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Abstract

This paper investigates the reverse forms of certain inequalities within-algebras in the
non-standard case. We establish that the inequalities in this context are precisely the
reverses of those in the standard case, extending results previously obtained for-
algebras. Our study explores relationships between significant operator means, such
as the Heinz, Heron, and geometric means, in the framework of JB-algebras. For two
positive invertible elements in a unital JB-algebra and for specific values of, we
demonstrate novel reverse inequalities, including, refining known results.
Additionally, we analyze operator monotonicity, operator convexity, and functional
calculus in-algebras, leading to extended inequalities that hold in the non-standard
case. Using algebraic and functional properties of JB-algebras, we generalize previous
results on operator means, demonstrating their validity beyond associative operator
settings. These findings contribute to a deeper understanding of the structure of-
algebras and their applications in functional analysis and operator theory. The results
further highlight the significance of non-standard settings in refining classical
inequalities.
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1. Introduction

Jordan algebras were introduced in 1934 by physicists Pascual Jordan, John von Neumann,
and Eugene Wigner while exploring the mathematical foundations of quantum mechanics.
Their goal was to generalize the algebraic structures used in quantum theory, extending
beyond associative algebras to include more general structures, with an initial focus on finite-
dimensional algebras [17]. Von Neumann later extended this work to infinite dimensions [18].
Segal [25] pioneered the examination of Jordan subalgebras of self-adjoint operators on
Hilbert spaces, with further advancements made by Effros, Starmer [1], Topping, and others.
JB -algebras, introduced by Alfsen, Shultz, and Stgrmer, emerged as a natural framework for
quantum observables and have since found applications in analysis, geometry, and operator
theory [12, 26, 27].

The theory of operator means began with Anderson and Duffin [2], who introduced parallel
addition for positive matrices in electrical network synthesis. Anderson and Trapp [3] later
extended this idea to positive operators. In 1975, Pusz and Woronowicz [23] introduced the
geometric mean for positive operators, and Ando [4,6,7], Kubo, Fujii, and others [20,21,22]
developed a general framework for operator means. While operator means such as the
arithmetic, harmonic, and geometric means have greatly influenced operator theory, their use
has been mostly confined to Hilbert spaces, with no exploration of their application in JB -
algebras.

Observables in quantum mechanics are represented by self-adjoint operators on a Hilbert
space. While these operators are not closed under the usual associative product, they are closed
under the Jordan product, making it a suitable framework. For more details, see [14].

A Jordan algebra is a non-associative algebra A over R that satisfies the following properties
for all elements X,y € A:

Xoy=yox (Commutativity)
(x*oy)ox=x*o(yox) (Jordan identity)

where o denotes the Jordan product.

Note that special Jordan algebras are a class of Jordan algebras that can be embedded into
associative algebras equipped with the symmetrized product

Xy + yX
A 1-1
> (1-1)

In contrast, exceptional Jordan algebras are those that cannot be constructed in this way.

Xoy

As an example, the set of nx nself-adjoint matrices over the complex numbers, H, (C), is
a special Jordan algebra.

1f a real Jordan algebra A is equipped with a complete norm that satisfying

[A-Bl<|AllB].  ABeA

it is referred to as a Jordan Banach algebra.
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Definition 1. A JB -algebra is a Jordan Banach algebra A that satisfies two additional
conditions for A/ Be A:
2 2
[4°1= 1Al
4] <|A+ ]
Complex Hermitian and real symmetric matrices, by Jordan product, are important examples
of /B -algebras.

Let A be a unital /B -algebra with a unit element I, For an element A€ A, its Jordan inverse
A~ (if it exists) is defined as the unique element satisfying:

Ao A =1 and A’cA'=A

The spectrum of an element A in a Jordan algebra A consists of all real numbers A for which
the element A — AI does not have a multiplicative inverse within the Jordan algebra A . For
a positive semidefinite matrix (whether real symmetric or complex Hermitian) denoted as
A = 0, the spectrum contains only non-negative eigenvalues.

In any Jordan algebra, the triple product {ABC} is defined as follows:
{ABC}:=(AoB)oC+(BoC)oA—(AcC)oB

Observe that the triple product {ABC} is linear with respect to each factor and satisfies the
property {ABC} = {CBA}. In the case of a special Jordan algebra, the triple product is given

by {ABC} = %(ABC + CBA).

Definition 2. Let A be a unital /B -algebra. A quadratic map, denoted as U,, is defined on A
as follows:

U,B= {ABC} = 2(Ao B)o A-A’-B
Itis clear that Uy is linear in B but nonlinear in A; specifically,
UA(B—C)={ABC}—{ACA}

Note that when A is special; the product ABA becomes meaningful and is equal to the
expression ABA itself (i.e., {ABA} = ABA). Furthermore, UyB = {ABA} = 0 where B = 0.

The following two identities hold in any Jordan algebra, demonstrating that the Jordan triple
product {ABA} behaves similarly to the associative product ABA, making algebraic
calculations more manageable:

{{ABA}C{ABA}} ={A{B{ACA}B}A}, (1-2)
{BAB)® = {B{ABZA} B}. (1-3)
Equality (1-2) can be expressed in the following way for the U, map.
U, =U,UU, (1-4)
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We will highlight specific properties of U, that will be frequently used in the following
section.

Let A,B e A where A isaJB -Banach algebra. Then

e A7l exists if U, has a bounded inverse. In this case, Uyt = Uy-1.
e If Aand B have inverses, then {ABA}™1 = {A71B~1471}.
e IfAand B haveinversesand 0 < A < B,thenB~ 1 < A7 L.

For additional information, readers are referred to.

When studying /B —algebras, it is important to consider specific classes of real-valued
functions. An operator monotone (increasing) function g on R defined on a JB -algebra A
such that A < B implies g(A) < g(B). Furthermore, g is defined as operator convex if for
any 0 < t < 1, the following condition is satisfied:

g((1-t)A+tB)<(1-t)g(A)+tg(B).
g is said to be operator concave if —g is operator convex.

In 2021, Wang et al [28]. introduced operator means for A,B € A where A isaJB -Banach
algebra, with0 <t < 1:

e ¢ -weighted harmonic mean: A, B = ((1 — )A™* + tB‘l)_l;
et -weighted geometric mean: A#.B = {AY/?2{A~1/2BA~1/2}t A1/},
e t -weighted arithmetic mean: AV,B = (1 — t)A + tB.

They also established the following relationships among them in [28].

AﬁtB = Bﬂl—tA' (1 - 5)
(A;u:tB)_l = A_lﬁtB_l, (1 - 6)
Al, B < A#,B < AV,B, (1-7)

ad#,BB = (at,f)(A#,B) (a>0,>0) (1—8)
{C(A#.B)C} = {CAC}#.{CBC} for any invertibleC € A. (1—-9)

In the C+-algebra of bounded linear operators on a Hilbert space, the theory of operator means
is essential for understanding its structure.

Concepts like operator monotonicity and operator convexity, analogous to those in JB -
algebras, are central to this theory. For detailed insights, see references [5, 8, 9, 16, 19, 23].

The geometric mean for n X n complex matrices was initially defined for positive matrices
and later extended to accretive matrices in [13]. A weighted version was introduced in [24],
and the theory was further developed in [11] to include arbitrary operator means, with a
detailed analysis of the weighted geometric mean and weight extensions.

Definition 3. Let g and f be real continuous function on a closed interval I with f > 0.
Assume that A, B € A with Sp(A4),Sp(B) c I and Sp where A be a unital /B -algebra. The

22



H. Mohammadzadehkan and S. Malekinejad / 1JIM Vol.17, No.3, (2025), 19-28

no associative perspective function K (B, A) of A and B associated to g and f is defined
by

Kgar (B, A) = {f(A)2g (f(A)2Bf(A)z}) f(A)2}.
Lemma 4. [28] Let A be a unital /B -algebra. Let p, s and f be real valued continuous
functions on a closed interval I such that f > 0 and p(x) < s(x). For A,B € A with
Sp(A),Sp(B) c I and {f(4) 2Bf(A) 2} c I, Kpar(B,A) < Ksa (B, A).

In 2021, Wang et al [28]. defined the young inequality for /B -algebras. Later, in 2024,
Ghazanfari et al [15]. proved the reverse of the young inequality for /B -algebras, as stated
in the following Lemma respectivly.

Lemma 5. [15, 28] Let A be a unital /B -algebra and A,B € A be positive invertible
elements.

e Foranyte[0,1], A, B < A#B < AV,B. (1-10)
e Foranyte (—-1,00U(1,2),AV,\B < A#4B<A!;B. (1-11)

Wang et al. proved [28] the following important equality in the standard case, while
Ghazanfari et al. [15] established it in the non-standard case, demonstrating that the equality
holds for both scenarios.

Let A be a unital /B -algebra and A,B € A be positive invertible elements. Then for any
nonnegative numbers a and 8 we have

(aA#pB) = (akf)(A#B).  (1-12)
where t € (—1,2).
2. Main Results

This section begins by establishing the reverse of the inequalities presented by Wang [28] in
(1-10). Additionally, it refines (1-11), which was proven by Ghazanfari [15] for /B -algebras,
extending from the standard case to the non-standard case.

In [10] Article, several numerical inequalities for the non-standard case have been proven.
Lemma 6 employs one of these inequalities to establish a chain of inequalities for /B -algebras
in the non-standard context, as demonstrated in Theorems 7 and 8.

Lemma6. Leta,b > 0andt ¢ E 1]. Thenta + (1 —t)b + (t — D(Va - \/5)2 < ath't,

Theorem 7. Let A,B € A be positive invertible elements, where A is a unital /B -algebra.
Then forany t € (1,2),

Al B > (A717,B~1 + 2(t — 1)(A"1WB~1 — A1) 2-1)
(A"%,B~1)~1 = A#,B > AV,B + 2(t — 1)(AVB — A#B) (2—-2),(2—3)
> AV,B 2-4)

Proof. From inequality (1-10), AVB — A#B = 0. Therefore

AV,B < AV,B + 2(t — 1)(AVB — A#B).
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The same as:

AT B 1 <AV, B 1 + 2(t — 1)(A"WWB~!t — A714B7 ).
By definition, A!, B = (A~1V,B~1)~1. Inverting the inequality above results in

AlyB > (A"'WB 4+ 2(t—1)(A"'VB™! - A‘lﬁB‘l))_l.
Using Lemma 6, for any x > 0 and t € (1,2),

tx+(1—t)+2(t—1)(x;—1—\/§) < xt,
Applying Lemma 4, to inequality (2-5) with f(y) = y yields
AV,B + 2(t — 1)(AVB — A#B) < A#,B.

The same as:

AW B 1+ 2(t — 1A WB—A ™) < A4, B
By inverting the inequality above,

(A'7,B~1 + 2(t — D)(A'VB - A‘lﬁB‘l))_l > (A™4,B~1)"1 = A#,B.

Theorem 8. Let A, B € A be positive invertible elements, where A is a unital /B -algebra.
Then forany t € (—1,0),

Al B > (A7'7,B~t —2t(A7'VB™! — A‘lﬁB‘l))_l (2-6)
(A"#,B~)"' = A#,B > AV,B — 2t(AVB — A#B) (2-7),(2—-8)
> AV,B (2-9)

Proof. Similar to Proposition 7 by Theorem [young4], we have AVB — A#B > 0. Considering
0 < —t < 1, it follows that

AV,B < AV,B — 2t(AVB — A#B).
Likewise
ATW,B ' < A7, B! — 2t(A71VB~1 — A714B7Y),
Consequently
Al B = (AWB )t > (A717,B~1 — 2t(A VB! — A"14B1))
Now by Lemma 6, forany x > 0and 1 —t € (1,2),
tx+(1-1t) —Zt(x;—l—\/a?) < xt.
Applying Lemma 4, to inequality (2-10) with f(y) = y yields
AV,.B — 2t(AVB — A#B) < A#,B
and
A"'7,B™1 — 2t(A"'WWB 1 —A"1B™ 1) < A" %,B7 1.

So
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(A"*V,B~t = 2t(A7'VB~t - A—1:|¢B—1))_1 > (A~'4,B~1)~ = A#4,B.

Ghazanfari et al [15]. defined the Heinz and Heron means for two positive invertible elements
A,B € A inaunital /B -algebra A andt € [0,1] as follows:

e Hienz mean:

1 1
1 {ATzBAT2}t + {AT2BA 2}t "
2

H.(4,B)=1{A 2 2

e Heron mean:

1 1
1+ {A 2BA 2 1
(a3 |

1 1 11
Fi(AB)={4z 1—0){A2BA 22 + ¢ -

e Logarithmic mean:

1
L¢:(A, B) =f Al/z(A_l/ZBA‘l/Z)tAl/Z}dt
0

The following inequality between the Heinz and Heron means was proven by Zhao et al [29].
for any positive invertible operators A, B on Hilbert space H and 0 < t < 1. Later, Ghazanfari
et al [15]. extended this result to any positive invertible operators A, B in a unital /B -algebra
A with the same condition:

H.(A,B) < Fo)(A,B), (2-11)
where a(t) = (1 — 2t)2.

Lemma 9 is another inequality from, and by using it, we have obtained a useful result that
establishes a relationship between the Heinz and Heron means in the non-standard case.

Lemma 9. [10] Leta,b > 0andt ¢ [0,1]. Thena + b < ath*~¢ + btal~t.

Theorem 10. Let A4, B be positive invertible elements in a unital /B -algebra A . Then for any
t e [0,1], F(l—zf)(A’ B) S Ht(A, B)

Proof. According to Lemma 9,
1
x17t > 2txz + (1 — 2t)x

1 1
for all x >0 and t ¢ [0,1]. By functional calculus at {A"2BA "2} for /B -algebras [1,
proposition 1.21], from (2-13) we get

I | 111 11
{AT2BA™2}'7t > 2t{AT2BA 2} + (1 — 2t){A"2BA 2},
Since U, is a linear mapping, so
S | 111 R |
U1 ({A72BAT2') 2 U 5 (2H{AT2BATZ)2 + (1 — 20){AT2BA2})
A2 A2
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from inequality (2-15), we have
A#,_ B > 2t(A#B) + (1 — 2t)B
therefore according to equation (1-5), we obtained
A#.B = B#,_,A > 2t(B#A) + (1 — 2)A
finally

A#,B + A#,_,B
Fl1-20(4, B) = 2t(4#B) + (1 — 26)(AVB) S —————— = H;(4,B).

In the next theorem, we examine the relationship between the logarithmic mean and the Heron
mean in a specific case.
Theorem 11. Let A, B be positive invertible elements in a unital /B -algebra A . Then for any
€[0,1], Le(A,B) = [, A#.Bdt < F1(4,B).
3
Proof. By Inequality (2-11) we have
Loa, 1t !
L,(4,B) = f A3 (A 2BA z) Az)dt = f H, (4, B)dt
0 0
A+ B
)dt

1 1
< fo Fow (4,B)dt = fo 4(t —t?) (A#B) + (1 — 4(t — ¢2)) (T

2By + A5 — mam)
3 (418) + 2 (——) = F1(4, B).

Itis clear that if we have t; < t, then F; (4, B) < F¢, (4, B) therefore:

Corollary 12. Let A, B be positive invertible elements in a unital /B -algebra A . Then for
any t € [0,1] L;(A, B) < Fz(A, B), where% <B<1
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