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Abstract  

The primary purpose of studying the behavior of sand is to calculate its deformation at loading. The granular structure of the sand causes 

the transfer of forces through multiple contacts of the particles. Its deformation results from the combination of slip and roll of the particles. 

Accordingly, changes in the sand modulus matrix are observed and considered in this research. The studies show that by assuming different 

spring behavior in each loading increment for the set of sand particles, a numerical linear-nonlinear behavior can be defined according to 

the drained experimental results. Therefore, proportional numerical functions are defined based on the trend of changes in the modulus of 

elasticity and changes in the Poisson ratio of sand during monotonic loading. The coefficients are obtained from the related experimental 

results. The computational effects of these functions in the analytical method are used to convert the experimental behavior of sand into a 

numerical behavior. The validity of this numerical method is based on calibration and comparison with valid experimental results. In 

addition to hardening behavior, this numerical analysis can define softening behavior. 
   

Keywords: sand, modulus matrix, damage, drained, monotonic loading, numerical method, softening 

 

1. Introduction 

Sand is obtained from the deposition of equilibrium 

particles of quartz, feldspar, and other minerals, with a 

size of about 0.06 to 2 mm. The intergranular forces are 

transmitted through contact and interaction. For this 

reason, sands show complex behavior in different 

environmental conditions and loads. 

When shear stress is applied to sand, the deformation 

created is accompanied by a change in volume, resulting 

from a combination of two competitive states of 

accumulated displacement of its particles, namely slipping 

and rolling. Sliding displacement of particles through the 

accumulation of sand particles indicates a tendency to 

reduce the volume to reach a more stable state. However, 

the rolling mechanism, characteristic of dense sand 

behavior, tends to increase in volume. When slipping 

occurs, the particles fill the pore space between them as 

much as possible but do not move much in the direction 

of the cutting path. Therefore, sliding displacement can 

quickly occur without developing a large amount of shear 

strain. This is why the reduction in volume on loose sand 

is seen with a large reduction in relative density in the 

early stages of loading. 

On the other hand, creating a larger displacement requires 

adjacent rolling particles on top of each other. This is why 

an increase in volume or dilation occurs in the later stages 

of shear stress, in which the sand is significantly 

deformed. These two mechanisms usually work together 

and are seen in the stress-strain behavior of laboratory 

specimens. In this way, sands in different environmental 

conditions and loads have complex behavior that can 

attract researchers' attention [1-2]. 

Many analytical models have been proposed to define and 

predict the behavior of sand. However, some of them 

cannot express all the properties and characteristics of 

behavior, and others are so difficult that their use in 

practical cases is costly and eliminated. Studies show that 

recent models can be divided into continuous and 

discontinuous groups. In continuous models, it is assumed 

that the material operates seamlessly and there is no 

discontinuity, including cracking, slipping, separation or 

failure. In discontinuous models, the material is thought 

of as a set of particles that can affect each other's motion. 

Continuous models into two subgroups: macro, based on 

theories of paste or damage or a combination of both [3-

9], and are divided into mesoscopic, such as micro-plane 

or multi-laminate models [10-13]. Discontinuous models 

also lead to a subset called micro models, such as discrete 

particle models [14-16]. 

In macro models, material behavior is defined based on 

the direct relationship between stress and strain tensors 

[17-24]. However, in mesoscopic models, the material's 

behavior is clearly defined by the relationship between 

stress and strain vectors on planes, known as micro-plane 

or multi-laminate planes [25-31]. In discontinuous 

models, the material's behavior is simulated based on the 

definition of interparticle forces due to their motion on 

each other and their use in the equation of motion and 

numerical solution. In discontinuous models, the 

material's behavior is simulated by numerical solution 

based on the definition of interparticle forces due to their 

motion relative to each other and the use of motion 

equation [32-33]. 

In this comparison, discontinuous models define the 

behavior of materials better than other models due to the 

precise and close-to-reality type of payment. However, 
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using them can be difficult, complicated, and costly for 

engineering purposes. On the other hand, macro models 

based on stress or strain invariants cannot simulate the 

behavioral properties of direction-dependent materials. 

These models make it impossible to store information 

dependent on different directions. Therefore, mesoscopic 

models are a logical and intermediate solution between 

the two groups. For these reasons, in the present research, 

a method based on damage theory has been developed 

that can be used in multi-laminate models for numerical 

analysis of drained sands behavior at monotonic loading 

[34]. 

2. Numerical analysis of drained sand behavior based 

on modulus matrix changes 

The main purpose of studying soils under different 

environmental conditions and loads is to calculate their 

deformation. In this connection, the particle structure of 

the sands causes the forces to be transmitted through 

multiple contacts of the particles, and their deformation 

results from the effects of slipping and rolling of the 

particles. Accordingly, changes in the modulus matrix of 

the drained sands in different void ratios and relative 

densities are observed at monotonic loading. A suitable 

numerical analysis method can be presented to define the 

nonlinear behavior of saturated sands in these conditions. 

The calibration of the latter method is obtained from 

related experimental results such as triaxial compression 

testing. 

2.1. Module matrix changes 

In this method, based on the principal stress space in 

monotonic loading tests, in each load increase increment, 

the behavior of saturated sand can be considered 

homogeneous, isotropic, linear elasticity, and, of course, 

different from the previous and next load increment. In 

other words, the perspective of hypo-elastic behavior was 

considered a criterion. Depending on the type of 

experiment, the general form of damage and change 

functions in numerical analysis was proposed. To begin 

with, in each loading increment i, the relationship 

between the stress and strain vectors in the principal stress 

space can be represented as Equation (1). 
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For a cylindrical sample in a triaxial compression test, 

Equation (1) is rewritten as (2) at the deviator stress 

increment stage. 
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From the expansion of Equation (2), Equations (3) and (4) 

are obtained. 
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In these equations and each loading increment i: 

i= Minor principal stress in every increment 

i= Middle principal stress in every increment 

i= Major principal stress in every increment 

i= Minor principal strain in every increment 

i= Middle principal strain in every increment 

i= Major principal strain in every increment 

= Minor principal stress 

Ei= Modulus of elasticity in every increment 

i= Poisson ratio in every increment 

Equation (5) in Equation (4) will lead to the reality of 

Equation (6). 
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In the following, parameters such as mean and shear 

stresses and volumetric strain in each loading increment 

are defined as Equations (7) to (9). 
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In which: 

qi= Deviatoric stress in every increment 

pi= Mean stress in every increment 

vi= Volumetric strain in every increment 

From the placement of Equation (3) in Equations (7) and 

(8) and the use of Equations (9) and (5) in them, we can 

conclude Equations (10) and (11). 
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Thus, the changes in the modulus of elasticity and the 

Poisson's ratio of sand during the static triaxial 

compression test are determined from Equations (12) and 

(5). 
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To observe the damage in the modulus of elasticity and 

the change in the Poisson ratio during the behavior of 

drained sand at monotonic loading, we can initially use 

the experimental results of different samples of Toyoura 

sand at confining pressures similar to the characteristics 
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of Figure 1 [9]. In this Figure, e0 is the initial void ratio 

and p'0 to the initial mean effective stress, . 

 
Fig. 1. Behavioral curves in drained triaxial compression tests on 

Toyoura sand samples [9] 

 

For Toyoura sand samples, damages in the modulus of 

elasticity can be calculated using Equation (12) and 

plotted against axial strain, as shown in Figure 2. 

 
Fig. 2. The trend of modulus of elasticity damages with 

increasing axial strain in drained triaxial compression tests on 

Toyoyra sand samples 

 

The graphical results of Figure 2 for the sand samples 

show that the modulus of elasticity is damaged and 

decreases during loading with increasing axial strain. 

For Toyoura sand samples, changes in the Poisson's ratio 

can be calculated using Equation (5) and plotted against 

axial strain, as shown in Figure 3. 

Thus, damages in the modulus of elasticity and changes in 

the Poisson ratio during the experiment caused nonlinear 

sand behavior, which is the criterion for numerical 

analysis of this research. 

 
Fig. 3. The trend of changes in the Poisson ratio with increasing 

axial strain in drained triaxial compression tests on Toyoura 

sand samples 

 

2.2. Defining numerical relationships of damage and 

changes 

Based on the study conducted in this research, defining 

the N parameter according to Equation (13) can be used. 
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q
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 (13) 

This initiative makes it possible to define the resulting 

experimental curve with a three-coefficient mathematical 

function according to Equation (14) by calculating and 

plotting the N versus  variations for the experimental 

samples. 

C)(A)(f B
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In this regard, f is a function that can express the effect of 

axial strain on damage in the modulus of elasticity. 

Numerical coefficients A, B, and C are also obtained 

based on the numerical function f on the experimental 

variations N. 

Using Equation 14 in Equation 13, we can conclude 

Equations 15 and 16. 
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Numerical Equation (16) defines the trend of changes in 

the modulus of elasticity E in each loading increment i in 

terms of the principal strain . 

Following the studies conducted in this research, it is 

better to start the Poisson's ratio changes during the 

experiment by defining the M parameter according to 

Equation (17). 

)2log(M 3  (17) 

By calculating and plotting the changes of M versus  for 

the experimental samples, the resulting experimental 

curve can be defined by a four-coefficient mathematical 

function according to Equation (18). 

)dexp(c)bexp(a)(g 111    (18) 

In this regard, g is a function that can represent the effect 

of axial strain on the Poisson ratio. Numerical coefficients 
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a, b, c, and d are also obtained based on the mathematical 

function g on the experimental variations M. 

Thus, using Equation (5) in Equation (17) and applying 

Equation (18), we can conclude Equation (19). 
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Numerical Equation (19) defines the rate of change of the 

Poisson ratio in each loading increment i in terms of 

principal strain. 

2.3. Numerical analysis process 

In summary, the numerical analysis process considered in 

this research can be expressed as follows: 

- Based on the experimental results of monotonic 

loading on the sand sample, N and M parameters 

are calculated according to Equations (13) and 

(17). Their variations against axial strain  are 

plotted. 

- From Equation (14) on the plotting curve 

obtained from Equation (13), the numerical 

coefficients A, B, and C are calculated, and the 

function f is defined. 

- From Equation (18) on the plotting curve 

obtained from Equation (17), the numerical 

coefficients a, b, c, and d are calculated, and the 

function g is defined. 

- By defining the numerical functions f and g, the 

modulus of elasticity E and the Poisson's ratio  

in each loading increment i are determined from 

Equations (16) and (19). 

- Lateral strain  and volumetric strain v in 

loading increment i are calculated from equations 

(5) and (9). 

- The mean and shear stress p and q are 

determined from equations (10) and (11). 

The recent analytical process algorithm is shown in the 

flowchart of Figure 4. 

3. Examining the results of numerical analysis 

In this section, the validity of the proposed numerical 

analysis is examined. For this purpose, calibration and 

comparison with related experimental results are used. 

3.1. Calibration and comparison of numerical analysis 

results with a drained triaxial compression test on 

Toyoura sand 

Initially, the drained triaxial compression test results of 

Toyoura sand samples at confining pressure of 100 kPa 

are used [9]. The experimental behavior of the recent 

samples is converted to numerical behavior and compared 

with each other, based on the proposed algorithm of 

Figure 4, as follows. 

Parameter N is calculated from experimental results, and 

according to Equation (13), its changes against the axial 

strain  are plotted. Then, according to Figure 5, from the 

fit of the numerical relation 14 on the resulting curves, the 

numerical coefficients A, B and C are determined and are 

inserted in Table 1 to define the numerical function f. 

 
Fig. 4. Flowchart of numerical analysis 

 

 

Start 

Read the value of  

Calculation of N and M 
parameters for experimental 

samples 

Fitting the function f to the graph 
N and calculating the numerical 

coefficients A, B, and C 

Fit the function g to the graph M 
and calculate the numerical 
coefficients a, b, c, and d 

 Axial strain reading i 

Calculate the fi function of 
Equation (14) 

Calculate the gi function of 
Equation (15) 

Calculate the modulus of elasticity Ei 
and the Poisson ratio i  of equations 

(16) and (19) 

Calculate the lateral strain 3i 
and the volumetric strain vi 
from equations (5) and (9) 

Calculate the mean stress pi and 
the shear stress qi from 
equations (10) and (11) 

Draw diagrams  
and v 

Draw diagrams q 
and q 

End 
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Fig. 5. Plotting the changes of parameter N against axial strain  

and fitting the function f on it in the drained triaxial compression 

test on Toyoura sand samples (p'0=100 kPa) 

Table 1 

The values of the coefficients of the function f for Toyoura sand 

samples (p'0=100 kPa) 

 e0 A B C 

100 0.831 -2.047 0.1557 4.319 

100 0.971 -2.255 0.1294 4.351 

100 0.996 -6.978 0.3845 8.852 

 

- The M parameter is determined from the 

experimental results according to Equation (17), 

and its changes against the  axial strain are 

plotted. Then, according to Figure 6, from the fit 

of the numerical relation 18 on the resulting 

curves, the numerical coefficients a, b, c, and d 

are calculated and inserted in Table 2 to define 

the numerical function g. 

 
Fig. 6. Plotting the changes of parameter M against axial strain 

 and fitting function g on it in the drained triaxial compression 

test on Toyoura sand samples (p'0=100 kPa) 

Table 2 

The values of the coefficients of the function g for Toyoura sand 

samples (p'0=100 kPa) 

 (kPa) e0 a b c d 

100 0.831 0.7595 0.01575 -0.4498 -0.1965 

100 0.971 0.7552 0.01946 -0.4390 -0.2570 

100 0.996 0.8650 0.01438 -0.5564 -0.2282 

 

- The modulus of elasticity E is determined from 

Equation (16), and its changes against the axial 

strain  are plotted and compared with the 

experimental results as shown in Figure 7. 

 
Fig. 7. Diagram of changes E for Toyoura sand samples 

(p'0=100 kPa) and comparison of numerical analysis results with 

the drained triaxial compression test 

- The Poisson ratio  is determined from Equation 

(19), and its variations against the axial strain  

are plotted and compared with the experimental 

results as shown in Figure 8. 

 
Fig. 8. Diagram of  changes for Toyoura sand samples 

(p'0=100 kPa) and comparison of numerical analysis results with 

the drained triaxial compression test 

- Lateral strain  and volumetric strain v are 

calculated from equations (5) and (9). The 

changes in volumetric strain v versus axial strain 

 are plotted and, as shown in Figure 9, offer a 

good agreement with the experimental results. 
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Fig. 9. Diagram of changes v for Toyoura sand samples 

(p'0=100 kPa) and comparison of numerical analysis results with 

the drained triaxial compression test 

 

- The mean and shear stress p and q are 

determined from equations (10) and (11). The 

shear stress changes q against the axial strain  

are plotted and, according to Figure 10, show a 

good agreement with the experimental results. 

 
Fig. 10. Diagram of changes q for Toyoura sand samples 

(p'0=100 kPa) and comparison of numerical analysis results with 

the drained triaxial compression test 

 

In another review, the drained triaxial compression test 

results of Toyoura sand samples at confining pressure of 

500 kPa are used [9]. For this purpose, the numerical 

analysis parameters for these samples are determined 

similar to the previous case, and the obtained results are 

compared with the experimental results. The coefficients 

obtained in Tables 3 and 4 and the comparative plotting 

results are presented in Figures 11 to 16. 

 
Fig. 11. Plotting the changes of parameter N against axial strain 

 and fitting the function f on it in the drained triaxial 

compression test on Toyoura sand samples (p'0=500 kPa) 

 
Table 3 

The values of the coefficients of the function f for Toyoura sand 

samples (p'0=500 kPa) 

 (kPa) e0 A B C 

500 0.810 -0.8457 0.2696 3.3648 

500 0.886 -1.2180 01969 3.9210 

500 0.960 -1.2860 0.1527 3.7420 

 

 
Fig. 12. Plotting the changes of parameter M against axial strain 

 and fitting function g on it in the drained triaxial compression 

test on Toyoura sand samples (p'0=500 kPa) 

 
Table 4 

The values of the coefficients of the function g for Toyoura sand 

samples (p'0=500 kPa) 

 (kPa) e0 a b c d 

500 0.810 0.7488 0.01736 -0.4366 -0.2406 

500 0.886 0.8210 0.01553 -0.5022 -0.2385 

500 0.960 0.9726 0.01249 -0.6655 -0.2705 
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Fig. 13. Diagram of changes E for Toyoura sand samples 

(p'0=500 kPa) and comparison of numerical analysis results with 

the drained triaxial compression test 

 
Fig. 14. Diagram of  changes for Toyoura sand samples 

(p'0=500 kPa) and comparison of numerical analysis results with 

the drained triaxial compression test 

 

 
Fig. 15. Diagram of changes v for Toyoura sand samples 

(p'0=500 kPa) and comparison of numerical analysis results with 

the drained triaxial compression test 

 
Fig. 16. Diagram of changes q for Toyoura sand samples 

(p'0=500 kPa) and comparison of numerical analysis results with 

the drained triaxial compression test 

 

According to the comparison of recent results, the 

conversion of the experimental behavior of Toyoura sand 

samples into numerical behavior can be considered 

appropriate and acceptable. 

3.2. Calibration and comparison of numerical analysis 

results with a drained triaxial compression test on 

Nevada sand 

Initially, the drained triaxial compression test results of 

Nevada sand samples at a relative density of 40% are used 

[35]. According to the available experimental 

information, the coefficients obtained in Tables 5 6 and 

the calibration and graphic comparison results are 

presented in Figures 17 to 22. 

 
Table 5 

The values of the coefficients of the function f for Nevada sand 

samples (Dr=40%) 

 (kPa) Dr(%) A B C 

40 40 -5.358 0.07074 7.064 

80 40 -3.240 011140 5.191 

160 40 -3.453 0.10640 5.744 

 

 
Fig. 17. Plotting the changes of parameter N against axial strain 

 and fitting the function f on it in the drained triaxial 

compression test on Nevada sand samples (Dr=40%) 
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Fig. 18. Plotting the changes of parameter M against axial strain 

 and fitting function g on it in the drained triaxial compression 

test on Nevada sand samples (Dr=40%) 

 
Fig. 19. Diagram of changes E for Nevada sand samples 

(Dr=40%) and comparison of numerical analysis results with the 

drained triaxial compression test 

 

Table 6 

The values of the coefficients of the function g for Nevada sand 

samples (Dr=40%) 

 (kPa) Dr(%) a b c d 

40 40 0.8617 0.01446 -0.559 -0.1914 

80 40 0.8571 0.01472 -0.554 -0.1907 

160 40 0.8625 0.01460 -0.564 -0.1990 

 

 
Fig. 20. Diagram of  changes for Nevada sand samples 

(Dr=40%) and comparison of numerical analysis results with the 

drained triaxial compression test 

 
Fig. 21. Diagram of changes v for Nvada sand samples 

(Dr=40%) and comparison of numerical analysis results with the 

drained triaxial compression test 

 
Fig. 22. Diagram of changes q for Nevada sand samples 

(Dr=40%) and comparison of numerical analysis results with the 

drained triaxial compression test 

In another review, the drained triaxial compression test 

results of Nevada sand samples at a relative density of 

60% are used [35]. For this purpose, the characteristics of 

numerical analysis for these samples are determined 

similar to the previous case, and the obtained results are 

compared with the experimental results. The coefficients 

obtained in Tables 7 and 8 and the comparative graphic 

results are presented in Figures 23 to 28. 

 
Fig. 23. Plotting the changes of parameter N against axial strain 

 and fitting the function f on it in the drained triaxial 

compression test on Nevada sand samples (Dr=60%) 
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Table 7 

The values of the coefficients of the function f for Nevada sand 

samples (Dr=60%) 

 (kPa) Dr(%) A B C 

40 60 -3.357 0.1117 5.132 

80 60 -3.580 0.1058 5.632 

160 60 -2.381 0.1474 4.732 

 
Fig. 24. Plotting the changes of parameter M against axial strain 

 and fitting function g on it in the drained triaxial compression 

test on Nevada sand samples (Dr=60%) 

 

 
Fig. 25. Diagram of changes E for Nevada sand samples 

(Dr=60%) and comparison of numerical analysis results with the 

drained triaxial compression test 

 
Table 8 

The values of the coefficients of the function g for Nevada sand 

samples (Dr=60%) 

 (kPa) Dr(%) a b c d 

40 60 0.8915 0.01425 -0.5908 -0.2405 

80 60 0.8922 0.01417 -0.5898 -0.2284 

160 60 0.8984 0.01368 -0.6033 -0.2314 

 
Fig. 26. Diagram of  changes for Nevada sand samples 

(Dr=60%) and comparison of numerical analysis results with the 

drained triaxial compression test 

 
Fig. 27. Diagram of changes v for Nvada sand samples 

(Dr=60%) and comparison of numerical analysis results with the 

drained triaxial compression test 

 
Fig. 28. Diagram of changes q for Nevada sand samples 

(Dr=60%) and comparison of numerical analysis results with the 

drained triaxial compression test 
According to the comparison of recent results, the 
conversion of the experimental behavior of Nevada sand 
samples into numerical behavior can be considered 
appropriate and acceptable. 
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3.3. Calibration and comparison of numerical analysis 

results with a drained triaxial compression test on 

Houston sand 

This section uses the drained triaxial compression test 

results of Houston sand samples [20]. Similar to the 

previous cases, the coefficients obtained in Tables 9 and 

10 and the calibration and graphical comparison are 

presented in Figures 29 to 34. 

 
Fig. 29. Plotting the changes of parameter N against axial strain 

 and fitting the function f on it in the drained triaxial 

compression test on Houston sand samples 

 
Fig. 30. Plotting the changes of parameter M against axial strain 

 and fitting function g on it in the drained triaxial compression 

test on Houston sand samples 

 
Fig. 31. Diagram of changes E for Houston sand samples and 

comparison of numerical analysis results with the drained 

triaxial compression test 

Table 9 

The values of the coefficients of the function f for Houston sand 

samples 

 (kPa) e0 A B C 

50 0.800 -0.8472 0.2117 3.114 

300 0.822 -1.0030 0.2128 3.479 

600 0.945 -0.6210 0.3175 3.330 

 

 
Fig.32. Diagram of  changes for Houston sand samples and 

comparison of numerical analysis results with the drained 

triaxial compression test 

 
Fig.33. Diagram of changes v for Houston sand samples and 

comparison of numerical analysis results with the drained 

triaxial compression test 

 
Fig.34. Diagram of changes q for Houston sand samples and 

comparison of numerical analysis results with the drained 

triaxial compression test 

 
Table 10 

The values of the coefficients of the function g for Houston sand 

samples 
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) e0 a b c d 

50 0.800 0.8088 0.01829 -0.5044 -0.2778 

300 0.822 0.7779 0.01773 -0.4751 -0.2461 

600 0.945 0.8229 0.01597 -0.5202 -0.2243 

The conversion of the experimental behavior of Houston 

sand samples to numerical behavior is also considered 

very appropriate. 

4. Conclusion 

This paper investigated the experimental behavior of 

different sand samples in monotonic loading and drained 

conditions, and hypo-elastic was assumed. Based on the 

observation of damages in the modulus of elasticity and 

changes in the Poisson ratio during loading, a numerical 

and straightforward analytical method was presented to 

define the linear-nonlinear behavior of sand. The 

calibration of this method was evaluated using the related 

experimental results on different sand samples. The 

results of studies, calculations, and comparisons in this 

research show that designing and achieving this numerical 

method is valuable. Because it has neither the 

complexities of micro behavioral models nor the problems 

of macro behavioral models, it is presented as a simple 

numerical behavioral analysis. In a general summary, the 

salient features of this method can be expressed as 

follows: 

1. This numerical method saves time and money 

with convenient and straightforward 

computational logic. 

2. The function f has three coefficients to calculate 

the damages in the modulus of elasticity, and its 

calibration is simple with the changes of the 

experimental parameter N. 

3. The mathematical relation g has four coefficients 

to calculate the changes in the Poisson ratio, and 

its calibration with the changes of the 

experimental parameter M requires accuracy. 

4. The proposed numerical analysis can present the 

softening behavior of sand types. This is not seen 

in many models or at a high computational cost. 

5. Simple numerical analysis process this method is 

admirable compared to dough models. 

6. The proposed numerical method can define the 

non-isotropic behavior of sand in pressure, 

tension and shear and provide more value in 

multi-laminate models. 

It is noteworthy that this numerical method is being 

completed for other loading conditions and modes and 

placed in multi-laminate models. 

References 

1. Ishihara, Kenji, Fumio Tatsuoka, and Susumu Yasuda. 

"Undrained deformation and liquefaction of sand under 

cyclic stresses." Soils and foundations 15.1 (1975): 29-44. 

2. Li, Yanlong, et al. "A study of the overtopping breach of a 

sand-gravel embankment dam using experimental models." 

Engineering Failure Analysis 124 (2021): 105360. 

3. Zienkiewicz, O. C., and Z. Mroz. "Generalized plasticity 

formulation and applications to geomechanics." Mechanics 

of engineering materials 44.3 (1984): 655-680. 

4. Pastor, M., O. C. Zienkiewicz, and K. H. Leung. "Simple 

model for transient soil loading in earthquake analysis. II. 

Non‐associative models for sands." International Journal 

for Numerical and Analytical Methods in Geomechanics 

9.5 (1985): 477-498. 

5. Pastor, M., O. C. Zienkiewicz, and A. H. C. Chan. 

"Generalized plasticity and the modelling of soil 

behaviour." International Journal for Numerical and 

Analytical Methods in Geomechanics 14.3 (1990): 151-

190. 

6. Verdugo, Ramon, and Kenji Ishihara. "The steady state of 

sandy soils." Soils and foundations 36.2 (1996): 81-91. 

7. Dafalias, Yannis F., and Majid T. Manzari. "Simple 

plasticity sand model accounting for fabric change effects." 

Journal of Engineering mechanics 130.6 (2004): 622-634. 

8. Ling, Hoe I., and Songtao Yang. "Unified sand model 

based on the critical state and generalized plasticity." 

Journal of Engineering Mechanics 132.12 (2006): 1380-

1391. 

9. Manzanal, Diego, José Antonio Fernández Merodo, and 

Manuel Pastor. "Generalized plasticity state parameter‐
based model for saturated and unsaturated soils. Part 1: 

Saturated state." International Journal for Numerical and 

Analytical Methods in Geomechanics 35.12 (2011): 1347-

1362. 

10. Sadrnejad, S. A., and G. N. Pande. "A multilaminate model 

for sands." Proc. Int. Symp. Num. Models in 

Geomech.(NUMOG III). 1989. 

11. Sadrnejad, S. A. "Multilaminate elastoplastic model for 

granular media." International Journal of Engineering 

5.1&2 (1992): 11. 

12. Sadrnejad, S. A. "A general multi-plane model for post-

liquefaction of sand." Iranian Journal of Science and 

Technology 31.B2 (2007): 123. 

13. Sadrnejad, Seyed Amirodin, and Hamid Karimpour. 

"Drained and undrained sand behaviour by multilaminate 

bounding surface model." (2011): 111-125. 

14. Daouadji, Ali, et al. "Experimental and numerical 

investigation of diffuse instability in granular materials 

using a microstructural model under various loading paths." 

Géotechnique 63.5 (2013): 368-381. 

15. Ghafghazi, M., D. A. Shuttle, and J. T. DeJong. "Particle 

breakage and the critical state of sand." Soils and 

Foundations 54.3 (2014): 451-461. 

16. Fang, H. L., H. Zheng, and J. Zheng. "Micromechanics-

based multimechanism bounding surface model for sands." 

International Journal of Plasticity 90 (2017): 242-266. 

17. Loukidis, D., and R. Salgado. "Modeling sand response 

using two-surface plasticity." Computers and Geotechnics 

36.1-2 (2009): 166-186. 

18. Jin, Yinfu, et al. "Unified modeling of the monotonic and 

cyclic behaviors of sand and clay." Acta Mechanica Solida 

Sinica 28.2 (2015): 111-132. 

19. Woo, Sang Inn, and Rodrigo Salgado. "Bounding surface 

modeling of sand with consideration of fabric and its 

evolution during monotonic shearing." International Journal 

of Solids and Structures 63 (2015): 277-288. 

20. Sun, Yifei, and Yang Xiao. "Fractional order plasticity 

model for granular soils subjected to monotonic triaxial 

compression." International Journal of Solids and 

Structures 118 (2017): 224-234. 

21. Heidarzadeh, Heisam, and Mohammad Oliaei. 

"Development of a generalized model using a new plastic 

modulus based on bounding surface plasticity." Acta 

Geotechnica 13.4 (2018): 925-941. 

22. Yang, Yanxin, and Edward Kavazanjian Jr. "Numerical 

evaluation of liquefaction-induced lateral spreading with an 



Farzad Peyman / The method of numerical analysis of the behavior of drained sands in monotonic loading  

 

18 

advanced plasticity model for liquefiable sand." Soil 

Dynamics and Earthquake Engineering 149 (2021): 

106871. 

23. Wang, Zhiliang, and Fenggang Ma. "Bounding surface 

plasticity model for liquefaction of sand with various 

densities and initial stress conditions." Soil Dynamics and 

Earthquake Engineering 127 (2019): 105843. 

24. Zhang, Fuguang, et al. "DEM analysis of cyclic 

liquefaction behaviour of cemented sand." Computers and 

Geotechnics 142 (2022): 104572. 

25. Fang, Qin, et al. "Mesoscopic investigation of the sand 

particulate system subjected to intense dynamic loadings." 

International Journal of Impact Engineering 89 (2016): 62-

71. 

26. Peyman Farzad, and Seyed A. Sadrnejad. "Liquefied 

Residual Strength of Undrained Sand upon A Parametric 

Approach to Hypo-elastic Model" Numerical Methods in 

Civil Engineering (2017). 

27. Sadrnejad, S. A., and Sh Shakeri. "Fabric assessment of 

damaged anisotropic geo-materials using the multi-laminate 

model." International Journal of Rock Mechanics and 

Mining Sciences 91 (2017): 90-103. 

28. Sadrnejad, S. A., and Sh Shakeri. "Multi-laminate non-

coaxial modelling of anisotropic sand behavior through 

damage formulation." Computers and Geotechnics 88 

(2017): 18-31. 

29. Zhang, Jinhua, Yadong Zhang, and Qin Fang. "Numerical 

simulation of shock wave propagation in dry sand based on 

a 3D mesoscopic model." International Journal of Impact 

Engineering 117 (2018): 102-112. 

30. Dashti, Hadi, Seyed Amirodin Sadrnejad, and Navid 

Ganjian. "A novel semi-micro multilaminate elasto-plastic 

model for the liquefaction of sand." Soil Dynamics and 

Earthquake Engineering 124 (2019): 121-135. 

31. Li, Haoyang, et al. "Three-dimensional mesoscopic 

investigation on equation of state for dry sand under shock 

compression." International Journal of Impact Engineering 

160 (2022): 104060. 

32. Evangelista Jr, Francisco, and José Fabiano Araújo 

Moreira. "A novel continuum damage model to simulate 

quasi-brittle failure in mode I and mixed-mode conditions 

using a continuous or a continuous-discontinuous strategy." 

Theoretical and Applied Fracture Mechanics 109 (2020): 

102745. 

33. Li, Ruidong, et al. "A systematic framework for DEM 

study of realistic gravel-sand mixture from particle 

recognition to macro-and micro-mechanical analysis." 

Transportation Geotechnics (2021): 100693. 

34. Peyman, Farzad, and Seyed A. Sadrnejad. "Analysis of 

concrete crack growth based on micro‐plane model." 

Structural Concrete 19.3 (2018): 930-945. 

35. Arulmoli, K., Muraleetharan, K. K., Hosain, M. M., & 

Fruth, L. S. (1992). VELACS laboratory testing program, 

soil data report. The Earth Technology Corporation, Irvine, 

California, Report to the National Science Foundation, 

Washington DC. 

 


