing kernel Hilbert space and a novel reproducing
kernel function. In what follows, we recall some reproduc-
ing kernel Hilbert spaces and their properties and build up
the reproducing kernel Hilbert space that we need through-
out the solution scheme.

Reproducing Kernel Hilbert Spaces (RKHSs) are Hilbert
spaces where the evaluation functional at any point is con-
tinuous. This means there’s a special kernel function that
allows you to reproduce” the value of a function at a given
point by taking the inner product of the function with the
kernel. Different RKHSs are distinguished by the input
space, the chosen kernel function, and the structure of the
Hilbert space itself. The input space determines the type of
functions the RKHS can represent. For instance, the space
of continuous functions on a compact set might be a dif-
ferent RKHS than the space of square-integrable functions.
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The choice of input space impacts the type of problems the
RKHS can be used to solve. The kernel function is a func-
tion on the input space that determines the inner product of
two functions in the RKHS. Different kernels capture dif-
ferent types of smoothness and complexity in the functions
represented by the RKHS. Examples of kernels include the
Gaussian kernel, the linear kernel, and the polynomial ker-
nel. The Hilbert space itself, including its inner product
and norm, defines the properties of the functions within the
RKHS. Different Hilbert spaces can be created using differ-
ent choices of input spaces and inner products.

2.1 The space W) [a,b]

The reproducing kernel Hilbert space (Wzl [a,b], is the set of
all absolutely continuous functions such that the first deriva-
tive of these functions belongs to L?[a,b]. This space is
complete in the concept of reproducing kernel spaces [34],
and we have

 Forall v(x),w(x) € W21 [a, b], the inner product and
norm for this space are defined as follow:

b
<v(x), w(x) > = v(a)w(a) +/ v (X)w' (x)dx,

Wl = (< vov >apr.

* The reproducing kernel function of this space is given
by

I+, n<x;
Ki(n,x) = 4
1+x,

2.2 The space ‘sz 0[0,T]

The reproducing kernel space ‘WZZ’0 [0, T] is defined as the
set of all real-valued functions v so that v and v’ are abso-
lutely continuous in [0, T] and v(0) = 0 and v" € L?[0, T].
By [34], we can show that (sz,o [0, T] is a complete repro-
ducing kernel space and we have

* Forallv(r),w(7) € ’WZZO[O, T] the inner product and
norm for this space are defined by

T
< V(X), w(x) >’W2%()[0,T]: v’(O)w” (0)+‘/0v V”(T)w,,(T)dT,

”V”"’sz,o = [<v,v >3,

* The reproducing kernel function of this space is

L@ -6 -318),  ésm

K (&, 1) = (&)

—&(=67 = 37¢ + &),

2.3 The space W} ,[-6,T]
The linear space ’W22 0 [—8, T] includes all real-valued func-

tions such that for all v(7) € "W22 ¢[—6, T] the following
property holds true

E>T.

{ y=0, Ifr € [-6,0];
v e W3 [0,T], If7 e [0,T].

¢ https://doi.org/10.71932/1IM.2025.1205922

For the reproducing kernel space ’sz o [0, T] we have (see
[34], [31]):

* Forall v(7), @ (1) € W; ,[-6,T], the inner product
and norm for this space are defined as

<v(x), @ (x) >w2{9[_e,T] = v, (0)@}(0)

T
+ ‘/0 V' (t)w” (1)dr,

gz, = < V(700 >y, -

* The reproducing kernel function is

(Kz(é:’T)’ OS§<Tand
0<7t<T
Ry(&,7) = T (©6)
09 _GST<O

where K, (&, t) is given in (5).

2.4 The space (W23 0[0.1]

The reproducing kernel space (W23 o0, 1] represents the

space of all functions, which for each function belongs to
this space , such as v, all functions v, v’ and v’ are real-
valued and absolutely continuous on the interval [0, 1]. Fur-
thermore, v/ € L?[0, 1] and v(0) = v(1) = 0.

e Forallv(t),w (1) € (W230 [0, 1], the inner product and
norm for this space are defined as

<v(x), w(x) >3, 10,117 v (0)w’(0)

1
+/0 v/ (x)w" (x)dx,

= < >
IIVII(W;’0 [<v,v W,

* The reproducing kernel function is

K(n,x), n<x
Ks(n,x) = @)
K(x,1), n > X.

where K(1,x) = 1555 (—1 + x)n(156n4 +6x2(120 +

30m +10% = 57 +*) — 4x3 (120 + 305 + 107% - 57 +
) + x*(120 + 305 + 10n% — 57° + %) + 12x(360 —

300 — 1005% — 153> + 37]4)).

2.5 The spaces (Wz(?g’z) (Q) and (Wz(l’l) (Q)

Let Q = [0,1] x [-6,T]. The reproducing kernel space
Wfé” (Q) = (W23,0[0’ 1]1® (sz’g [-6, T] and its reproduc-
ing kernel is defined by (see [33])

7<(3,2) (77’ & X, T) =%K; (77, X) X Ry (‘f’ T)’ (8)

where K3 (1, x) and R, (&, T) are given in (7) and (6), respec-
tively. Moreover, the inner product in this space is defined
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as
<v(x,7),@w(x,T) > w2 @)=
) i 5; 0.1 g 0.
< v(X, 0) w(x O)>(W23’0
Similarly, we can define ‘Wz(l’l)(f).) = W21 [0,1] ®

‘Wzl [0, T], where Q = [0, 1] x [0, T]. It is easy to show

that the reproducing kernel space ‘Wz(l’l) (Q) is complete.

The reproducing kernel function for this space is given by
Ko,y é:x,7) =Ki(n,x) x K1 (€, 7) )
where K (7, x) is defined in Eq (4) (See [29]).
3. Explanation of the method

Consider the linear differential operator 7 : ’Wz(i;z) (Q) —
(Wz(]’l) () such that

0YU (X, T)
or«e
—a(x, U X, T)

B O*U(x,T)
0x2
-bx, )UK, T - 0).

FUKx,T) =

Using this operator, the time-fractional PDE (3) is rewritten
as

FUX,T)=6GK,71), ((X,7)€]0,1] x][0,T].

Since U(x,7) € (Wz(39’2) (Q), for T € [0, T] we have

Ux,00=0, UO,7)=0, UA,1)=0

and U(x,7) = 0 for T € [-6,0]. In [34] it is proved that
the linear operator # is bounded.
Now, let {(xi, Ti)}' | is a countable and dense subset in

Q and 7* is the adjoint operator for ¥ and define

¢i(x7 T) = (]((l,l)(thi;X, T)’ %(X, T) = ¢*¢i(x7 T)’

where K,y is the reproducing kernel of (Wz(l’l) (Q). The
next theorem establishes the structure of ; (x, 7).

Theorem 3.1 Let {(xi, Tl-)}ixj be a countable dense subset

in Q. Then the sequence {wi(x, T)}' | is a complete func-
i=

tion system in Wz(i;z) (Q) and

0"Ra(£,7)
o0&
—a(x, T)7<3 (n’ X)RZ (f? T)

DK ORET =0 (10)

%% (n, x)

’ﬁi(X’ T) = (}<3 (77» X) - 8772 R, (é:s T)

¢ https://doi.org/10.71932/1IM.2025.1205922

Proof We have

7—-*gbi(X’T)
<7: #i(x,7), K32 (. &; %, T)> o

l/’i (X’ T)

= <¢,(x 7), F K32 (€%, T)> (0

= FKaz2) (m.€:x, T)‘

0YRy (&,
- %mm, X) -
—a(x, DK (1, )R (£, 7)

~b(x, )T (1 R (€. 7 = 6)|

=X, &=T;
9°K3(n. x)
on?

RZ(‘f’ T)
77=Xi,§=7'i.

Clearly, y;(x,7) € W,%”(Q). Now, let v € W, 37 (Q)
is fixed and <v(x T), i (X, ‘r)> =0, fori =1,2,...
Then

<v(x ), 0 (%, T)> i~

(3 2)

<v(x ), F i (X, T)> 52

= <(f"v(x,r),¢i(x,7)>w<3.z)
= Fv(x;,1)=0 |

Moreover, according to the assumption of the theorem,

{(Xi, Ti)}i_l
this case v = 0 and the drfl:sired result is obtained. O
For any n, {wi(x, T)}_ | is linear independent [33]. By
i=

is dense in Q. Hence, ¥v(x,7) = 0 and in

using the symmetric properties of conjugate operator ¥ *,
we obtain

%Y (xj, ;)

Ox2
J

Oi(xj, 7))

ot
J

(witerui(xm) =

—a(X, T)¥i (X, 7))
—b(Xj, Tj)lﬂ[(Xj, T — 9)

Now, we will find an approximate solution for Eq.(3) in a
= {or vt} Lty W (@ -
¥, is a orthogonal projection. Obviously, if U(x, 1) is
the exact solution of time-fractional delay PDE (3), then
U, (x,7) = P, U(X,T) is an approximate solution for the
problem (3) and U, (x, 7) can be displayed as follows:

subspace ¥,

n

Un(x,7) = Y aj(x,7),

J=1

(11)

where ay, a, ..., a, are unknown coefficients.

The following theorem establishes the inner product con-
dition with which the approximate solution of problem (3)
is obtained.

Theorem 3.2 Let U, (X, T) be an approximate solution of
the time-fractional PDE (3). Then, U, (x, T) satisfies to the
following equation:

<fun,w,»> —G(xT), i=1,2,..n. (12)
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Proof Let U(x,7) € (M/z(36’,2) be the exact solution to the
problem (3), then FU (x,7) = G(x, 7). In addition,

<«un,w,~>wz(’3é2) (Paut, m)wz(.sf)

<7/1, P"wi>’14/2(i}2) = <’U, 'pi>(W2(’3é2)

<‘LI, F K1) Xi, 73 x, f)>(w<3.2>

2,0

<Tﬂ, K1) (X, 705 X, T)>W(3,z>

2,0
FUX;, 1) = G(xi, Ti),
i=12,..,n0

In order to find an approximation solution for problem
(3), by substituting Eq.(11) into Eq.(12), we obtain

n

Za‘,- <Y ¥i>=Gx,1), i=12,.,n

J=1

13)

The linear system of equations (13) can be rewritten as fol-
lows:

UA =G, (14)
where

<YLY > <y,y¥2> <Yi,¥n >

B <Y, ¥n > <yY2,¥2> <Y, ¥ >
<lﬁl’l’lﬁl > <lﬁmlﬁ2> <lﬁn’lﬁn>
ai G(x1,71)
as G(x2,12)

A= e G = :

an G (S T).

The set {¢;(x,7)}", is a linearly independent subset of

Wz(?e’z) (w), therefore G~! is revertible. Solving the lin-
ear system of equations (14) by any method provides A =
(a1, an, ...,an)T. In fact, we have shown that Eq.(3) has a
solution and it is unique.

Theorem 3.3 (See [33]) Both U, (X, T) and VU, (X, T) uni-
formly converge to U(x, 1) and VU (X, T), respectively.

4. Numerical examples

This section deals with the numerical review of the method
described in the previous sections. For this purpose, the
obtained numerical results will be compared with the exact
solutions using the following error function

Eny = UK, 1)Uy (X T)|.

The package of Mathematica 12 and the command NSolve
have been used to obtain the numerical results and the cal-
culations have been implemented on a Intel Core 17-4790k
and 4 GHz CPU and 4 GB RAM. The nodes {(x;, 7;) ::6\’
are distributed uniformly, 7 = ﬁ

¢ https://doi.org/10.71932/1IM.2025.1205922

Example 4.1 Consider the time-fractional delay diffusion
equation given by
V(1) _ BV(xT) _

ot Ox2

YV, v-1)+h(x,1),

(x,7) € [0,1] x [0,1];

15)

Y(0,7r)=0, V(l,7)=0, 0<7t<T;

V(x,7) =x(x — 1) (x,7) € [0,1] x [-1,0].

where

hx,7) = -2 -x(r-13*x-1)-
6xT3"%(x = 1)

(@®-6a2+11la-6)T(1 —a)

The exact solution to this problem is V (x, ) = T°x(x — 1).
The computational results for N = 8 and various a are
recorded in Table 1.

Approximate solutions Uy (X, T) for various value of a
are plotted in Fig. 1. Moreover, the corresponding loga-
rithmic absolute errors are plotted in Fig. 2.

Example 4.2 Consider the following time-fractional delay
PDE with non-homogeneous boundary conditions adopted
from [23]:
Pe@n ol - gx,1)
+w@(x,7—60) +h(x,71),

(x,7) € [0,1] x [0, T];

(16)

@(0,7) =w(l,7) =77, 0<7<T;

@(x,7T) = 73 cos(27x) (x,7) € [0,1] x [0, T].
with

h(x,7) = cos(27rx)((9 -1} - +4n?e?

613"
(=6 + 11a — 622 + o)1 - @] )

For 0 = 1 the exact solution is w(x,7) = 7° cos(2nx). Us-
ing the procedure which is discussed in detail in the Section
??, Eq.(16) is transformed to the following homogeneous
problem:

Y U(x,7)  PURKT) _
oTe® - ox2 - (LI(X, T)

+UX,T-0) + G(x,7),

(x,7) € [0,1] x [0, T],

UO,7) =U(1l,7) =0, 0<7<T;

Ux,T)=0 (x,7) € [0,1] x [-6,0].
where
F(x,7) +®(x,7-0), O0<t<71/
G(x,7) =
F(x, 1), 0<1t<T.
and
12 3 _ 2.2
F(x.7) = 77 — a sin”(7x)

(=6 + 1la — 602 + 3)T'(1 - @)

+47273 cos(27x) + 2(73 - (60— 7)3) sin?(7x).
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Table 1. Numerical errors at different points for Example 4.1

X T a=0.5 a=0.7 a=09

025 0.25 6.3682x107> 7.2741x 10>  1.1085x 1077
0.5 3.2415x107* 29997 x 10™*  2.6807 x 10+
0.75 1.5799x 1073 1.51663 x 10~3  1.5410 x 103

0.5 025 1.2753x107% 1.4114x10™%  2.0719x 1077
0.5 1.7507x107* 1.4059x 10™*  7.0030 x 10~*
0.75 1.2868 x 1073 1.1997 x 1073 1.1911 x 1073

0.75 0.25 1.0842x107% 1.1782x10% 17476 x 10~*
0.5 2.6043x 1070 2.7158x107%  6.1122x 1073
0.75 6.0129x10™* 5.4032x10™*  5.1938 x 1074

a=0.7

a=09

Figure 1. The exact solution and approximate solutions Uy (x, 7) for different @ in Example 4.1.

Table 2 shows the errors obtained by the SRKM with N =
80 and the finite difference method [23]. The results show
that the accuracy of the SRKM is similar to finite difference
method. It is evident from the Table 2 and Fig. 3 that the
approximate solutions are concurrent converge to the exact
solution.

Example 4.3 Next, we consider the following time-
fractional reaction-diffusion equation with time delay:

'@ (x,7) Fw(x,1) (ot —1)
re a2 T

ol -

F(% - a) F(% - a)

2+t - - D+ (r- D),
(x,7) € [0, 1] X [0,T]

with the initial and boundary conditions
w(0,7) =0, w(l,‘r)=7§+‘r%, 0<7t<T.

@(x,7) = x2(r3 +73)  (x,7) €[0,1] x [~1,0]

¢ https://doi.org/10.71932/1IM.2025.1205922

The given equation is solved using the method stated in this
paper and the numerical results are shown in Table 3. The
exact solution to this problem is unavailable. Hence, the nu-
merical solution with N = 100 is considered as the bench-
mark for computing the errors.

5. Conclusions

The numerical solution of the time delay and time-
fractional reaction-diffusion equation has been investigated
by using a new simplified reproducing kernel method. Pri-
marily, a novel reproducing kernel space satisfying the
time delay condition was introduced, and the approximate
solution to the time-fractional delay PDE was represented
in the form of series belonging to the proposed new
reproducing kernel space. Ultimately, the effectiveness of
the method was exhibited by various instances deciphered.
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N=4, a=;— N=8, ﬂ=;*
5.x10 ] 5.x107°fF
2.x10° \ ] 1.x107%F
g 1.x1073 E 5.x 107
§;’2 5.x107 3"9
1107
2 x 10 5.x1075}F
1.x10™ s
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Figure 2. The error function graph for Example 4.1.
Table 2. Comparison of numerical results for Example 4.2.
Presented method Method in [23] Presented method Method in [23]
h a=03 a=03 a=0.7 a=0.7
55 3.4532x107° 2.4745x 1070 2.2845x 1073 3.9348 x 107°
w  1-5413x 107 6.2547x107*  1.4253x 107" 9.8970 x 107*
i 1.3214 x 10~* 1.5721 x 107 2.1687 x 107> 24813 x 1074
i 1.2577 x 1073 3.9407x 107> 3.3567 x 107 6.2111 x 107>
o5 3.6362x107° 9.8644x 107 1.1241 x 1076 1.5536 x 1073

Figure 3. The form of the exact and approximate solutions, Uz (x, 7) for Example 4.2.

Table 3. Numerical errors obtained for Example 4.3. ( )
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