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Abstract 

This paper investigates the reverse forms of certain inequalities within-algebras in the 

non-standard case. We establish that the inequalities in this context are precisely the 

reverses of those in the standard case, extending results previously obtained for-

algebras. Our study explores relationships between significant operator means, such 

as the Heinz, Heron, and geometric means, in the framework of JB-algebras. For two 

positive invertible elements in a unital JB-algebra and for specific values of, we 

demonstrate novel reverse inequalities, including, refining known results. 

Additionally, we analyze operator monotonicity, operator convexity, and functional 

calculus in-algebras, leading to extended inequalities that hold in the non-standard 

case. Using algebraic and functional properties of JB-algebras, we generalize previous 

results on operator means, demonstrating their validity beyond associative operator 

settings. These findings contribute to a deeper understanding of the structure of-

algebras and their applications in functional analysis and operator theory. The results 

further highlight the significance of non-standard settings in refining classical 

inequalities. 
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1. Introduction 

Jordan algebras were introduced in 1934 by physicists Pascual Jordan, John von Neumann, 

and Eugene Wigner while exploring the mathematical foundations of quantum mechanics. 

Their goal was to generalize the algebraic structures used in quantum theory, extending 

beyond associative algebras to include more general structures, with an initial focus on finite-

dimensional algebras [17]. Von Neumann later extended this work to infinite dimensions [18]. 

Segal [25] pioneered the examination of Jordan subalgebras of self-adjoint operators on 

Hilbert spaces, with further advancements made by Effros, Størmer [1], Topping, and others. 

𝐽𝐵 -algebras, introduced by Alfsen, Shultz, and Størmer, emerged as a natural framework for 

quantum observables and have since found applications in analysis, geometry, and operator 

theory [12, 26, 27]. 

The theory of operator means began with Anderson and Duffin [2], who introduced parallel 

addition for positive matrices in electrical network synthesis. Anderson and Trapp [3] later 

extended this idea to positive operators. In 1975, Pusz and Woronowicz [23] introduced the 

geometric mean for positive operators, and Ando [4,6,7], Kubo, Fujii, and others [20,21,22] 

developed a general framework for operator means. While operator means such as the 

arithmetic, harmonic, and geometric means have greatly influenced operator theory, their use 

has been mostly confined to Hilbert spaces, with no exploration of their application in 𝐽𝐵 -

algebras. 

Observables in quantum mechanics are represented by self-adjoint operators on a Hilbert 

space. While these operators are not closed under the usual associative product, they are closed 

under the Jordan product, making it a suitable framework. For more details, see [14]. 

A Jordan algebra is a non-associative algebra  over  that satisfies the following properties 

for all elements ,x y : 

( )

( ) ( ) ( )2 2  y

x

i

y y x

x y

Commutativity

Jordan denx x iy tx t

=

=
 

where ∘ denotes the Jordan product. 

Note that special Jordan algebras are a class of Jordan algebras that can be embedded into 

associative algebras equipped with the symmetrized product 

2

xy yx
x y

+
=                  (1-1) 

In contrast, exceptional Jordan algebras are those that cannot be constructed in this way. 

As an example, the set of n n self-adjoint matrices over the complex numbers, ( )nH C , is 

a special Jordan algebra. 

ّIf a real Jordan algebra   is equipped with a complete norm that satisfying 

, ,A B A B A B   

it is referred to as a Jordan Banach algebra. 
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Definition 1.  A 𝐽𝐵 -algebra is a Jordan Banach algebra  that satisfies two additional 

conditions for ,A B : 

22

2 2 2

A A

A A B

=

 +
 

Complex Hermitian and real symmetric matrices, by Jordan product, are important examples 

of 𝐽𝐵 -algebras. 

Let 𝐴 be a unital 𝐽𝐵 -algebra with a unit element 𝐼, For an element A , its Jordan inverse 

𝐴−1 (if it exists) is defined as the unique element satisfying: 

1 2 1A A I and A A A− −= =  

The spectrum of an element 𝐴 in a Jordan algebra 𝐴 consists of all real numbers 𝜆 for which 

the element 𝐴 − 𝜆𝐼 does not have a multiplicative inverse within the Jordan algebra  . For 

a positive semidefinite matrix (whether real symmetric or complex Hermitian) denoted as  

𝐴 ≥ 0, the spectrum contains only non-negative eigenvalues. 

In any Jordan algebra, the triple product {𝐴𝐵𝐶} is defined as follows: 

  ( ) ( ) ( ):ABC A B C B C A A C B= + −  

Observe that the triple product {𝐴𝐵𝐶} is linear with respect to each factor and satisfies the 

property {𝐴𝐵𝐶} = {𝐶𝐵𝐴}. In the case of a special Jordan algebra, the triple product is given 

by {𝐴𝐵𝐶} =
1

2
(𝐴𝐵𝐶 + 𝐶𝐵𝐴). 

Definition 2.  Let 𝐴 be a unital 𝐽𝐵 -algebra. A quadratic map, denoted as 𝑈𝐴, is defined on 𝐴 

as follows: 

  ( ) 22AU B ABC A B A A B= = −  

It is clear that 𝑈𝐴 is linear in 𝐵 but nonlinear in 𝐴; specifically, 

( )    AU B C ABC ACA− = −
 

Note that when 𝐴 is special; the product 𝐴𝐵𝐴 becomes meaningful and is equal to the 

expression 𝐴𝐵𝐴 itself (i.e., {𝐴𝐵𝐴} = 𝐴𝐵𝐴). Furthermore, 𝑈𝐴𝐵 = {𝐴𝐵𝐴} ≥ 0 where 𝐵 ≥ 0. 

The following two identities hold in any Jordan algebra, demonstrating that the Jordan triple 

product {𝐴𝐵𝐴} behaves similarly to the associative product 𝐴𝐵𝐴, making algebraic 

calculations more manageable: 

        

    2 2

, (1 2)

. (1 3)

ABA C ABA A B ACA B A

BAB B AB A B

= −

= −
 

Equality (1-2) can be expressed in the following way for the 𝑈𝐴 map. 

  (1 4)A B AABA
U U U U= −  
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We will highlight specific properties of 𝑈𝐴 that will be frequently used in the following 

section. 

Let ,A B  where   is a 𝐽𝐵 -Banach algebra. Then 

• 𝐴−1 exists if 𝑈𝐴 has a bounded inverse. In this case, 𝑈𝐴
−1 = 𝑈𝐴−1. 

• If 𝐴 and 𝐵 have inverses, then {𝐴𝐵𝐴}−1 = {𝐴−1𝐵−1𝐴−1}. 

• If 𝐴 and 𝐵 have inverses and 0 < 𝐴 < 𝐵, then 𝐵−1 < 𝐴−1. 

For additional information, readers are referred to. 

When studying 𝐽𝐵 −algebras, it is important to consider specific classes of real-valued 

functions. An operator monotone (increasing) function 𝑔 on  defined on a 𝐽𝐵 -algebra   

such that 𝐴 ≤ 𝐵 implies 𝑔(𝐴) ≤ 𝑔(𝐵). Furthermore, 𝑔 is defined as operator convex if for 

any 0 ≤ 𝑡 ≤ 1, the following condition is satisfied: 

( )( ) ( ) ( ) ( )1 1 .g t A tB t g A tg B− +  − +  

𝑔 is said to be operator concave if −𝑔 is operator convex. 

In 2021, Wang et al [28].  introduced operator means for ,A Bwhere   is a 𝐽𝐵 -Banach 

algebra, with 0 ≤ 𝑡 ≤ 1: 

• 𝑡 -weighted harmonic mean: 𝐴!𝑡 𝐵 = ((1 − 𝑡)𝐴−1 + 𝑡𝐵−1)
−1

; 

• 𝑡 -weighted geometric mean: 𝐴♯𝑡𝐵 = {𝐴1/2{𝐴−1/2𝐵𝐴−1/2}𝑡𝐴1/2}; 

• 𝑡 -weighted arithmetic mean: 𝐴𝛻𝑡𝐵 = (1 − 𝑡)𝐴 + 𝑡𝐵. 

They also established the following relationships among them in [28]. 

𝐴♯𝑡𝐵 = 𝐵♯1−𝑡𝐴,                            (1 − 5)

(𝐴♯𝑡𝐵)−1 = 𝐴−1♯𝑡𝐵−1,                     (1 − 6)
𝐴!𝑡 𝐵 ≤ 𝐴♯𝑡𝐵 ≤ 𝐴𝛻𝑡𝐵,                  (1 − 7)

𝛼𝐴♯𝑡𝛽𝐵 = (𝛼♯𝑡𝛽)(𝐴♯𝑡𝐵)      (𝛼 > 0, 𝛽 > 0)         (1 − 8)

 

{𝐶(𝐴♯𝑡𝐵)𝐶} = {𝐶𝐴𝐶}♯𝑡{𝐶𝐵𝐶} for any invertible𝐶 ∈  .    (1 − 9) 

In the C∗-algebra of bounded linear operators on a Hilbert space, the theory of operator means 

is essential for understanding its structure. 

Concepts like operator monotonicity and operator convexity, analogous to those in 𝐽𝐵 -

algebras, are central to this theory. For detailed insights, see references [5, 8, 9, 16, 19, 23]. 

The geometric mean for 𝑛 × 𝑛 complex matrices was initially defined for positive matrices 

and later extended to accretive matrices in [13]. A weighted version was introduced in [24], 

and the theory was further developed in [11] to include arbitrary operator means, with a 

detailed analysis of the weighted geometric mean and weight extensions. 

Definition 3.  Let 𝑔 and 𝑓 be real continuous function on a closed interval 𝐼 with 𝑓 > 0. 

Assume that 𝐴, 𝐵 ∈   with 𝑆𝑝(𝐴), 𝑆𝑝(𝐵) ⊂ 𝐼 and 𝑆𝑝 where   be a unital 𝐽𝐵 -algebra. The 
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no associative perspective function 𝐾𝑔𝛥𝑓(𝐵, 𝐴) of 𝐴 and 𝐵 associated to 𝑔 and 𝑓 is defined 

by 

𝐾𝑔𝛥𝑓(𝐵, 𝐴) = {𝑓(𝐴)
1

2𝑔 (𝑓(𝐴)−
1

2𝐵𝑓(𝐴)−
1

2}) 𝑓(𝐴)
1

2}. 

Lemma 4.  [28] Let   be a unital 𝐽𝐵 -algebra. Let 𝑝, 𝑠 and 𝑓 be real valued continuous 

functions on a closed interval 𝐼 such that 𝑓 > 0 and 𝑝(𝑥) ≤ 𝑠(𝑥). For 𝐴, 𝐵 ∈   with 

𝑆𝑝(𝐴), 𝑆𝑝(𝐵) ⊂ 𝐼 and {𝑓(𝐴)−
1

2𝐵𝑓(𝐴)−
1

2} ⊂ 𝐼, 𝐾𝑝𝛥𝑓(𝐵, 𝐴) ≤ 𝐾𝑠𝛥𝑓(𝐵, 𝐴). 

In 2021, Wang et al [28].  defined the young inequality for 𝐽𝐵 -algebras. Later, in 2024, 

Ghazanfari et al [15].  proved the reverse of the young inequality for 𝐽𝐵 -algebras, as stated 

in the following Lemma respectivly. 

Lemma 5.   [15, 28] Let  be a unital 𝐽𝐵 -algebra and 𝐴, 𝐵 ∈   be positive invertible 

elements. 

• For any 𝑡 ∈ [0,1], 𝐴!𝑡 𝐵 ≤ 𝐴♯𝑡𝐵 ≤ 𝐴𝛻𝑡𝐵.    (1-10) 

• For any 𝑡 ∈ (−1,0) ∪ (1,2), 𝐴𝛻𝑡𝐵 ≤ 𝐴♯𝑡𝐵 ≤ 𝐴!𝑡 𝐵.       (1 − 11) 

Wang et al. proved [28] the following important equality in the standard case, while 

Ghazanfari et al. [15] established it in the non-standard case, demonstrating that the equality 

holds for both scenarios. 

Let 𝐴 be a unital 𝐽𝐵 -algebra and 𝐴, 𝐵 ∈   be positive invertible elements. Then for any 

nonnegative numbers 𝛼 and 𝛽 we have 

(𝛼𝐴♯𝑡𝛽𝐵) = (𝛼♯𝑡𝛽)(𝐴♯𝑡𝐵).            (1 − 12) 

where 𝑡 ∈ (−1,2). 

2. Main Results 

This section begins by establishing the reverse of the inequalities presented by Wang [28] in 

(1-10). Additionally, it refines (1-11), which was proven by Ghazanfari [15] for 𝐽𝐵 -algebras, 

extending from the standard case to the non-standard case. 

In [10] Article, several numerical inequalities for the non-standard case have been proven. 

Lemma 6 employs one of these inequalities to establish a chain of inequalities for 𝐽𝐵 -algebras 

in the non-standard context, as demonstrated in Theorems 7 and 8. 

Lemma 6.  Let 𝑎, 𝑏 > 0 and 𝑡 ∉ [
1

2
, 1]. Then 𝑡𝑎 + (1 − 𝑡)𝑏 + (𝑡 − 1)(√𝑎 − √𝑏)

2
≤ 𝑎𝑡𝑏1−𝑡. 

Theorem 7.  Let 𝐴, 𝐵 ∈   be positive invertible elements, where   is a unital 𝐽𝐵 -algebra. 

Then for any 𝑡 ∈ (1,2), 

 

𝐴!𝑡 𝐵 ≥ (𝐴−1𝛻𝑡𝐵−1 + 2(𝑡 − 1)(𝐴−1𝛻𝐵−1 − 𝐴−1♯𝐵−1))
−1

             (2 − 1)

(𝐴−1♯𝑡𝐵−1)−1 = A♯𝑡B ≥ 𝐴𝛻𝑡𝐵 + 2(𝑡 − 1)(𝐴𝛻𝐵 − 𝐴♯𝐵)      (2 − 2), (2 − 3)

≥ A𝛻𝑡B             (2 − 4)

 

Proof. From inequality (1-10), 𝐴𝛻𝐵 − 𝐴♯𝐵 ≥ 0. Therefore 

𝐴𝛻𝑡𝐵 ≤ 𝐴𝛻𝑡𝐵 + 2(𝑡 − 1)(𝐴𝛻𝐵 − 𝐴♯𝐵). 
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The same as: 

𝐴−1𝛻𝑡𝐵−1 ≤ 𝐴−1𝛻𝑡𝐵−1 + 2(𝑡 − 1)(𝐴−1𝛻𝐵−1 − 𝐴−1♯𝐵−1). 

By definition, 𝐴!𝑡 𝐵 = (𝐴−1𝛻𝑡𝐵−1)−1. Inverting the inequality above results in 

𝐴!𝑡 𝐵 ≥ (𝐴−1𝛻𝑡𝐵−1 + 2(𝑡 − 1)(𝐴−1𝛻𝐵−1 − 𝐴−1♯𝐵−1))
−1

. 

Using Lemma 6, for any 𝑥 > 0 and 𝑡 ∈ (1,2), 

𝑡𝑥 + (1 − 𝑡) + 2(𝑡 − 1) (
𝑥 + 1

2
− √𝑥) ≤ 𝑥𝑡. 

Applying Lemma 4, to inequality (2-5) with 𝑓(𝑦) = 𝑦 yields 

𝐴𝛻𝑡𝐵 + 2(𝑡 − 1)(𝐴𝛻𝐵 − 𝐴♯𝐵) ≤ 𝐴♯𝑡𝐵. 

The same as: 

𝐴−1𝛻𝑡𝐵−1 + 2(𝑡 − 1)(𝐴−1𝛻𝐵−1 − 𝐴−1♯𝐵−1) ≤ 𝐴−1♯𝑡𝐵−1 

By inverting the inequality above, 

(𝐴−1𝛻𝑡𝐵−1 + 2(𝑡 − 1)(𝐴−1𝛻𝐵−1 − 𝐴−1♯𝐵−1))
−1

≥ (𝐴−1♯𝑡𝐵−1)−1 = 𝐴♯𝑡𝐵. 

Theorem 8.  Let 𝐴, 𝐵 ∈ 𝐴 be positive invertible elements, where   is a unital 𝐽𝐵 -algebra. 

Then for any 𝑡 ∈ (−1,0), 

 

𝐴!𝑡 𝐵 ≥ (𝐴−1𝛻𝑡𝐵−1 − 2𝑡(𝐴−1𝛻𝐵−1 − 𝐴−1♯𝐵−1))
−1

                (2 − 6)

(𝐴−1♯𝑡𝐵−1)−1 = A♯𝑡B ≥ 𝐴𝛻𝑡𝐵 − 2𝑡(𝐴𝛻𝐵 − 𝐴♯𝐵)       (2 − 7), (2 − 8)

≥ A𝛻𝑡B                      (2 − 9)

 

Proof. Similar to Proposition 7 by Theorem [young4], we have 𝐴𝛻𝐵 − 𝐴♯𝐵 ≥ 0. Considering 

0 < −𝑡 < 1, it follows that 

𝐴𝛻𝑡𝐵 ≤ 𝐴𝛻𝑡𝐵 − 2𝑡(𝐴𝛻𝐵 − 𝐴♯𝐵). 

Likewise 

𝐴−1𝛻𝑡𝐵−1 ≤ 𝐴−1𝛻𝑡𝐵−1 − 2𝑡(𝐴−1𝛻𝐵−1 − 𝐴−1♯𝐵−1). 

Consequently 

𝐴!𝑡 𝐵 = (𝐴−1𝛻𝑡𝐵−1)−1 ≥ (𝐴−1𝛻𝑡𝐵−1 − 2𝑡(𝐴−1𝛻𝐵−1 − 𝐴−1♯𝐵−1))
−1

. 

Now by Lemma 6, for any 𝑥 > 0 and 1 − 𝑡 ∈ (1,2), 

𝑡𝑥 + (1 − 𝑡) − 2𝑡 (
𝑥 + 1

2
− √𝑥) ≤ 𝑥𝑡. 

Applying Lemma 4, to inequality (2-10) with 𝑓(𝑦) = 𝑦 yields 

𝐴𝛻𝑡𝐵 − 2𝑡(𝐴𝛻𝐵 − 𝐴♯𝐵) ≤ 𝐴♯𝑡𝐵 

and 

𝐴−1𝛻𝑡𝐵−1 − 2𝑡(𝐴−1𝛻𝐵−1 − 𝐴−1♯𝐵−1) ≤ 𝐴−1♯𝑡𝐵−1. 

So 
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(𝐴−1𝛻𝑡𝐵−1 − 2𝑡(𝐴−1𝛻𝐵−1 − 𝐴−1♯𝐵−1))
−1

≥ (𝐴−1♯𝑡𝐵−1)−1 = 𝐴♯𝑡𝐵. 

Ghazanfari et al [15].  defined the Heinz and Heron means for two positive invertible elements 

𝐴, 𝐵 ∈   in a unital 𝐽𝐵 -algebra  and 𝑡 ∈ [0,1] as follows: 

• Hienz mean: 

𝐻𝑡(𝐴, 𝐵) = {𝐴
1

2 (
{𝐴−

1

2𝐵𝐴−
1

2}𝑡 + {𝐴−
1

2𝐵𝐴−
1

2}1−𝑡

2
) 𝐴

1

2} 

• Heron mean: 

𝐹𝑡(𝐴, 𝐵) = {𝐴
1

2 ((1 − 𝑡){𝐴−
1

2𝐵𝐴−
1

2}
1

2 + 𝑡 (
1 + {𝐴−

1

2𝐵𝐴−
1

2}

2
)) 𝐴

1

2} 

• Logarithmic mean: 

𝐿𝑡(𝐴, 𝐵) = ∫ 𝐴1/2(𝐴−1/2𝐵𝐴−1/2)
𝑡
𝐴1/2}𝑑𝑡

1

0

 

. 

The following inequality between the Heinz and Heron means was proven by Zhao et al [29].  

for any positive invertible operators 𝐴, 𝐵 on Hilbert space 𝐻 and 0 ≤ 𝑡 ≤ 1. Later, Ghazanfari 

et al [15].  extended this result to any positive invertible operators 𝐴, 𝐵 in a unital 𝐽𝐵 -algebra 

  with the same condition: 

𝐻𝑡(𝐴, 𝐵) ≤ 𝐹𝛼(𝑡)(𝐴, 𝐵),                      (2-11) 

where 𝛼(𝑡) = (1 − 2𝑡)2. 

Lemma 9 is another inequality from, and by using it, we have obtained a useful result that 

establishes a relationship between the Heinz and Heron means in the non-standard case. 

Lemma 9. [10] Let 𝑎, 𝑏 > 0 and 𝑡 ∉ [0,1]. Then 𝑎 + 𝑏 ≤ 𝑎𝑡𝑏1−𝑡 + 𝑏𝑡𝑎1−𝑡. 

Theorem 10. Let 𝐴, 𝐵 be positive invertible elements in a unital 𝐽𝐵 -algebra  . Then for any 

𝑡 ∉ [0,1], 𝐹(1−2𝑡)(𝐴, 𝐵) ≤ 𝐻𝑡(𝐴, 𝐵). 

Proof. According to Lemma 9, 

𝑥1−𝑡 ≥ 2𝑡𝑥
1

2 + (1 − 2𝑡)𝑥 

for all 𝑥 > 0 and 𝑡 ∉ [0,1]. By functional calculus at {𝐴−
1

2𝐵𝐴−
1

2} for 𝐽𝐵 -algebras [1, 

proposition 1.21], from (2-13) we get 

{𝐴−
1

2𝐵𝐴−
1

2}1−𝑡 ≥ 2𝑡{𝐴−
1

2𝐵𝐴−
1

2}
1

2 + (1 − 2𝑡){𝐴−
1

2𝐵𝐴−
1

2}. 

Since 𝑈𝐴 is a linear mapping, so 

𝑈
𝐴

1
2

({𝐴−
1

2𝐵𝐴−
1

2}1−𝑡) ≥ 𝑈
𝐴

1
2

(2𝑡{𝐴−
1

2𝐵𝐴−
1

2}
1

2 + (1 − 2𝑡){𝐴−
1

2𝐵𝐴−
1

2}) 
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from inequality (2-15), we have 

𝐴♯1−𝑡𝐵 ≥ 2𝑡(𝐴♯𝐵) + (1 − 2𝑡)𝐵 

therefore according to equation (1-5), we obtained 

𝐴♯𝑡𝐵 = 𝐵♯1−𝑡𝐴 ≥ 2𝑡(𝐵♯𝐴) + (1 − 2𝑡)𝐴 

finally 

𝐹(1−2𝑡)(𝐴, 𝐵) = 2𝑡(𝐴♯𝐵) + (1 − 2𝑡)(𝐴𝛻𝐵) ≤
𝐴♯𝑡𝐵 + 𝐴♯1−𝑡𝐵

2
= 𝐻𝑡(𝐴, 𝐵). 

In the next theorem, we examine the relationship between the logarithmic mean and the Heron 

mean in a specific case. 

Theorem 11. Let 𝐴, 𝐵 be positive invertible elements in a unital 𝐽𝐵 -algebra  . Then for any 

𝑡 ∈ [0,1],  𝐿𝑡(𝐴, 𝐵) = ∫ 𝐴
1

0
♯𝑡𝐵𝑑𝑡 ≤ 𝐹1

3

(𝐴, 𝐵). 

Proof. By Inequality (2-11) we have 

𝐿𝑡(𝐴, 𝐵) = ∫ 𝐴
1

2 (𝐴−
1

2𝐵𝐴−
1

2)
𝑡

𝐴
1

2}𝑑𝑡
1

0

= ∫ 𝐻𝑡

1

0

(𝐴, 𝐵)𝑑𝑡

≤ ∫ 𝐹𝛼(𝑡)

1

0

(𝐴, 𝐵)𝑑𝑡 = ∫ 4(𝑡 − 𝑡2)
1

0

(𝐴♯𝐵) + (1 − 4(𝑡 − 𝑡2)) (
𝐴 + 𝐵

2
) 𝑑𝑡

2

3
(𝐴♯𝐵) +

1

3
(
𝐴 + 𝐵

2
) = 𝐹1

3

(𝐴, 𝐵).

 

It is clear that if we have 𝑡1 ≤ 𝑡2 then 𝐹𝑡1
(𝐴, 𝐵) ≤ 𝐹𝑡2

(𝐴, 𝐵) therefore: 

Corollary 12.  Let 𝐴, 𝐵 be positive invertible elements in a unital 𝐽𝐵 -algebra  . Then for 

any 𝑡 ∈ [0,1] 𝐿𝑡(𝐴, 𝐵) ≤ 𝐹𝛽(𝐴, 𝐵), where 
1

3
≤ 𝛽 ≤ 1. 

Statements & Declarations 

The authors declare that no funds, grants, or other support were received during the 

preparation of this manuscript. The authors have no relevant financial or non-financial 

interests to disclose. All authors contributed to the design and implementation of the research, 

to the analysis of the results and to the writing of the manuscript. All authors read and 

approved the final manuscript. This article does not contain any studies with human 

participants or animals performed by any of the authors. 

 

 

 

  



IJDEA Vol.4, No.2, (2016).737-749  

H. Mohammadzadehkan and S. Malekinejad / IJIM Vol.17, No.3, (2025), 19-28 

 

27 
 

References 

[1] E. M. Alfsen and F. W. Shultz, Geometry of State Spaces of Operator Algebras, 

Mathematics: theory and Applications. Birkhauser, (2003).  

[2] W. N. Anderson Jr and R. J. Duffin, Series and parallel addition of matrices, J. Math. 

Anal. Appl. 26 (1969), 576—594. 

[3] W. N. Anderson Jr and G. E. Trapp, Shorted operators. II, SIAM J. Appl. Math. 28 (1975), 

60—71. 

[4] T. Ando, Concavity of certain maps on positive definite matrices and applications to 

Hadamard products, Linear Algebra Appl. 26 (1979), 203—241. 

[5] T. Ando, Geometric mean and norm Schwarz inequality. Ann. Func. Anal., 7(1) (2016), 

1-8. 

[6] T. Ando, On the arithmetic-geometric-harmonic-mean inequalities for positive definite 

matrices, Linear Algebra Appl. 52/53 (1983), 31—37. 

[7] T. Ando, Topics on operator inequalities, Division of Applied Mathematics, Research 

Institute of Applied Electricity, Hokkaido University, Sapporo, 1978. 

[8] T. Ando, F. Hiai, Operator log-convex functions and operator means. Math. Ann., 350 

(2011), 611-630. 

[9] T. Ando, X. Zhan, Norm inequalities related to operator monotone functions. Math. Ann., 

315 (1999), 771-780. 

[10] M. Bakherad, M.S. Moslehian, Reverses and variations of Heinz inequality. Linear 

Multilinear Algebra, 63 (2015), 1972-1980. 

[11] Y. Bedrani, F. Kittaneh and M. Sababeh, From positive to accretive matrices, Positivity, 

25(4) (2021), 1601–1629. 

[12] C. Chu, Jordan structures in geometry and analysis, Cambridge Tracts in Mathematics, 

190. Cambridge University Press, Cambridge, 2012. x+261 pp. 

[13] S. Drury, Principal powers of matrices with positive definite real part. Linear Multilinear 

Algebra.,  63 (2015), 296-301. 

[14] G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory. 

Wiely-interscience, New York, (1972). 

[15] A. G. Ghazanfari, S. Malekinejad and M. Sababheh, An extension of the weighted 

geometric mean in unital 𝐽𝐵 -algebras, Ann. Funct. Annals of Functional Analysis, 15(2), 

38. (2024). 

[16] H. Hanche-Olsen and E. Størmer, Jordan Operator Algebras. Pitman Publishing Inc, 

Massachusetss, (2008). 

[17] P. Jordan, J. von Neumann and E. P.Wigner, On an algebraic generalization of the 

quantum mechanical formalism. Ann. of Math. (2) 35 (1934), no. 1, 29–64. 

[18] J. von Neumann, On an algebraic generalization of the quantum mechanical formalism 

Part I, Mat. Sbornik 1 (1936), no. 4, 415–484. 



IJDEA Vol.4, No.2, (2016).737-749  

H. Mohammadzadehkan and S. Malekinejad / IJIM Vol.17, No.3, (2025), 19-28 

 

28 
 

[19] F. Kubo, T. Ando, Means of positive linear operators. Math. Ann., 246 (1980), 205-224. 

[20] J. Fujii, Arithmetic-geometric mean of operators, Math. Japon. 23 (1978/79), no. 6, 667-

669. 

[21] J. Fujii, On geometric and harmonic means of positive operators, Math. Japon. 24 

(1979/80), no. 2, 203-207. 

[22] J. Fujii and M. Fujii, some remarks on operator means, Math. Japon. 24 (1979/80), no. 4, 

335-339. 

[23] W. Pusz, S. L. Woronowicz, Functional calculus for sesquilinear forms and the 

purification map. Rep. Math. Phys., 8 (1975), 159-170. 

[24] M. Raïssouli, M. S. Moslehian, and S. Furuichi, Relative entropy and Tsallis entropy of 

two accretive operators. C. R. Acad. Sci. Paris Ser. I., 355 (2017), 687-693. 

[25] I. E. Segal, Postulates for general quantum mechanics, Ann. of Math. 48 (1947), 930-–

948. 

[26] H. Upmeier, Jordan algebras in analysis, operator theory, and quantum mechanics, 

CBMS Regional Conference Series in Mathematics, 67. Published for the Conference 

Board of the Mathematical Sciences, Washington, DC; by the American Mathematical 

Society, Providence, RI, 1987. viii+85 pp. 

[27] H. Upmeier, Symmetric Banach manifolds and Jordan C*-algebras, North-Holland 

Mathematics Studies, 104. Notas de Matem´atica [Mathematical Notes], 96. North-

Holland Publishing Co., Amsterdam, 1985. xii+444 pp. 

[28] S. Wang, Z. Wang, Operator means in 𝐽𝐵 -algebras, Reports on mathematical physics.  

88(3) (2021), 383-398. 

[29] J. Zhao, M.Krnic, J.Wu, H.cao and W.Liao, operator inequalities involving the 

arithmetic,,Heinz and Heron means , JMI,volume 8,number4(2014),747-756. 

 


