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Obiject detection at the edge has gained considerable attention for enabling
real-time, low-latency, and privacy-preserving solutions by processing data
locally on resource-constrained devices. This paper explores using Tiny
YOLO, a lightweight variant of the YOLO architecture, for object detection
on embedded systems. Tiny YOLO is specifically designed for edge devices
to run efficiently on constrained devices by utilizing a reduced architecture
with fewer parameters while maintaining good performance for real-time
object detection. The study examines the deployment of optimized Tiny
YOLO models on embedded systems, incorporating techniques like
quantization, pruning, and clustering to reduce model size, enhance speed,
and lower power consumption. Optimization methods show significant
improvements, with quantization speeding up inference, pruning eliminating
redundant parameters, and clustering enhancing accuracy. Specifically, the
study compares the performance of Tiny YOLO under these optimization
techniques, presenting results for both Pascal VOC and COCO datasets. The
results demonstrate that optimized Tiny YOLO maodels are effective for real-
time object detection on microcontrollers. These methods enable the efficient
deployment of deep learning models for edge computing, without relying on
cloud infrastructure.

1. Introduction

In recent years, edge computing has emerged as a
key technology for processing data closer to where
it is generated, offering distinct advantages over
traditional cloud-based computing. At its core,
edge computing allows devices to process and
analyze data locally rather than sending it to
centralized servers or the cloud [1]. This localized
processing significantly reduces latency, decreases
reliance on network bandwidth, improves privacy,
and increases overall system efficiency, making it
particularly valuable for real-time applications
such as image classification and object detection.
Embedded systems, which are small, low-cost, and
energy-efficient computing units, are a key enabler
of edge computing and Internet of Things devices.
They are commonly used in applications where
space and power consumption are constrained,
such as in smart home devices, wearable
electronics, and industrial sensors. However,
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microcontrollers are typically limited in terms of
computational power, memory, and storage,
making it challenging to run complex machine
learning models [2,3].

Traditional deep learning models require
substantial computational resources, especially in
terms of processing power and memory, which
makes it difficult to deploy them on embedded
systems. However, recent advancements in model
optimization techniques, such as quantization,
pruning, and the use of lightweight neural network
architectures (e.g., Tiny YOLO), have made it
possible to deploy deep learning-based object
detection models even on microcontrollers. These
optimization techniques help reduce the size of the
models, increase their inference speed, and reduce
power consumption, all while maintaining
acceptable levels of accuracy.
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Deploying deep learning models on embedded
systems is a key step in bringing artificial
intelligence to the edge, where real-time decision-
making is critical [4,5]. While challenges such as
limited computational power, memory, and energy
resources remain, advancements in model
optimization techniques, lightweight architectures,
and specialized hardware accelerators are making
Al deployment on small devices more feasible
[6,7]. For example, Tiny YOLO, a compact version
of the well-known YOLO (You Only Look Once)
object detection model, has proven to be effective
for edge deployment due to its small size and
efficient performance. This is especially valuable
in applications such as autonomous systems,
security surveillance, and robotics, where real-time
object detection is needed on resource-constrained
devices. One of the key hurdles in deploying deep
learning on embedded systems is ensuring that
these models can operate -efficiently while
maintaining a balance between performance and
resource consumption [8-10].

Model optimization methods like quantization,
pruning, and clustering help in reducing the
memory  footprint,  lowering  computation
requirements, and speeding up inference times,
making these models more suitable for edge
devices like ESP32 [11]. Tools such as TensorFlow
Lite provide frameworks that make it easier to run
Al models on these constrained platforms,
optimizing them further for mobile and embedded
applications [12].

The rise of Al-powered microcontrollers is
transforming industries by enabling smarter,
decentralized systems [13,14]. In smart homes,
microcontrollers are being wused for voice
recognition in virtual assistants and object
detection in security cameras. In healthcare,
wearable devices equipped with Al can monitor
vital signs and detect falls in real-time. In industrial
loT, microcontrollers power predictive
maintenance systems that can analyze sensor data
like vibration and temperature to prevent
equipment failure. Additionally, environmental
monitoring using microcontrollers allows for the
processing of data to predict weather patterns, track

pollution levels, and monitor wildlife. The
agricultural sector benefits from Al-enabled
microcontrollers by enabling crop health

monitoring, soil condition analysis, and pest
detection, ultimately advancing precision farming
techniques [15,16]. These examples underscore the
versatility of microcontroller-based Al,
showcasing its potential to enhance various
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domains by making intelligent decisions at the
edge [17,18].

This study conducted aimed to evaluate the
performance of the Tiny YOLO model on various
edge devices, including ESP32, ESP32-S3, Pico
W, and Jetson Nano, across different optimization
techniques such as quantization, weight pruning,
and clustering. The experiment utilized the COCO
[19] and Pascal VOC [20] datasets to assess the
model's mean Average Precision (mAP), frames
per second (FPS), model size, inference time.
Results showed that while ESP32 and Pico W
exhibited significant limitations in accuracy and
real-time performance due to their limited
computational power, applying optimizations did
provide some improvements in terms of model size
and inference speed. In contrast, Jetson Nano
demonstrated superior performance, achieving
high mAP values and fast inference times, even
with optimized models. This highlighted the
importance of hardware capabilities in achieving
real-time object detection, with Jetson Nano
proving to be the most suitable platform for
running optimized models like Tiny YOLO
efficiently on more complex datasets.

In the following, the Edge-based object detection is
presented in section 2, the YOLO and Tiny YOLO
architectures are presented in sections 3 and 4. The
optimization techniques of learning models are
presented in section 5, which also refers to the
proposed approach. In section 6, the
implementation of different scenarios of Tiny
YOLO model optimization are presented, and then
in section 7, the results of evaluation are compared.
Finally, the conclusion is presented in section 8.

2. Edge-based object detection

Deploying object detection models on embedded
systems for edge computing is a promising solution
for a wide range of real-time applications. As
optimization techniques improve, the ability to run
sophisticated object detection algorithms on
embedded systems will continue to advance,
opening up new possibilities in fields such as
healthcare, security, autonomous systems, and
environmental monitoring. The ability to perform
local image processing without relying on cloud
infrastructure is transforming industries and
enabling more intelligent, responsive, and energy-
efficient systems.

This breakthrough allows for real-time object
detection on devices with limited resources. The
ability to process images and classify objects at the
edge, without the need for cloud computing, opens
up a wide range of possibilities for various
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applications [21-23]. Below are some key use cases
where microcontroller-based image processing is
particularly beneficial:

Y/
0'0

o

0/
0'0

Smart Home Automation:

Object Detection: Embedded systems can be
used to deploy object detection models to
detect objects, faces, or gestures in smart home
environments. For example, a security camera
system could use a microcontroller to classify
objects in real-time, identifying potential
intruders or monitoring for specific actions.
Gesture Recognition: In a smart home,
gesture recognition can be used to control
lighting or appliances with simple hand
movements, all processed on an embedded
system.

Healthcare and Medical Devices:

Medical Imaging: Embedded systems can
assist in analyzing medical images such as X-
rays, CT scans, or skin lesions directly on
medical devices, facilitating faster diagnosis
and reducing the need for data transmission to
the cloud.

Wearable Health Devices: Image
classification models deployed on wearable
devices can monitor the health of individuals
by identifying changes in skin tone, detecting
the presence of medical conditions, or tracking
movement patterns for rehabilitation purposes.
Industrial Automation and Monitoring:
Defect Detection in  Manufacturing:
Embedded systems with object detection
capabilities can be used in automated
inspection systems to identify defects in
products on an assembly line, improving
quality control and reducing human error.
Predictive Maintenance: By analyzing visual
data from sensors, embedded systems can help
detect signs of wear or malfunction in
machinery, enabling predictive maintenance
and preventing downtime.

Autonomous Systems:

Robotics: Autonomous robots, drones, and
vehicles can leverage image classification at
the edge to understand and interpret their
environment, recognizing obstacles, people, or
objects in real-time for navigation and
decision-making.

Agriculture and Environmental
Monitoring: Drones equipped with embedded
systems can analyze images of crops or forests
to monitor plant health, detect diseases, and
evaluate environmental conditions without
needing cloud-based processing.

Smart Cities and Surveillance:
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o Public Safety and Security: Microcontrollers
embedded in surveillance cameras can perform
face recognition or detect unusual behaviors,
enabling automated security systems that
operate in real-time without relying on cloud
servers.

o Traffic Monitoring: Embedded systems can
be used in traffic cameras to analyze road
conditions, detect traffic congestion, or
recognize vehicle types, all processed locally
for faster decision-making.

+« Environmental Monitoring:

o Wildlife Monitoring: Edge devices equipped
with embedded systems can monitor wildlife,
detecting and identifying animals in remote
areas through camera traps, without needing to
transmit large image files to the cloud.

o Pollution Detection: Image classification
models can help detect pollution or other
environmental hazards through cameras,
enabling automated monitoring systems for air,
water, or land quality.

+ Retail and Consumer Interaction:

o Product Recognition: Embedded systems can
be used in point-of-sale systems or vending
machines to recognize products through image
classification, enabling automatic stock
tracking or facilitating seamless customer
interactions.

o Customer Behavior Analysis: In retail
settings, embedded systems can process visual
data from in-store cameras to track customer
behavior, optimize store layouts, or improve
marketing strategies based on customer
interaction patterns.

3. YOLO architectures

YOLO (You Only Look Once) is a popular series

of deep learning models for object detection. It’s

known for its speed and efficiency, making it a best
choice for real-time object detection tasks. Over
the years, different versions of YOLO have been
released, each with improvements in accuracy,
speed, and architecture [24,25]. The summary of

YOLO’s evolution is shown in table 1. Below is an

overview of the main versions and their key

features:

+ YOLOV], introduced the idea of using a single
convolutional neural network to predict
bounding boxes and class probabilities in one
pass, making it incredibly fast for real-time
detection.

o Architecture: A single convolutional neural
network that simultaneously predicts bounding
boxes and class probabilities for all objects in
the image in one evaluation. The network
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divides the image into a grid and for each grid

cell, it predicts:

e Bounding boxes (X, y, width, height)

e Confidence score (how likely the box
contains an object)

o Class probabilities (which object class the
box belongs to).

Strengths: Very fast (real-time detection),

unified approach (object localization and

classification in one pass).

Weaknesses: Struggles with detecting small

objects and handling overlapping objects, less

accurate in comparison to other models like

Faster R-CNN.

YOLOV2, released in 2017, brought
significant improvements such as the
introduction of anchor boxes, batch

normalization, and multi-scale training, which

increased both speed and accuracy, especially

for larger objects.

Architecture:

e Introduced improvements like a new
backbone network, Darknet-19, which was
more powerful than YOLOv1's architecture.

o Added anchor boxes for better bounding box
prediction, addressing the issue of poor
localization seen in YOLOv1.

e Used multi-scale training, where the model
was trained on different image sizes to
improve generalization.

e Introduced batch normalization to stabilize
and speed up training.

Strengths: Faster and more accurate than

YOLOv1, improved handling of different

object scales, better generalization, and more

robust performance.

Weaknesses: Still struggles with small object

detection.

YOLOVS3, released in 2018, the model was

further enhanced with a new backbone

(Darknet-53), multi-label classification, and

the use of three different scales for prediction,

allowing it to better detect small objects.

Despite these improvements, YOLOv3 still

had limitations when compared to more

complex models like Faster R-CNN.

Architecture:

e YOLOvV3 used a new backbone called
Darknet-53, which improved accuracy and
allowed for better feature extraction.

e Used multi-label classification to improve
the detection of objects with more than one
class.

e Introduced three
prediction (small,

different scales for
medium, and large),
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allowing the network to detect objects at
various sizes.

e Introduced Residual Connections to help
deeper networks train better and avoid
vanishing gradients.

e The output layer was redesigned to use
logistic regression for bounding box
prediction.

Strengths: Better detection of smaller objects,

significant performance improvement over v2

in terms of both speed and accuracy.

Weaknesses: Still not as accurate as more

complex architectures like Faster R-CNN for

certain tasks, especially in cases of very dense
or small objects.

YOLOV4 released in 2020, focused on

improving detection performance with a new

backbone (CSPDarknet53) and techniques like

Mosaic data augmentation and self-adversarial

training, leading to better accuracy, especially

for small and dense objects, while maintaining
fast inference times.

Architecture:

e Built on the YOLOv3 model but
incorporated several new techniques for
better performance, including:

e CSPDarknet53 as the backbone network,
which balances accuracy and speed.

e Mosaic Data Augmentation to improve
generalization by combining multiple
images during training.

e Self-adversarial training for improved
robustness.
e DropBlock regularization for better

bounding box predictions.

e Improved performance on smaller objects
with better feature pyramids.

Strengths: Higher accuracy than YOLOV3,

better at handling small and dense objects,

faster inference  times, state-of-the-art
performance in real-time detection.

Weaknesses: Larger model size compared to

earlier versions, requiring more computational

resources.

YOLOV5, which was not developed by the

original YOLO creators but became very

popular due to its ease of use, modular design,
and efficient performance on a range of
hardware.

Architecture:

e YOLOVS5 is a separate project developed by
Ultralytics, which is not an official
continuation of the YOLO series but has
become very popular in the community.
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o |t focuses on speed and ease of use, and its
codebase is built in PyTorch (as opposed to
Darknet for the official YOLO models).

e YOLOV5 uses a modular design with
different model sizes (small, medium, large,
extra-large) to balance speed and accuracy.

Strengths: Very easy to use, with a lot of built-

in features like model training, testing, and

deployment. Achieves state-of-the-art
performance with relatively lightweight
models.

Weaknesses: It is not an official release from
the original YOLO authors, so it may differ in
implementation  or  long-term  support
compared to the official YOLO versions.
YOLOVS6, released in 2022, continued the
trend of optimization, especially for edge
devices, by focusing on speed and efficiency.
Architecture:

e YOLOV6 is optimized for both speed and
accuracy with improvements over YOLOV5,
particularly in handling dense and small
objects.

e Introduced a more efficient backbone
(CSPResNet) and neck (PP-YOLO) to
enhance detection performance.

e Focused on optimizing inference speed for
deployment on edge devices.

Strengths: Real-time performance,

accuracy with fewer resources.

Weaknesses: Like YOLOv5, it's not an

official version, so community-driven

development may lead to less consistency over
time.

YOLOvV7, also released in 2022, utilized more

advanced techniques such as efficient

transformers and heterogeneous module
fusion, further enhancing both speed and
accuracy.

Architecture:

e YOLOV7 continues improving on YOLOvV5
and YOLOv6, focusing on both accuracy
and inference speed. It utilizes the efficient
transformer architecture for better handling
of spatial relationships in images.

e Improved backbone for Dbetter
extraction and information flow.

e Introduced Heterogeneous Module fusion
for better performance in terms of both
accuracy and speed.

Strengths: One of the fastest YOLO versions

to date, highly optimized for real-time object

detection.

better

feature
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o Weaknesses:

Complexity in tuning for
specific tasks, requires careful hyperparameter
tuning for optimal performance.

YOLOVS, introduced in 2023, offers cutting-
edge performance with improvements in
backbone architectures, better handling of

various object detection tasks, and
optimization for real-time and embedded
systems.

Architecture:

e YOLOVS8 aims to offer even better accuracy,
speed, and efficiency than its predecessors. It
is designed to perform well on various object
detection tasks and includes newer backbone
and neck architectures, as well as better loss
functions for bounding box predictions.

e It also focuses on fine-tuning for specific
tasks like segmentation and key point
detection.

Strengths: Cutting-edge performance, high

accuracy, and optimized for both real-time and

edge devices.

Weaknesses: Requires more computational

resources than earlier versions but offers a

significant boost in performance.

Table 1: Summary of YOLO’s evolution.

Version Key Features
First release; groundbreaking for real-time object
YOLOv1  detection using a single CNN for bounding box and
classification predictions.
Improved accuracy and speed; introduced anchor
YOLOv2 boxes, batch normalization, and multi-scale
training. Better at handling larger objects.
Significant improvements in architecture with
Darknet-53 backbone; better at detecting small
YOLOV3 objects with multi-scale predictions and multi-label
classification.
Focused on speed, accuracy, and robustness,
YOLOv4  especially for real-time applications; introduced
Mosaic data augmentation and CSPDarknet53.
A community-driven model; emphasizes ease of
YOLOV5  use, modular design, and optimized for both speed
and accuracy, with multiple model sizes.
Optimized for edge devices and real-time
YOLO applications; further enhancements in speed,
V6 & V7 accuracy, and performance, especially in dense or
small object detection.
The latest version with cutting-edge performance
YOLOvV8 and optimizations for real-time and embedded
devices; handles various detection tasks.
The YOLO family continues to evolve with a
stronger emphasis on speed, accuracy, and

resource efficiency, making it a top choice for real-

time object detection in areas like autonomous

driving, surveillance and robotics. Each version of
YOLO has brought improvements in terms of
accuracy, speed, and efficiency, making it one of

the top choices for real-time object detection in
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fields such as autonomous driving, robotics, and
surveillance.

4. Tiny YOLO

Tiny YOLO is a smaller, lighter version of the
YOLO model, specifically designed for
applications where computational resources are
limited, such as on edge devices or in real-time
systems that require fast processing speeds. It is a
trade-off between performance and efficiency,
sacrificing some accuracy for the sake of reduced
size and faster inference time. Tiny YOLO
simplifies the architecture of the original YOLO by
reducing the number of layers and parameters. For
example, in Tiny YOLO, the backbone network
(typically Darknet) has fewer convolutional layers
and a smaller number of filters. This results in
faster processing speeds and reduced memory
requirements, making it suitable for devices with
limited computational power, such as embedded
systems, mobile devices, and 10T applications.
Faster Inference: Tiny YOLO is much faster than
the standard YOLO models due to its smaller size
and fewer parameters. This makes it ideal for real-
time object detection applications, especially on
resource-constrained devices.

Lower Computational Requirements: The
reduced architecture allows Tiny YOLO to run
efficiently on devices with limited GPU or CPU
capabilities. It’s particularly useful for edge
devices, mobile phones, and embedded systems
where processing power is a concern.

Smaller Model Size: The smaller model size
makes it easier to deploy Tiny YOLO on devices
with limited storage capacity. This is important for
applications where storage space is constrained,
such as drones or 10T devices.

Good for Low-Latency Applications: Because of
its faster processing, Tiny YOLO is suited for low-
latency tasks where quick decision-making is
necessary, such as autonomous vehicles or real-
time video surveillance.

Lower Accuracy: Because of the simplified
architecture, Tiny YOLO generally achieves lower
accuracy compared to full YOLO versions (like
YOLOv3, YOLOvV4, or YOLOVS5). It may struggle
with detecting small objects or complex scenes
with a high degree of clutter.

Limited Detection Capabilities: While Tiny
YOLO is good for general object detection, its
performance can degrade in challenging scenarios,
such as detecting objects in high-density
environments or cases where fine-grained
classification is required.
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Less Robust in Difficult Conditions: Tiny YOLO
might not perform as well under varying
conditions, such as different lighting, weather, or
occlusion, compared to more complex models.
Tiny YOLO is a powerful tool when you need
object detection on devices with limited resources,
where speed and efficiency are more critical than
achieving the highest possible accuracy. Its trade-
off between performance and resource usage
makes it suitable for real-time applications like
autonomous vehicles, drones, and mobile devices.
Key Characteristics of Tiny YOLO's Architecture
are:

o Fewer layers and filters: The network has
fewer layers and smaller filter sizes compared
to the full YOLO versions, making it faster but
less accurate.

o Simplified structure: By reducing the depth of
the network and the number of neurons in the
fully connected layers, Tiny YOLO is
optimized for speed and smaller model size.

o Max Pooling: Max pooling layers help reduce
the spatial resolution of feature maps, aiding in
faster processing and reducing overfitting by
discarding irrelevant details.

o Lower resolution input: Tiny YOLO generally
works with lower resolution input images,
which reduces computation time but may
decrease accuracy in detecting small objects.

Tiny YOLO sacrifices some complexity and
accuracy from the standard YOLO architecture in
exchange for faster processing and reduced
computational requirements. This makes it suitable
for real-time applications on edge devices and
embedded systems, where speed and low resource
consumption are prioritized over the highest
possible accuracy. The Tiny YOLO architecture
table is shown in table 2. The layers of this
architecture are described below:

Input Layer: Takes images of size 224x224x3,
commonly used for image classification and
detection tasks.

Convolutional Layers: These layers progressively
extract more abstract features from the image by
applying convolution with 3x3 filters. The number
of filters increases as the network deepens,
allowing for more complex representations.

Max Pooling Layers: Reduce the spatial
dimensions of the feature maps, making the model
more efficient and helping to avoid overfitting.
Fully Connected Layers: Compress the features
extracted from the convolutional layers and map
them to a higher-dimensional space, enabling the
prediction of object classes and bounding boxes.



P. Babaei / Journal of Optimization in Soft Computing (JOSC), 2(4): 28-39, 2024

Output Layer: Predicts both the class probabilities
and bounding box positions (class + 4 for bounding
box coordinates). The final output is structured to
handle N classes and the corresponding bounding
box for each object detected.

Table 2: Tiny YOLO architecture.

Layer Nur_nber of _ FiIte_r _Outpl_Jt
Filters Dimensions Dimensions
Input Layer 224x224 224x224%3
Convolutional 1 16 3x3 224x224x16
MaxPooling 1 2x2 112x112x16
Convolutional 2 32 3x3 112x112x32
MaxPooling 2 2x2 56x56x32
Convolutional 3 64 3x3 56x56x64
MaxPooling 3 2x2 28x28x64
Convolutional 4 128 3x3 28x28x128
MaxPooling 4 2x2 14x14x128
Convolutional 5 256 3x3 14x14x256
MaxPooling 5 2x2 TX7x256
Fully Connected 1 4096 N/A 1x1x4096
Fully Connected 2  Classes + 4 N/A IX1x(N+4)
Output N/A N/A IX1x(N+4)

This structure is a simplified version of the YOLO
architecture, designed for efficient image
classification and object detection with reduced
computational resources.

5. Model Optimization Techniques

Model optimization techniques aim to reduce the
size and computational demands of machine
learning models without compromising their
performance. This is crucial for deploying models
on small, resource-limited devices. Methods such
as pruning, quantization, and weight clustering are
commonly used to achieve this goal [26]. The main
objective is to enable large models to run smoothly
on edge devices with limited memory, processing
power, and battery life. These optimizations are
especially useful for applications requiring
continuous operation. The benefits of using
optimization techniques include:

Inference Speed: Large models take longer to
make predictions, which can be problematic for
real-time applications like video or audio
processing. Optimization enhances inference
speed, making models more suitable for time-
sensitive tasks.

Cost and Resource Efficiency: Training and
deploying large models demand substantial
computational resources, often resulting in high
costs. Optimization reduces these needs, enabling
faster and more efficient training and deployment.

Deployment Flexibility: Large model sizes can
hinder deployment on certain platforms or
environments. Optimization makes models more
portable and easier to deploy.

Quantization is a technique that reduces the size
and computational complexity of machine learning
models by using fewer bits to represent weights
and activations. It is particularly useful for devices
with limited memory and computational power,
like edge and 10T devices. The technique involves
reducing the precision of model weights, such as
converting 32-bit floating-point numbers to 8-bit
integers, which reduces model size and improves
inference speed but may slightly affect accuracy.
Quantization can be applied during or after
training, with post-training quantization being
simpler but potentially introducing errors, while
guantization-aware training simulates quantization
effects during training to preserve accuracy and
improve performance. The main benefits include
faster inference, reduced memory use, and lower
energy consumption, but balancing model size and
accuracy requires careful calibration [27,28].
Pruning is a method used to reduce model size by
removing unnecessary parameters, lowering
computational and storage needs, and improving
generalization. It involves setting certain weights
to zero, thus removing them from the model.
Pruning can be done before, during, or after
training and is effective for various models like
deep neural networks and decision trees. The
benefits of pruning include reduced size, simpler
interpretation, and easier deployment. Weight
pruning is commonly used, where less important
weights are set to zero, creating sparsity in the
model and reducing memory usage. While it
speeds up inference, excessive pruning may
degrade performance, requiring a balance between
model size and accuracy [29,30].

Weight clustering is another optimization
technique that reduces the number of unique
weight values in a model. Instead of storing each
individual weight, only unique values are saved,
minimizing memory usage. The technique groups
similar weights into clusters, often using the cluster
centroid as the representative value for all weights
in that group. By reducing the number of clusters,
the model becomes more compact, saving memory
and improving efficiency [31].

6. Implementation of Optimized Models

The objective of this experiment was to evaluate
the deployment performance of the Tiny YOLO
model on various embedded hardware platforms,
including the ESP32, ESP32-S3, Pico W, and
Jetson Nano. These platforms were chosen to
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compare the feasibility of running a real-time
object detection model like Tiny YOLO on
resource-constrained devices, with a focus on the
impact of optimization techniques such as
guantization, weight pruning, and clustering.

The ESP32 and Pico W are microcontroller-based
platforms known for their low power consumption
and small form factors, making them suitable for
simple edge applications. However, their limited
computational power and memory impose
constraints when running more complex deep
learning models like Tiny YOLO. The ESP32-S3
variant was also included in the test, which offers
enhanced Al capabilities compared to the basic
ESP32 model, but still lacks the computational
resources required for high-performance tasks.
These  microcontrollers were tested with
optimizations to reduce the size of the model,
improve inference time, and reduce latency.
Quantization was used to reduce the precision of
weights and activations, weight pruning removed
less important parameters to decrease model size,
and clustering grouped similar weights to further
optimize the model.

The Jetson Nano, a more powerful platform
equipped with a GPU and designed specifically for
Al applications, was also tested. It provides
significant computational power, making it better
suited for real-time deep learning tasks. The Jetson
Nano was used as a benchmark to compare the
performance of the  microcontroller-based
platforms and to see how well Tiny YOLO can
perform with more robust hardware. The same
optimization methods were applied to the Jetson
Nano to assess their impact on performance,
although the higher computational power of the
device meant that the benefits of optimization were
less significant than on the microcontrollers.

The following metrics were measured across all
devices: mean Average Precision, Frames Per
Second, Model Size, Inference Time, and Latency.
These metrics were used to evaluate the trade-offs
between  performance and  computational
efficiency after applying the optimization
techniques. In the case of ESP32, ESP32-S3, and
Pico W, the models were optimized to fit within the
limited memory constraints of the devices. The
resulting models were small in size but showed
significant limitations in terms of accuracy, speed,
and real-time performance, as the inference time
remained high.

Overall, this experiment demonstrated that while
optimizations such as quantization, pruning, and
clustering can help make deep learning models
more feasible for microcontroller-based platforms,
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the limited computational power of devices like
ESP32 and Pico W remains a major bottleneck for
real-time object detection tasks. On the other hand,
the Jetson Nano proved to be a much more capable
platform for deploying Tiny YOLO in real-time
applications.

Quantization is first applied by converting the
model’s 32-bit floating-point weights and
activations to 8-bit integers. This reduces the
model's size and boosts inference speed. The model
is then assessed for memory savings,
computational efficiency, and any slight loss in
accuracy due to the reduction in numerical
precision. Next, pruning is performed by
eliminating weights that have little impact on the
model’s performance during training, thus
reducing both the model size and computational
load. The pruned model is tested to evaluate the
balance between efficiency improvements and any
potential accuracy loss, which depends on the
extent of pruning. Lastly, weight clustering is
implemented, grouping similar weights into a
predefined number of clusters and replacing them
with shared centroids. This technique reduces
memory usage Wwithout affecting numerical
precision, and the clustered model is assessed for
memory savings and any accuracy degradation
caused by reduced weight granularity.

Deploying optimized models on hardware
platforms like ESP32, ESP32-S3, Pico W, and
Jetson Nano offers a range of possibilities, each
suited to different use cases based on the
computational power and application
requirements. By applying techniques like
guantization and pruning, the model's size and
inference time can be reduced, making it more
feasible for deployment on edge devices. Overall,
selecting the appropriate platform depends on the
balance between performance, power
consumption, and the complexity of the task at
hand.

7. Evaluation Results

Performance of each optimized model is compared
to the base model to evaluate the benefits and trade-
offs of each technique. The results of the combined
optimization methods are also analyzed to find the
best strategy for balancing performance and
efficiency. This evaluation provides valuable
insights for deploying Tiny YOLO in real-world
scenarios with limited resources. The evaluation
focuses on key metrics such as mean Average
Precision (mAP), Frames Per Second (FPS), and
Inference Time (ms), which collectively assess the
models' performance and suitability for resource-
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constrained environments. When deploying Tiny
YOLO on embedded systems, it's essential to
consider various metrics. These metrics help
understand the trade-offs between efficiency and
accuracy, guiding the optimization process.

Table 3 focuses only on the Pascal VOC dataset for
the Tiny YOLO models deployed on ESP32,
ESP32-S3, Pico W, and Jetson Nano, providing a
comprehensive framework for evaluating the
optimized Tiny YOLO models. The models
balance high accuracy with smaller size, improved
efficiency, and reduced inference time, making
them suitable for image classification tasks in
resource-limited environments.

Table 3: Evaluation results for Pascal VOC dataset.

optimization - mAP Inference
Method Device 11 o6y || FPS | Time (ms)

| Esp32 |[352][ 15| 2750 |

Base [ ESP32-s3 |[ 273 |[ 25 || 1879 |

Model | Picow |[350][ 10| 2940 |

|Jetson Nano” 77.0 || 17.0 || 279 |

| Esp32 |[349 [ 15| 947 |

|l Esp32s3 271 ][ 25] 738 |
Quantization -

| Picow |[338] 10| 1005 |

[Jetson Nano|[ 76.7 |[17.0 ][ 127 |

| Esp32 |[345][ 15| 1030 |

, [ESP32-s3 |[ 268 |[ 25 |[ 712 |
Pruning -

| Picow |[336] 10| 1240 |

[Jetson Nano|[ 765 |[17.0 ][ 145 |

| Esp32 |[342][ 15| 968 |

_ [ ESP32-s3 |[ 266 |[ 25 |[ 780 |
Clustering -

[ Picow |[332][ 10| 1155 |

|Jetson NanoH 76.2 || 17.0 || 132 |

In terms of mean Average Precision (figure 1),
ESP32 and Pico W show relatively low values,
ranging from 34.2% to 35.2%, even after applying
optimization techniques like quantization, pruning,
and clustering. These platforms struggle to achieve
high accuracy due to their limited processing
power. On the other hand, Jetson Nano
demonstrates significantly higher mAP values,
ranging from 76.2% to 77%, which is a clear
reflection of its superior computational
capabilities. Despite optimizations, the Jetson
Nano consistently maintains strong accuracy,
making it a better choice for tasks requiring higher
precision.

For inference time (figure 2), ESP32, ESP32-S3,
and Pico W have high values, ranging from 712ms
to 2940ms, due to their hardware constraints. This
long inference time is detrimental to real-time
object detection, as it introduces delays in
processing. Conversely, Jetson Nano achieves
much faster inference times, ranging from 127ms
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to 145ms, depending on the optimization method
applied. This makes Jetson Nano an ideal platform
for real-time object detection.

Jetson Nano outperforms ESP32 and Pico W across
all evaluation metrics, including mAP, FPS,
inference time, and latency, making it the best
choice for real-time object detection tasks using
Tiny YOLO. While ESP32 and Pico W offer low-
cost and power-efficient solutions, their
performance for complex models like Tiny YOLO
is limited, making them unsuitable for real-time
applications that require high accuracy and speed.
Despite the modest improvements offered by
optimization techniques such as quantization,
pruning, and clustering, the hardware constraints of
the microcontroller-based platforms continue to
limit their ability to perform effectively for more
demanding tasks.
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Figure 2: Inference time for Pascal VOC.

Table 4 focuses only on the COCO dataset for the
Tiny YOLO models deployed on ESP32, ESP32-
S3, Pico W, and Jetson Nano, providing a
comprehensive framework for evaluating the
optimized Tiny YOLO models. The models
balance high accuracy with smaller size, improved
efficiency, and reduced inference time, making
them suitable for image classification tasks in
resource-limited environments.
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In terms of mean Average Precision (figure 3),
ESP32 and Pico W show relatively low values,
with the highest mAP reaching around 27.5% even
after applying optimization techniques. The limited
computational resources on these microcontrollers
result in lower accuracy, which is a significant
challenge despite the optimizations. In contrast,
Jetson Nano consistently achieves much higher
mAP values, ranging from 66.9% to 67.7%,
demonstrating the platform’s ability to handle
more complex models like Tiny YOLO with
greater precision due to its superior hardware
capabilities.

Table 4: Evaluation results for COCO dataset.

Optimization . mAP Inference

Method Device 1 o5) || FPS || Time (ms)

[ EsP32  [[291 | 15] 3142 |

Base | EsP32-s3 |[355 | 25 2057 |

Model | picow |[27.2 | 1.0 | 3260 |

| Jetson Nano || 67.7 || 17.0|| 325 |

| EsP32  |[286 | 15 1180 |

|l Esp32-s3 |[346 | 25| 8715 |
Quantization -

[ Picow |[264 | 10] 1308 |

[ Jetson Nano |[ 67.5 |[17.0][ 117 |

[ EsP32  |[282 | 15] 1270 |

, | EsP32-s3 [[339 | 25| 913 |
Pruning -

[ Picow |[258] 10] 1382 |

| Jetson Nano || 66.9 || 17.0|| 166 |

[ EsP32  |[289 | 15 1195 |

_ | EsP32-s3 |[351 | 25 897 |
Clustering -

[ Picow |[268 ] 10] 1336 |

| Jetson Nano || 67.6 || 17.0|| 132 |
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In terms of inference time (figure 4), ESP32,
ESP32-S3, and Pico W exhibit high inference
times ranging from 875ms to 3260ms, which
makes these platforms unsuitable for real-time
applications where speed is crucial. In contrast,
Jetson Nano achieves much lower inference times,
between 117ms and 166ms, making it well-suited
for real-time tasks that demand faster processing.
Jetson Nano clearly outperforms both ESP32 and
Pico W across all evaluation metrics, making it the
optimal choice for real-time object detection with
Tiny YOLO on the COCO dataset. The ESP32 and
Pico W show significant limitations due to their
hardware constraints, even after optimization, and
are better suited for tasks of lower complexity or
for applications where real-time performance is not
as critical. These platforms can still be useful for
simpler Al tasks, but when it comes to real-time
detection requiring high accuracy, Jetson Nano is
the clear leader.

8. Conclusion

The experiment conducted to evaluate the
deployment of Tiny YOLO on a range of
embedded systems, including ESP32, ESP32-S3,
Pico W, and Jetson Nano, reveals key insights into
the feasibility of running optimized deep learning
models on resource-constrained devices. The
evaluation was carried out on two popular object
detection datasets, COCO and Pascal VOC, with
the focus on the performance impact of three model
optimization techniques: quantization, weight
pruning, and clustering. The results, detailed in the
tables, provide a comprehensive analysis of the
trade-offs between mean Average Precision,
frames per second, and inference time across
different hardware platforms.

Jetson Nano, with its powerful GPU and higher
computational resources, consistently
outperformed the other platforms in terms of both
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mAP and real-time performance. This was
expected, as the Jetson Nano is designed for Al
applications, offering substantial processing power
and memory to handle complex models like Tiny
YOLO. It demonstrated an impressive mAP of
around 66.9% to 67.7% on the COCO dataset,
which is a significant advantage for more
computationally intensive tasks. The inference
time was also much lower compared to the

microcontroller-based platforms, further
emphasizing its  suitability for real-time
applications.  However, optimizations like

guantization, pruning, and clustering did lead to
slight improvements in inference time and latency,
showing that resource-efficient techniques can
make these platforms viable for simpler tasks.

One notable aspect of the experiment is the
importance of model optimization. While the
optimizations did not dramatically increase the
MAP on these low-power platforms, they did make
the models more feasible for deployment,
balancing the trade-off between computational
efficiency and accuracy.

The results underscore the importance of selecting
the right hardware for edge Al deployment, where
a balance between computational power, model
size, inference time, and energy consumption must
be considered. Future work could focus on further
optimizing the Tiny YOLO model for even smaller
and more power-efficient devices while
maintaining reasonable accuracy for a broader
range of real-world applications.
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