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Abstract– A2×1Micro-Opto-Electro-Mechanical-Systems (MOEMS)multiplexer consisting of Metal-Insulator-

Metal (MIM) waveguides and micro resonators is designed and numerically investigated. The proposed device provides 

advantages of the Surface Plasmon Polaritons (SPPs) propagation in the MIM structure and a mechanically tunable 

optical switch to realize the multiplexing function. According to the simulation results, the transmittances of the output 

channels of the device reach up to72% at the desired wavelengths. Thereafter, the geometry of the proposed structure 

has been optimized to improve its functional characteristics. An extinction ration around 25.6 dBis obtained for the 

optimized two-channel structure in the operating wavelength range. Simple fabrication processes, high efficiency, and 

low-cost manufacturing process make the proposed micro device a suitable choice for several applications in optical 

telecommunications, especially wavelength division multiplexing. 
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1. Introduction 

In recent years, Surface Plasmon Polaritons (SPPs)-

based Metal–Insulator–Metal (MIM) waveguides have 

offered significant interest due to their unique properties. 

One property of SPPs is their ability to guide optical signals 

along metal–dielectric interfaces, while confining and 

controlling the propagating field within nano scale 

dimensions. In fact, application of such an approach can 

overcome the traditional diffraction limit of their dielectric 

counterparts. An MIM structure offers other advantages 

including deep sub-wavelength confinement of light, 

creation of good balance between propagation length and 

loss, as well as ease of integration on a microchip[1-

3].Therefore, SPPs-based MIM waveguides are promising 

platforms for high speed and ultra-compact optical 

telecommunication circuits and systems. Today, a plenty of 

plasmonic structures have been proposed for a wide range 

of applications, including filters[4], sensors[5], 

demultiplexers[6],switches[7], logicgates[8],etc. Although 

these structures can be realized using other techniques such 

as silicon photonic technology or photonic crystals, the 

plasmonic structures occupy a much smaller area 

comparing to the mentioned platforms[9, 10]. 

Among the above-mentioned structures, multiplexers 

play a vital role in Wavelength-Division-Multiplexing 

(WDM) systems as they can enable efficient and cost-

effective transmission of multiple signals over a single 

communication channel as the main part of optical 

telecommunication systems[6].WDM is a useful technique 

that can transmit different wavelengths in both directions 

over a single channel (e.g., optical fiber) and multiplexes 

them accordingly. Finally, the multiplexed signal is 

demultiplexed on the end side of transmission using a 

demultiplexer to separate them as individual signals 

including unique massages. Many studies have so far been 

performed on the design of plasmonic demultiplexers. Yaw-

Dong Wu et al. proposed a wavelength demultiplexing 

structure based on an array of MIM plasmonic ring 

resonators[11]. In a similar study, Huang et al. have 

suggested a wavelength demultiplexing structure based on 

plasmonic MIM side-coupled cavities [12]. Another 

contribution presents a four-channel plasmonic 

demultiplexer based on add-drop filters consisting of H-

shaped resonant cavities on a gold–air–gold structure[13]. 

Two other designs of tunable plasmonic multi-channel 

1,3 Department of Electrical Engineering, Shiraz Branch, Islamic Azad 

University, Shiraz, Iran. 

2* Corresponding Author : Department of Electrical Engineering, Shiraz 

Branch, Islamic Azad University, Shiraz, Iran Email: rghayour@shirazu.ac.ir 

Received: 2025.01.29; Accepted: 2025.03.26 



A Plasmonic � × � Multiplexer using an Optical Adder Integrated with a MEMS Micro-Switch 

 

18

demultiplexers based on graphene sheets and ring 

resonators are proposed and numerically investigated[14, 

15]. These structures suffer from the low optical 

transmission efficiency and the difficulty of the fabrication 

process. Alternatively, there are other types of nano-cavity-

based demultiplexers that use graphene nano-ribbons to 

realize tunable waveguides and optical nano-cavities [16, 

17]. The main advantage of these demultiplexers lies in 

their tunability via external signal. 

Although there are a lot of MIM structures proposed for 

demultiplexing function, there are not so many research 

studies on the design of plasmonic multiplexers as they 

need an external controlling signal to choose one of the 

input signals to be guided through the bus waveguide. The 

controlling section which usually contains a non-linear 

optical material called the switch section. So far, several 

structures containing nonlinear optical materials have been 

suggested for all-optical nano-plasmonic switches. Emami 

et.al. proposed an optical switch based on a split square ring 

resonator and straight waveguides[18]. Furthermore, 

ahybrid all-optical infrared MIM switch incorporating 

photonic crystal bandgap structures is proposed byKhani 

et.al.[19]. Bana et.al and Nurmohammadi et.al. took the 

advantage of ring resonators coupled to straight waveguides 

to develop a nano-plasmonic switch[20, 21]. Khani et.al. 

presented an all optical switch based on asymmetric 

directional couplers filled with Kerr nonlinear material 

incorporating Bragg gratings[22]. An all-optical plasmonic 

switch based on Fano resonance in an X-shaped resonator 

coupled to parallel stubs proposed byKarimi et.al.[23]. 

Most of the above-mentioned devices are composed of 

side-coupled resonators filled with a Kerr nonlinear 

material and a pump light source to perform the switching 

function. 

All-optical switching schemes that are based onside-

couplednano-plasmonic resonators have compact 

dimensions and due to their relatively low-level of pumping 

powers requirement, are one of the best choices for 

designing all-optical multiplexers. For instance, Fasihi et.al. 

proposed a novel MIM-based 2 × 1 multiplexer, including 

an adder module and an all-optical controllable nano-

plasmonic switch using a Kerr non-linear material. In their 

study they have shown that by applying a pump light, the 

transmissions of the input signals into the output waveguide 

can be efficiently controlled due to application of the 

nonlinear nature of Kerr material inside the plasmonic 

resonator[24].There is also another type of plasmonic 

optical multiplexer called mode multiplexer which provides 

mode conversion and multiplexing[25],which is beyond the 

discussion of this paper. 

The main disadvantage of the above-mentioned all 

optical switches and multiplexers is to have an external 

pump signal in the switching part which makes the device 

more sophisticated and expensive. Besides, there are other 

disadvantages including the dependence of response upon 

the wavelength of pump light, including a waveguide line 

to guide the pump to the Kerr filled resonator, the need to 

filter the pump signal from the output using optical 

resonators, and relatively high power consumption[22, 24]. 

To overcome these issues, one can suggest Micro-Electro-

Mechanical-Systems (MEMS) to realize the switch part of 

the multiplexer. By such an approach, the overall cost and 

the complexity of the device can be reduced and the power 

consumption decreases significantly. 

In this paper, a novel topology is proposed to realize an 

optical MIM multiplexer which uses a micro mechanical 

structure in combination with MIM waveguides and 

resonators to realize switching and wavelength selecting 

features. The proposed device contains a simple structure 

and small footprint which resulting in a low-cost fabrication 

process. Additionally, the use of electrostatic force to 

achieve a mechanically tunable cavity enhances its 

performance, particularly in terms of power consumption. 

Moreover, the proposed structure supports relatively 

narrow-band transmission peaks with low crosstalk which 

is desirable for optical-communication applications 

including WDM. 

The remaining of this paper is as follows: the second 

section is dedicated to the introduction of the proposed 

structure and explanation of its main features. In the third 

section, the numerical method and materials are discussed. 

Results obtained from the simulations are presented in the 

fourth section, and the dependencies of the behavior on all 

structural parameters are analyzed in detail. Moreover, to 

investigate the characteristics of the plasmonic MIM part of 

the device we use a FDTD method and an analytical 

process is used to design the mechanical part. Finally, the 

fifth section includes summary and some concluding 

remarks. 

 

2. Structure and theory 

The proposed structure is composed of two main parts: a 

MEMS-based adder and a plasmonic switch. Fig. 1shows a 

3D schematic of the proposed micro-device. The adder 

section consists of two air filled straight waveguides called 

input channels, and two rectangular resonators. Each 

channel supports only a single wavelength peak in the 

target wavelength range which can be customized in 

compliance with the desired optical communication 

network requirements. According to the schematic of the 

standard multiplexer depicted in Fig. 2-a, the air-filled 
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device, the suggested structure has been numerically 

analyzed using an FDTD solver. The simulation is done in 

2-dimensional approach, while the PMC boundary 

conditions are selected along all axes. 

The target wavelength range is spanned from 200 to 

1300 nm and the "number of resulting data samples" is 

chosen to be 2000. A plane wave with an electric 

component parallel to the Y-axis is radiated perpendicularly 

onto the input port to excite the fundamental TM mode of 

the waveguide. The field profile ports are chosen to collect 

the propagated light-wave through the bus waveguides as 

well as output channels. The scattering parameters (S11 – 

S22), have been used to obtain the reflection and 

transmission spectra in the desired wavelength range. For 

the purpose of numerical analysis, the default relative 

permittivity of air is taken as 1 and the metal used in the 

devices is silver with a relative permittivity characterized 

by Drude model, as follows[12]: 

1��&
� 	 1∞

�	 �I���� ' <J &																																																																	�6& 
where 1∞ � 	3.7 is the dielectric constant at the infinite 

frequency,J � 	0.018	O2 is theelectron relaxation rate and 

�I � 	9.1	O2 is the bulk plasma frequency. 

 

4. Design and analysis 

As mentioned before, the proposed multiplexer consists 

of an optical adder and a MEMS-based optical switch. The 

whole device is designed to work in the IR region of the 

spectrum. The adder module is designed and analyzed using 

a FDTD method and then optimized to get a maximum 

transmission efficiency. The widths of the input waveguides 

and their resonators(W)are set to50 nm. The silver gap 

between nano-resonators and the channel waveguides, as 

well as the coupling gap between nano-resonators and the 

bus waveguide, are chosen to beg = 10nm. These dimension 

settings are done to achieve maximum coupling efficiency 

as well as maximum resonant efficiency. Geometrical 

parameters of the proposed multiplexer are listed in Table 1. 

Simulation results show that input channels in 

combination with their cavities act as band-pass filters with 

narrow line widths at the IR region of spectrum. The 

transmission spectra of the signals coupled from channels 

to the bus waveguide are calculated and shown in Fig. 4. 

The central wavelengths of channels 1 and 2 are 785 nm 

and 892 nm, while they propagate through the device with 

transmittances of 72% and 69%,respectively. As depicted in 

this Figure, this high transmission ensures low insertion-

loss and enhanced extinction-ratio[29, 30]. As mentioned 

previously to improve the transmission efficiencies of the 

input channels in the optical adder section, we adjust the 

position of two side-coupled resonators with respect to the 

nanoribbon resonators. In fact, these resonators act as two 

different wavelength-selective reflectors which are placed 

at the distances �Q and �� from the nanoribbon resonators 1 

and 2, respectively, (see Figure 2). The sizes of each of the 

side-coupled reflecting resonators are the same as the sizes 

of the corresponding channel resonator. 

 

Table 1: Geometrical parameters of the proposed multiplexer 

shown in Fig. 2 

Parameter Symbol V

alue 

[nm] 

Width of input waveguide of 

channel 1 

*Q 5

0 

Length of input resonator of 

channel 1 

RQ 2

40 

Width of input waveguide of 

channel 2 

*� 5

0 

Length of input resonator of 

channel 2 

R� 2

80 

Length of reflecting cavity 1 SQ 2

40 

Length of reflecting cavity 2 S� 2

80 

Gap between input waveguide 

1 and resonator 1 

g 1

0 

Width of the grooves of the 

double stub mirror 

4T 5

0 

Gap between grooves of the 

double stub mirror 

UQ 1

0 

Length of tunable rectangular 

resonator 

0% 5

74 

 

 

 
Fig. 4: The transmission spectra of the adder section. The peak 

wavelengths of channels 1 and 2 are appeared at 785 nm and 892 nm, with 

transmittances of 72% and 69%, respectively. 


V
VWQ 
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In summary, when a signal with wavelength of 


VWQ � 785	
� is applied to channel 1 and a signal with 

wavelength of 
VW� � 892	
� is applied to channel 2, the 

SSPs propagate in the channels are then coupled to the bus 

waveguide. Now, if the external voltage is set to0 volts, the 

input signal supported by channel 1 is absorbed in the 

rectangular resonator and only 
VW� appeared in the output 

port. On the other hand, for V = 29.9 volts, the input signal 

supported by channel 2 is absorbed in the rectangular 

resonator and only 
VWQis directly coupled to the output 

port. The above explained condition is summarized in Table 

3. 

Table 3: The output signal for different values of external voltage 

and input signal wavelengths 

External Voltage [v] `a[n
m] 

Output 

0 0 
VW� 

29.9 184 
VWQ 

 

 

Another important parameter of any optical multiplexer 

and switch is Extinction Ratio (ER) which indicates how 

effectively the device can differentiate between the “on” 

and “off” states, which is crucial for its performance in 

optical communication systems. ER is defined by the 

following formula [29, 30]: 

3b	�cd&
� 	10	efgQ h )��)���i																																																																				�7& 

For our designed structure, ER is calculated to be 

approximately 21.4 dB for channel one and 25.6 dB for 

channel two. This indicates that our proposed device 

performs acceptably when compared to other similar works 

in this field. 

5. Conclusion 

To summarize, a2×1 plasmonic multiplexer composed 

of MIM waveguides and resonators is designed and 

numerically investigated.  Propagation of SPPs in the MIM 

structure in combination with a mechanically tunable 

optical switch forms the operation of the proposed device. 

Simulation results showed that the transmittances of the 

output peaks are up to 72% and a maximum ERaround25.6 

dB are obtained for the optimized structure at the operating 

wavelength range. The proposed micro device is ideal for 

various optical telecommunications applications, 

particularly WDM, due to its simple fabrication process, 

low production cost, low power consumption and better 

performance. 
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