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Abstract. Listeriosis, caused by Listeria monocytogenes, presents significant public health risks, especially to vul-
nerable groups such as the elderly, immunocompromised individuals, and pregnant women. Despite advancements
in food safety measures, the bacteria’s resilience across various environments makes their complete eradication
challenging. This study addresses this challenge by incorporating uncertainty and memory effects into the disease
modelling process. This study offers an advanced mathematical framework to analyse listeriosis dynamics using
fractal-fractional differential equations and a fuzzy fractal-fractional approach. The integration of fractal calculus
allows for a detailed examination of complex, multi-scale behaviours of real-world disease spread, while the incor-
poration of fuzzy logic accounts for inherent uncertainties in initial conditions and parameter values. Ensuring the
mathematical validity of the proposed models, the research explores key properties such as existence, uniqueness,
and Ulam-Hyers stability, which confirm the robustness and reliability of the solutions. A computational approach
is utilized to solve the model, revealing the dynamics of susceptible, infected, and recovered populations, as well as
the bacterial class and the progression of spoiled and unspoiled food packages over time. The importance of fractal
dimensions in the Listeriosis model is emphasized by variation maps that depict changes over time. The exten-
sion of the model to include fuzzy initial conditions enhances predictive capabilities and supports decision-making
by accommodating uncertainty. The findings underscore the importance of applying sophisticated mathematical
tools, such as fractal-fractional and fuzzy differential equations, to improve the understanding and management of
listeriosis and similar public health challenges, enabling more effective prevention and control strategies.
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1 Introduction
The bacterium Listeria monocytogenes, which primarily transmits through contaminated foods like soft
cheeses, deli meats, and other ready-to-eat products, causes listeriosis, a life-threatening disease [1, 2]. This
pathogen poses a particularly high risk to vulnerable groups, including the elderly, immunocompromised
individuals, and pregnant women, often resulting in severe manifestations like sepsis and meningitis, with a
case-fatality rate ranging from 20-30% even with treatment [3, 4, 5, 6].

Recent advances in food safety practices, such as Hazard Analysis and Critical Control Points (HACCP)
principles, along with improved microbiological testing, have reduced the incidence of sporadic listeriosis
in industrialized nations [7, 8, 9, 10]. However, complete eradication remains challenging due to its abil-
ity to thrive in diverse environmental conditions, displaying resilience in cold temperatures and high-salt
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environments, which facilitates its survival and persistence within the food supply chain [11, 12, 13]. The
intricate epidemiology of L. monocytogenes, combined with its pervasive presence and adaptability, highlights
the necessity for advanced modelling techniques to forecast the pathogen’s behaviour, enhance prevention
strategies, and control its transmission dynamics in human populations [14, 15].

Mathematical modelling is crucial for understanding and controlling listeriosis, and recent researchers
[16, 17, 18] have extensively explored the study of foodborne pathogens and antimicrobial resistance at the
farm level. A mechanistic dose-response model incorporating biological factors like gastric acid and immune
response improved experimental design in understanding infection dynamics [19, 20]. Another study [21, 22]
addressed cross-contamination in food processing environments, emphasizing the need for stringent hygiene
practices. A multi-population model [23] included vulnerable groups, such as pregnant women and newborns,
and examined food and environmental contamination routes. An innovative framework [24] for identifying
contaminated products during foodborne outbreaks used retail sales data, facilitating early intervention and
limiting listeriosis spread. The use of fractional calculus in modelling infection dynamics, particularly for
listeriosis, provided a more nuanced understanding of pathogen persistence compared to traditional models
[25, 26]. These research efforts highlight the value of advanced mathematical models, especially fractional
calculus, in improving the understanding and management of foodborne infections and antimicrobial resis-
tance.

Fractal-fractional differential equations are a powerful tool in mathematical modelling, combining frac-
tional calculus and fractal geometry. They provide a more accurate representation of complex phenomena
in fields like physics, engineering, biology, and economics. The foundation of fractal-fractional calculus [27]
lies in the extension of traditional calculus to non-integer orders and the incorporation of fractal dimensions.
This approach allows for the description of memory effects, non-local interactions, and self-similarity in nat-
ural and artificial systems. Key advantages of using fractal-fractional differential equations include enhanced
accuracy, flexibility, and multiscale modelling.

The development of fractal-fractional differential equations has significantly enhanced mathematical mod-
elling, particularly evident in analyses like the monkeypox outbreak in the United States from May 2022 to
May 2023 [28]. Numerical results highlighted the importance of fractal-fractional order in accurately fitting
real data [29]. In related research [30], a fractal-fractional model was validated against viral diarrhoea data
from 2008 to 2018, utilizing a fractional order of 0.85 and a fractal order of 0.62. Recent studies [31, 32]
have increasingly employed fractal-fractional operators, showcasing their superior accuracy compared to tra-
ditional models, particularly with SARS-CoV-2 data in Pakistan and diabetes patient data. Additionally, a
new fractal-fractional MSEIR model [33, 34] was introduced to analyse the chickenpox outbreak among Shen-
zhen school children in 2013, indicating that the fractal-fractional model offers a more precise representation
of disease dynamics than classical and other fractional-order models.

Incorporating fuzzy logic within the mathematical framework allows for the representation of uncertainties,
enhancing the model’s ability to produce realistic simulations and inform decision-making processes. Address-
ing the inherent uncertainty in initial conditions and parameter variability is crucial, as real-world data often
exhibit imprecision that traditional models cannot accommodate effectively. The author [35] investigates
fuzzy fractional operators and provides a comprehensive evaluation of these operators and the corresponding
fuzzy fractional equations, emphasizing the importance of incorporating fuzzy logic in modelling. The authors
[36, 37] developed fuzzy fractional differential equations for fuzzy HIV and COVID-19 modelling. They have
established the uniqueness of their solution and provided numerical simulations to demonstrate its effective-
ness. Some authors [38, 39] presented a numerical method for solving a fuzzy AH1N1/09 influenza model
and developed a fuzzy fractional Caputo derivative approach for modelling the SIR dynamics of childhood
diseases.
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1.1 Motivation

• Listeriosis poses significant public health risks, particularly among vulnerable groups, and presents
difficulties for food safety and public health monitoring due to its thriving environment.

• Current epidemiological models often fall short in capturing the intricate transmission pathways and
environmental persistence of L. monocytogenes, leading to gaps in predictive capabilities and control
strategies.

• Mathematical modelling using conventional differential equations may not fully represent the non-linear,
fractal-like patterns observed in real-world listeriosis outbreaks.

• Fractal-fractional differential equations provide a means to model complex, multi-scale behaviours in-
herent to the transmission and spread of listeriosis, offering a more accurate depiction of the disease
dynamics.

• Fuzzy logic in the Listeria models further enhances simulations and decision-making by representing
uncertainties in the initial conditions and addressing imprecision in real-world data.

• Improved predictive models are vital for designing targeted intervention strategies and resource alloca-
tion to prevent and mitigate listeriosis outbreaks, thereby reducing public health risks.

• The combination of advanced mathematical approaches, such as fractal-fractional calculus and fuzzy
modelling, aligns with the need for sophisticated tools that can handle complex biological and epidemi-
ological systems.

1.2 Objectives

• Develop a comprehensive mathematical model using fractal-fractional differential equations to analyse
the complex dynamics of listeriosis.

• Integrate fuzzy logic to incorporate uncertainties in initial conditions and parameter variability for more
robust predictions.

• Study key mathematical properties, including existence, uniqueness, and Ulam-Hyers stability, to ensure
the reliability and soundness of the model.

• Examine the impact of fractional orders and fractal dimensions on the dynamics of listeriosis to identify
critical factors influencing disease spread.

• Provide a refined tool for public health officials and researchers to design better intervention and control
strategies.

1.3 Manuscript Framework

Section 2 provides the fundamental definitions that set the groundwork for the study. This manuscript is
organized into two main parts:

Part 1: Fractal-Fractional Model

• Section 3: Presents the formulation of the Listeriosis disease model and introduces the fractal-fractional
Listeriosis model, accompanied by an in-depth analysis.
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• Section 4: Addresses the existence and uniqueness of the model’s solutions, ensuring mathematical
rigor.

• Section 5: Discusses the Ulam-Hyers stability, which evaluates the model’s resilience under small
perturbations.

• Section 6: Outlines the computational scheme utilizing Lagrange piecewise interpolation.

• Subsection 6.1: Examines the model’s results and solutions through simulations and graphical repre-
sentations.

• Subsection 6.2: Explains why fractal dimensions are important for the model and includes variation
maps to show their effects clearly.

Part 2: Fuzzy Fractal-Fractional Model

• Section 7: Introduces the fractal-fractional Listeriosis model and uses the computational framework
from Section 6 to find its solutions.

• Subsection 7.1: Discusses the simulations and results obtained from this model, supported by illus-
trative figures.

2 Basic Concepts
Definition 2.1. [27] A function m(t) is fractal differentiable with fractal order ϑ on (a,b) if
dm(t)
dtϑ

= lim
v→t

m(v)−m(t)
vϑ−tϑ exists.

Definition 2.2. [29] The fractal-fractional derivative of a fractal differentiable m(t) function on (a,b), in
Riemann-Liouville sense with fractional order ς is represented as:

ς,ϑD(m(t)) = ∆(ς)
1 − ς

d

dtϑ
∫ t

0
Eς

[
− ς

1 − ς
(t − v)ς

]
m(v)dv, (1)

Here, ∆(ς) = 1 - ς + ς
Γ(ς) is the normalizer function and Mittag-Leffler Kernel is Eς(t) =

∞∑
n=0

tn

αt+1 .

Definition 2.3. [34] The Atangana-Baleanu fractional derivative of m(t) function on (a,b) with fractional
order ς in Riemann-Liouville sense is represented as:

ςD(m(t)) = ∆(ς)
1 − ς

d

dt

∫ t

0
Eς

[
− ς

1 − ς
(t − v)ς

]
m(v)dv (2)

The fractional integral of m(t) is represented as:

ςI(m(t)) = 1 − ς

∆(ς)
m(t) + ς

∆(ς)Γ(ς)

∫ t

0
(t − v)ς−1m(v)dv (3)

Definition 2.4. [36] The parametric form of a fuzzy number m̃ is represented by [m̃]α = [m̃−(α),m̃+(α)],
where 0 ≤ α ≤ 1 and the functions m̃−(α) and m̃+(α) satisfies the below conditions:

• m̃−(α) is non-decreasing bounded right continuous at zero and left continuous function for other values
of α.
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• m̃−(α) is non-increasing bounded right continuous at zero and a left-continuous function for other values
of α.

• For all α, m̃+(α) ≥ m̃−(α).

Definition 2.5. [35, 36] For fuzzy numbers m̃1, m̃2 and m̃3, the arithmetic operations are defined by

• [m̃1 ⊕ m̃2]α=[m̃−
1 (α)+m̃−

2 (α), m̃+
1 (α)+m̃+

2 (α)],

• For g ∈ ℜ, [g ⊙ m̃]α=
{

[gm̃−(α), gm̃+(α)], if g ≥ 0
[gm̃+(α), gm̃−(α)], if g < 0,

• m̃1 ⊖ m̃2 = m̃3 ⇐⇒
{

(i)m̃1 = m̃2 ⊕ m̃3,

(ii)m̃2 = m̃1 ⊕ (−1)m̃3.

i.e. [m̃1]α ⊖ [m̃2]α = [min{m̃−
1 (α) − m̃−

2 (α), m̃+
1 (α) − m̃+

2 (α)},max{m̃−
1 (α) − m̃−

2 (α), m̃+
1 (α) − m̃+

2 (α)}]

where ⊖ is the GH-difference (generalized Hukuhara difference).

Definition 2.6. [36] A fuzzy-valued function m̃(t) is GH-differentiable at t ∈ (a,b) if
dm̃(t)
dt = lim

h→0
1
h [m̃(t + h) ⊖ m̃(t)] exists.

3 Fractal-Fractional Listeriosis Model
The mathematical framework for Listeriosis disease models captures the interactions among three key groups:
the human population, food products (both unspoiled and spoiled), and environmental L. Monocytogenes
bacteria.

1. Dynamics of Human Population:

• The human population consists of three variables: Susceptible Hs, Infected Hi, and Recovered Hr,
following the SIR framework.

• The total population at any time H(t) = Hs(t)+Hi(t)+Hr(t).
• Infection Pathways: (1) Food Ingestion - Listeria transmission occurs when humans ingest spoiled

food, influenced by contact rate ρ1. (2) Environmental Exposure - Individuals can also be infected
through direct environmental exposure to Listeria bacteria, governed by contact rate ρ2.

• Infection Rate ∗λ: The rate of new infections is calculated with food ingestion and environmental
exposure.

• After infection, individuals recover at rate δ2, but they can return to susceptibility over time at a
rate δ1.

• The human population mortality rate τ , which accounts for deaths and transmission rate from
susceptible to infected, is λ.

2. Environmental Bacteria:

• Logistic Growth: The Listeria population L in the environment follows a logistic growth dL
dt =

σL
(
1 − L

δ3

)
, where σ is the growth rate and δ3 is the load capacity of the environment.

• Environmental Factors: The environment influences infection rates by determining the level of
Listeria present, which then affects food contamination.
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Table 1: Description of parameters and their values

Parameters Representation Values
τ Rate of natural mortalities 1/(65×360)
µ Production rate of unspoiled food 0.0076
δ2 Rate of recovery 0.0094
σ Aggregate growth rate of L 0.02
ρ1 Rate of Listeriosis human infection via unspoiled food 0.038
ρ2 Food spoiled rate by Listeriosis bacteria 0.002
ρ3 Spoiled rate of unspoiled food products 0.0005
δ1 Rate of immunity depletion 0.09

3. Food Spoliation Dynamics:

• Food is classified into unspoiled U and spoiled C categories, with the total food supply F = U +
C.

• Food Spoliation Rate ∗η is calculated from ρ2 and ρ3, where they are contact rates affecting
contamination in the environment and food processing facilities, respectively.

• Food Production: Uncontaminated food is produced at a rate µ, and contamination occurs at a
rate η through environmental exposure and food handling.

The comprehensive flowchart illustrating the Listeriosis disease model, as depicted in Figure 1, provides a
detailed schematic representation of the interactions and processes involved in the progression of the disease.
Additionally, Table 1 offers an exhaustive description of the model’s parameters, encompassing their respective
definitions and assumed quantitative values.
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model final.jpg model final.bb

Figure 1: Flow-Chart of Listeriosis Disease Model - Dark black arrows represent the transmission
within each group, and empty arrows represent the transmission among other groups.

The following formulation presents the ordinary differential equation model for Listeriosis, as initially
introduced by [16]. This model encapsulates the dynamic interactions between various biological categories
and pathways pertinent to the transmission and progression of Listeriosis. The equations are designed to
mathematically represent the changes over time within the system, thereby facilitating in-depth analysis of
the epidemiological behaviour and potential intervention strategies.

dHs

dt
= τH + δ3Hr − (λ+ τ)Hs

dHi

dt
= λHs − (δ2 + τ)Hi

dHr

dt
= δ2Hi − (δ1 + τ)Hr

dL
dt

= σL
(
1 − L

δ3

)
dU
dt

= µF − (η + µ)U

dC
dt

= ηU − µC (4)
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Eliminating Hr(t) = H(t) - Hs(t) - Hi(t) and taking s = Hs
H , i = Hi

H , l = L
δ3

, u = U
F , c = C

F .
Thus (4) simplified as

ds

dt
= τ + δ1(1 − s − i) − (∗λ+ τ)s

di

dt
= (∗λ)s − (δ2 + τ)i

dl

dt
= σl(1 − l)

du

dt
= µ− (∗η + µ)u

dc

dt
= (∗η)u − µc (5)

where ∗λ = ρ1c + ρ2l and ∗η = ρ2l + ρ3c.
Fractal-fractional order Listeriosis disease model can be written as:

ς,ϑD(s) = τϑ+ς−1 + δϑ+ς−1
1 (1 − s − i) − (∗λϑ+ς−1 + τϑ+ς−1)s

ς,ϑD(i) = (∗λ)ϑ+ς−1s − (δϑ+ς−1
2 + τϑ+ς−1)i

ς,ϑD(l) = σϑ+ς−1l(1 − l)
ς,ϑD(u) = µϑ+ς−1 − (∗ηϑ+ς−1 + µϑ+ς−1)u
ς,ϑD(c) = (∗η)ϑ+ς−1u − µϑ+ς−1c (6)

To address the dimensional mismatch in the fractal derivative, the condition ϑ+ ς − 1 = ϵ is applied. Then
the model (6) can be formulated as:

ς,ϑD(s) = τ ϵ + δϵ1(1 − s − i) − (∗λϵ + τ ϵ)s
ς,ϑD(i) = (∗λ)ϵs − (δϵ2 + τ ϵ)i
ς,ϑD(l) = σϵl(1 − l)
ς,ϑD(u) = µϵ − (∗ηϵ + µϵ)u
ς,ϑD(c) = (∗η)ϵu − µϵc (7)

along with the initial conditions s(0) = s0, i(0) = i0, l(0) = l0, u(0) = u0 and c(0) = c0; where 0 ≤
s0, i0, l0, u0, c0 ≤ 1; 0 < ς, ϑ ≤ 1 and t ∈ I = [0,T].

4 Existence and Uniqueness
It is essential to rigorously verify the existence and uniqueness of solutions for the proposed models to
ensure their mathematical validity and reliability. In this context, we establish the existence of solutions
by applying Schauder’s Fixed Point Theorem [40], which provides a foundational basis for demonstrating
that solutions exist under certain continuity and compactness conditions. Furthermore, the uniqueness of the
solutions is proven through Banach’s Fixed Point Theorem [40], which ensures that, given specific contractive
properties, the solution is singular and stable. This dual approach of confirming both existence and uniqueness
strengthens the theoretical framework of the model and supports its application to real-world scenarios.
Define a Banach space Ω =

{
(s, i, l, u, c) ∈ R5

+ | 0 ≤ s + i ≤ 1; 0 ≤ l ≤ 1; 0 ≤ u + c ≤ 1
}

with norm || ψ || =
max
t∈I

(
|s(t)| + |i(t)| + |l(t)| + |u(t)| + |c(t)|

)
.
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From the model (7), we can represent the functions as

ψ1
(
t, s, i, l, u, c

)
= τ ϵ + δϵ1(1 − s − i) − (∗λϵ + τ ϵ)s

ψ2
(
t, s, i, l, u, c

)
= (∗λ)ϵs − (δϵ2 + τ ϵ)i

ψ3
(
t, s, i, l, u, c

)
= σϵl(1 − l)

ψ4
(
t, s, i, l, u, c

)
= µϵ − (∗ηϵ + µϵ)u

ψ5
(
t, s, i, l, u, c

)
= (∗η)ϵu − µϵc (8)

Considering the relation between fractal derivative and ordinary derivative, we can express (7) as:
ςD
(
s(t)

)
= ϑtϑ−1ψ1

(
t, s, i, l, u, c

)
ςD
(
i(t)

)
= ϑtϑ−1ψ2

(
t, s, i, l, u, c

)
ςD
(
l(t)

)
= ϑtϑ−1ψ3

(
t, s, i, l, u, c

)
ςD
(
u(t)

)
= ϑtϑ−1ψ4

(
t, s, i, l, u, c

)
ςD
(
c(t)

)
= ϑtϑ−1ψ5

(
t, s, i, l, u, c

)
(9)

Taking fractional integration (3) on both sides, we obtain

s(t) = s0 + (1 − ς)ϑtϑ−1

∆(ς)
ψ1
(
t, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1ψ1

(
v, s, i, l, u, c

)
dv

i(t) = i0 + (1 − ς)ϑtϑ−1

∆(ς)
ψ2
(
t, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1ψ2

(
v, s, i, l, u, c

)
dv

l(t) = l0 + (1 − ς)ϑtϑ−1

∆(ς)
ψ3
(
t, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1ψ3

(
v, s, i, l, u, c

)
dv

u(t) = u0 + (1 − ς)ϑtϑ−1

∆(ς)
ψ4
(
t, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1ψ4

(
v, s, i, l, u, c

)
dv

c(t) = c0 + (1 − ς)ϑtϑ−1

∆(ς)
ψ5
(
t, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1ψ5

(
v, s, i, l, u, c

)
dv

The system (9) & its above solution generalized as follows:
ςD
(
M(t)

)
= ϑtϑ−1Υ

(
t,M(t)

)
M(0) = M0 (10)

M(t) = M0 + (1 − ς)ϑtϑ−1

∆(ς)
Υ
(
t,M(t)

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1Υ

(
v,M(v)

)
dv (11)

where M(t) =


s
i
l
u
c

, the initial condition M0 =


s0
i0
l0
u0
c0

 ,

and the real-valued continuous function Υ
(
t,M(t)

)
=


ψ1
(
t, s, i, l, u, c

)
ψ2
(
t, s, i, l, u, c

)
ψ3
(
t, s, i, l, u, c

)
ψ4
(
t, s, i, l, u, c

)
ψ5
(
t, s, i, l, u, c

)

.
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In order to prove the existence of the solution (7) by Schaefer’s fixed point theorem, first we define an operator
Θ : Ω → Ω as

Θ
(
M(t)

)
= M0 + (1 − ς)ϑtϑ−1

∆(ς)
Υ
(
t,M

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1Υ

(
v,M

)
dv

Theorem 4.1. [Schaefer’s fixed point theorem] If κ(Θ) =
{

M ∈ Ω | M = αΘ(M), 0 ≤ α ≤ 1
}

is a
bounded set and the operator Θ is completely continuous, then Θ has at least one fixed point.

Proof. [Existence] First, we need to show that Υ
(
t,M(t)

)
satisfies the Lipschitz condition.

Let M,N ∈ Ω.

(i) For two functions s1 and s2,∣∣∣ψ1
(
t, s1, i, l, u, c

)
− ψ1

(
t, s2, i, l, u, c

)∣∣∣ ≤
∣∣∣τ ϵ + δϵ1(1 − s1 − i) − (∗λϵ + τ ϵ)s1

− τ ϵ − δϵ1(1 − s2 − i) + (∗λϵ + τ ϵ)s2
∣∣∣

≤
∣∣∣δϵ1 +∗ λϵ + τ ϵ

∣∣∣∣∣∣s1 − s2
∣∣∣

Assuming Gsψ1
=
∣∣∣δϵ1 +∗ λϵ + τ ϵ

∣∣∣,∣∣∣ψ1
(
t, s1, i, l, u, c

)
− ψ1

(
t, s2, i, l, u, c

)∣∣∣ ≤ Gsψ1

∣∣∣s1 − s2
∣∣∣

In a similar way, for two functions i1 and i2,∣∣∣ψ1
(
t, s, i1, l, u, c

)
− ψ1

(
t, s, i2, l, u, c

)∣∣∣ ≤ Giψ1

∣∣∣i1 − i2
∣∣∣

such that Giψ1
=
∣∣∣δϵ1∣∣∣.

Then ψ1 satisfies the Lipschitz condition for all dependent parameters s & i.

∴
∣∣∣ψ1
(
t,M(t)

)
− ψ1

(
t,N (t)

)∣∣∣ ≤ Gψ1

∣∣∣M(t) − N (t)
∣∣∣

with Gψ1 = max
{

Gsψ1
,Giψ1

}
(ii) Similarly, we obtain Giψ2

=
∣∣∣δϵ2∣∣∣ and Gsψ2

=
∣∣∣∗λϵ∣∣∣ for ψ2.

Then with constant Gψ2 = max
{

Giψ2
,Gsψ2

}
,

∴
∣∣∣ψ2
(
t,M(t)

)
− ψ2

(
t,N (t)

)∣∣∣ ≤ Gψ2

∣∣∣M(t) − N (t)
∣∣∣

(iii) Since 0 ≤ l ≤ 1, then for ψ3, Glψ3
=
∣∣∣σϵ∣∣∣ and Glψ3

= Gψ3 .
we obtain

∴
∣∣∣ψ3
(
t,M(t)

)
− ψ3

(
t,N (t)

)∣∣∣ ≤ Gψ3

∣∣∣M(t) − N (t)
∣∣∣

(iv) For ψ4, Guψ4
=
∣∣∣µϵ + (∗η)ϵ

∣∣∣ and Guψ4
= Gψ4 .

∴
∣∣∣ψ4
(
t,M(t)

)
− ψ4

(
t,N (t)

)∣∣∣ ≤ Gψ4

∣∣∣M(t) − N (t)
∣∣∣
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(v) In a similar way, we get Guψ5
=
∣∣∣(∗η)ϵ

∣∣∣ and Gcψ5
=
∣∣∣µϵ∣∣∣

∴
∣∣∣ψ5
(
t,M(t)

)
− ψ5

(
t,N (t)

)∣∣∣ ≤ Gψ5

∣∣∣M(t) − N (t)
∣∣∣

where Gψ5 = max
{

Guψ2
,Gcψ2

}
.

Since all ψ1, ψ2, ψ3, ψ4, ψ5 satisfies the Lipschitz condition.
Then by considering GΥ = max

{
Gψ1 ,Gψ2 ,Gψ3 ,Gψ4 ,Gψ5

}
, we can achieve that for M,N ∈ Ω

∣∣∣Υ(t,M(t)
)

− Υ
(
t,N (t)

)∣∣∣ ≤ GΥ
∣∣∣M(t) − N (t)

∣∣∣ (12)

Hence, Υ
(
t,M

)
satisfies the Lipschitz condition.

In order to prove that Θ is continuous, assume that a sequence of
{
Mk

}
converges to M in Ω.

∥∥∥Θ(Mk
)

− Θ
(
M
)∥∥∥ ≤ max

t∈I

(
(1 − ς)ϑtϑ−1

∆(ς)

∣∣∣Υ(t,Mk(t)
)

− Υ
(
t,M(t)

)∣∣∣
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1

∣∣∣Υ(v,Mk(v)
)

− Υ
(
v,M(v)

)∣∣∣dv
)

≤ (1 − ς)ϑTϑ−1

∆(ς)
GΥ ∥Mk − M∥ + ςϑ

∆(ς)Γ(ς)
GΥ ∥Mk − M∥ max

t∈I

∫ t

0
vϑ−1(t − v)ς−1dv

After taking v = tw, we achieved
∫ t

0 vϑ−1(t − v)ς−1dv =
∫ 1

0 tϵwϑ−1(1 − w)ς−1dw
Substituding the above integral and Beta function B(ς, ϑ), we obtain

∥∥∥Θ(Mk
)

− Θ
(
M
)∥∥∥ ≤

[
(1 − ς)ϑTϑ−1

∆(ς)
+ ςϑT ϵ

∆(ς)Γ(ς)
B(ς, ϑ)

]
GΥ ∥Mk − M∥

∥∥∥Θ(Mk
)

− Θ
(
M
)∥∥∥ ≤ ΞGΥ ∥Mk − M∥ (13)

where Ξ =
[

(1−ς)ϑTϑ−1

∆(ς) + ςϑTϵ

∆(ς)Γ(ς)B(ς, ϑ)
]
.

Hence Θ
(
Mk

)
→ Θ

(
M
)

whenever
{
Mk

}
→ M as k tends to ∞.

∴ Θ is continuous.
Now, for a bounded set M of Ω, there is a bound AΥ.
For all M,

∥∥∥Θ(M
)∥∥∥ ≤ Ξ AΥ.

∴ Θ is uniformly bounded.
For t,w ∈ I ,

∥∥∥Θ(M(t)
)

− Θ
(
M(w)

)∥∥∥ ≤
[

(1 − ς)ϑ
∆(ς)

AΥ

](
tϑ−1 − wϑ−1)

+
[
[ (1 − ς)ϑTϑ−1

∆(ς)
+ ςϑAΥ

∆(ς)Γ(ς)
B(ς, ϑ)

](
tϵ − wϵ)
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∴
∥∥∥Θ(M(t)

)
− Θ

(
M(w)

)∥∥∥ → 0 as t → w. Then, Θ is uniformly continuous.
From the Arzela-Ascoli theorem, Θ is equicontinuous and relatively compact.
∴ Θ is completely continuous.
Let N ∈ κ. Then ∥N ∥ = ∥αΘ(M)∥ ≤ Ξ AΥ.
Hence, κ is bounded, and from Theorem 4.1, Θ has at least one fixed point. □

Theorem 4.2. [Uniqueness] If ΞGΥ < 1, then system (7) has a unique solution.

Proof. Let XM = max
t∈I

|Υ(t, 0)| < ∞ such that Ξ
(
GΥY + XM

)
≤ Y .

Assume that ZY =
{
M ∈ Ω : ∥M∥ ≤ Y

}
and we need to prove that Θ(ZY ) ⊂ ZY .

∥Θ(M)∥ ≤ max
t∈I

(
(1 − ς)ϑtϑ−1

∆(ς)

[∣∣∣Υ(t,M(t)
)

− Υ
(
t, 0
)∣∣∣+ ∣∣∣Υ(t, 0)∣∣∣]

+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1

[∣∣∣Υ(t,M(t)
)

− Υ
(
t, 0
)∣∣∣+ ∣∣∣Υ(t, 0)∣∣∣]dv

)

∴ ∥Θ(M)∥ ≤ Ξ
(
GΥ ∥M∥ + XM

)
≤ Ξ

(
GΥY + XM

)
≤ Y

Hence ∥Θ(M)∥ ≤ Y, ∀ M ∈ ZY .
For every M,N ∈ Ω and each t ∈ I , we achieve ∥Θ(M) − Θ(N )∥ ≤ ΞGΥ ∥M − N ∥
Since ΞGΥ < 1, then the operator Θ possesses contraction.
Considering the Banach fixed-point theorem, the system (7) has a unique solution. □

5 Ulam-Hyers Stability

The stability of the system (7) is analysed to understand its behaviour over time and ensure its reliability. This
examination is essential to determine how the model’s solutions react to slight changes in initial conditions or
parameter values. The study specifically explores Ulam-Hyers stability, which helps evaluate the robustness of
the solutions by confirming that approximate solutions stay close to the exact solution when small deviations
occur.
Let us consider a small change perturbed by Φ that depends only on the solution with initial conditions Φ(0)
= 0 and

∣∣Φ(t)
∣∣ ≤ ζ .

The system becomes

ςD
(
M(t)

)
= ϑtϑ−1Υ

(
t,M(t)

)
+ Φ(t)

M(0) = M0 (14)

Lemma 5.1. The system (14) satisfies∣∣∣∣∣M(t) −
(
M0 + (1−ς)ϑtϑ−1

∆(ς) Υ
(
t,M(t)

)
+ ςϑ

∆(ς)Γ(ς)
∫ t

0 vϑ−1(t − v)ς−1Υ
(
v,M(v)

)
dv
)∣∣∣∣∣ ≤ (Ξζ).

(15)

Proof. The equation (11) and
∣∣Φ(t)

∣∣ ≤ ζ implies the solution (15). □
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Theorem 5.2. If (ΞGΥ) < 1 and Lemma 5.1 holds, then the system is Ulam-Hyers stable.

Proof. For t ∈ I ,

∣∣M(t) − N (t)
∣∣ =

∣∣∣∣∣M(t) −
(

N0 + (1−ς)ϑtϑ−1

∆(ς) Υ
(
t,N (t)

)
+ ςϑ

∆(ς)Γ(ς)
∫ t

0 vϑ−1(t − v)ς−1Υ
(
v,N (v)

)
dv
)∣∣∣∣∣

≤
∣∣∣∣∣M(t) −

(
M0 + (1 − ς)ϑtϑ−1

∆(ς)
Υ
(
t,M(t)

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1Υ

(
v,M(v)

)
dv
)∣∣∣∣∣

+
∣∣∣∣∣
(

M0 + (1 − ς)ϑtϑ−1

∆(ς)
Υ
(
t,M(t)

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1Υ

(
v,M(v)

)
dv
)

−
(

N0 + (1 − ς)ϑtϑ−1

∆(ς)
Υ
(
t,N (t)

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1Υ

(
v,N (v)

)
dv
)∣∣∣∣∣

≤ (Ξζ) + (ΞGΥ) ∥M − N ∥

∴ ∥M − N ∥ ≤
( Ξ

1 − (ΞGΥ)

)
ζ = Cζ

Hence, the system is Ulam-Hyers stable. □

6 Computational Analysis

In this section, we present a novel numerical scheme to solve the system, and results obtained from the
MATLAB simulations of the Listeriosis disease model are illustrated.
The solution of the system (7) is given by

s(t) = s0 + (1 − ς)ϑtϑ−1

∆(ς)
ψ1
(
t, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1ψ1

(
v, s, i, l, u, c

)
dv

i(t) = i0 + (1 − ς)ϑtϑ−1

∆(ς)
ψ2
(
t, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1ψ2

(
v, s, i, l, u, c

)
dv

l(t) = l0 + (1 − ς)ϑtϑ−1

∆(ς)
ψ3
(
t, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1ψ3

(
v, s, i, l, u, c

)
dv

u(t) = u0 + (1 − ς)ϑtϑ−1

∆(ς)
ψ4
(
t, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1ψ4

(
v, s, i, l, u, c

)
dv

c(t) = c0 + (1 − ς)ϑtϑ−1

∆(ς)
ψ5
(
t, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

∫ t

0
vϑ−1(t − v)ς−1ψ5

(
v, s, i, l, u, c

)
dv
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Taking a ‘j’ partition with a difference b on the integral limits,

s(tj+1) = s0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ1
(
tj, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

j∑
n=0

∫ tn+1

tn

vϑ−1(tj+1 − v)ς−1ψ1
(
v, s, i, l, u, c

)
dv

i(tj+1) = i0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ2
(
tj, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

j∑
n=0

∫ tn+1

tn

vϑ−1(tj+1 − v)ς−1ψ2
(
v, s, i, l, u, c

)
dv

l(tj+1) = l0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ3
(
tj, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

j∑
n=0

∫ tn+1

tn

vϑ−1(tj+1 − v)ς−1ψ3
(
v, s, i, l, u, c

)
dv

u(tj+1) = u0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ4
(
tj, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

j∑
n=0

∫ tn+1

tn

vϑ−1(tj+1 − v)ς−1ψ4
(
v, s, i, l, u, c

)
dv

c(tj+1) = c0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ5
(
tj, s, i, l, u, c

)
+ ςϑ

∆(ς)Γ(ς)

j∑
n=0

∫ tn+1

tn

vϑ−1(tj+1 − v)ς−1ψ5
(
v, s, i, l, u, c

)
dv

We derived our results by substituting the Lagrange piece-wise interpolation [29] into the computational
framework and then performing basic integrals, which led us to obtain the following results:

s(tj+1) = s0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ1
(
tj, s, i, l, u, c

)
+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ1

(
tn, s, i, l, u, c

)(
(j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)

)

− tϑ−1
n−1ψ1

(
tn−1, s, i, l, u, c

)(
(j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]

i(tj+1) = i0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ2
(
tj, s, i, l, u, c

)
+ ϑbϑ

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ2

(
tn, s, i, l, u, c

)(
(j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)

)

− tϑ−1
n−1ψ2

(
tn−1, s, i, l, u, c

)(
(j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]
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l(tj+1) = l0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ3
(
tj, s, i, l, u, c

)
+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ3

(
tn, s, i, l, u, c

)(
(j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)

)

− tϑ−1
n−1ψ3

(
tn−1, s, i, l, u, c

)(
(j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]

u(tj+1) = u0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ4
(
tj, s, i, l, u, c

)
+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ4

(
tn, s, i, l, u, c

)(
(j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)

)

− tϑ−1
n−1ψ4

(
tn−1, s, i, l, u, c

)(
(j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]

c(tj+1) = c0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ5
(
tj, s, i, l, u, c

)
+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ5

(
tn, s, i, l, u, c

)(
(j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)

)

− tϑ−1
n−1ψ5

(
tn−1, s, i, l, u, c

)(
(j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]
(16)

6.1 Fractal-Fractional Model Results

The solution (16) of the Listeriosis disease model has been evaluated through comprehensive MATLAB
simulations, utilizing specified initial conditions, s0 = 0.6, i0 = 0.3, l0 = 0.45, u0 = 0.7, and c0 = 0.3. These
values & the Table 1 values are assumed for evaluation. The results obtained from these simulations are
systematically analysed and discussed in detail below:

1. Human Population: Graph 2 shows the susceptible, infected, and recovered population over time for
different values of ς and ϑ. The results indicate that the susceptible population decreases over time
for all parameter values, with slight variations in the rate of decrease depending on the values. The
susceptible population 2(a) starts to decrease significantly after approximately 5 units of time. For the
infected population, the results 2(b) demonstrate that a marked reduction in the infected population
becomes evident around 10 time units. Similarly, the recovered population 2(c) shows an upward trend
over time for all values of fractal and fractional. The growth rate varies slightly with different parameter
values, with a notable increase occurring after approximately 10 time units.
Plot 3 indicates how the infected population changes over time as the susceptible population varies
and reveals that as the susceptible population decreases, the infected population initially increases
and then decreases over time. The plot 4 shows how the recovered population changes over time as
the infected population varies and reveals that as the infected population decreases, the recovered
population increases over time.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Dynamic behaviour of the populations under varying fractal and fractional values
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Figure 3: Comparison of the susceptible and infected populations over time

Figure 4: Comparison of the infected and recovered populations over time

Figure 5: Comparison of the unspoiled and spoiled food production over time
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(a) Suspected Population (b) Infected Population

(c) Recovery Population (d) Listeria Population

(e) Uncontaminated Food Products (f) Contaminated Food Products

Figure 6: Impact of Parameter ϑ on Population Dynamics and Food Product Variation

2. Listeriosis Population: Figure 2(d) depicts the population of Listeriosis bacteria over time for various
fractal and fractional values. The bacterial population starts to decrease significantly after approxi-
mately 5 units of time.

3. Food products: The results 2(e)&(f) show that the number of unspoiled food products starts to decrease
significantly after approximately 5 units of time, and there is a significant decrease in the spoiled food
products after 5units of time. Plot 5 shows how the number of unspoiled food products changes over
time as the spoiled food products vary and reveals that as the spoiled food products decrease, the
unspoiled food products increase over time.

These findings demonstrate the effectiveness of our fractal-fractional model in capturing the complex dynamics
of Listeriosis disease, providing a more accurate representation of the disease’s behaviour and aiding in the
development of effective control strategies.
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6.2 Significance of Fractal Dimension

Traditional Euclidean geometry assumes a uniform and homogeneous space where interactions, such as disease
transmission, occur evenly across the environment. However, real-world environments are far more complex,
featuring uneven population distributions and irregular social networks. These complexities include hetero-
geneous population densities and clustered community structures, which deviate significantly from uniform
interaction patterns. The fractal dimension plays a crucial role in modelling systems with uneven population
densities and varied infrastructures.

In the context of the SIR model, ϑ sheds light on contact patterns within populations, helping to capture
how individuals interact in different environments. Additionally, ϑ can describe bacterial growth patterns,
which often follow irregular distributions influenced by environmental conditions. In the realm of food prod-
ucts, ϑ is instrumental in analysing spoilage patterns, revealing how food deterioration may vary spatially
and temporally. The term tϑ−1 in the system (9) effectively accounts for non-uniformities in social structures,
such as clusters or communities where connections are irregular and not uniformly distributed. As shown in
Figure 6, population variations over time are significantly influenced by the fractal dimension. This demon-
strates how ϑ adapts the model to reflect real-world complexities, capturing the dynamics of fragmented and
heterogeneous environments.

7 Fuzzy Fractal-Fractional Listeriosis Disease Model

In real-world scenarios, uncertainty is inherent and often unavoidable. Mathematical models frequently
encounter situations where initial parameters and variables embody such uncertainty. To address this, the
application of fuzzy differential modelling becomes essential, as it allows for the incorporation of imprecision
and variability into the analytical framework.
Presented below is the fuzzy fractal-fractional differential model of Listeriosis disease, which integrates fuzzy
initial conditions [s̃0]α = [s−

0 (α), s+
0 (α)], [̃i0]α = [i−0 (α), i+0 (α)], [̃l0]α = [l−0 (α), l+0 (α)], [ũ0]α = [u−

0 (α),u+
0 (α)]

and [̃c0]α = [c−
0 (α), c+

0 (α)] to better simulate real-world complexities.

ς,ϑD(s̃) = τ ϵ ⊕ δϵ1(1 ⊖ s̃ ⊖ ĩ) ⊖ (∗λϵ ⊕ τ ϵ)s̃
ς,ϑD(̃i) = (∗λ)ϵs̃ ⊖ (δϵ2 ⊕ τ ϵ)̃i
ς,ϑD(̃l) = σϵ̃l(1 ⊖ l̃)
ς,ϑD(ũ) = µϵ ⊖ (∗ηϵ ⊕ µϵ)ũ
ς,ϑD(c̃) = (∗η)ϵũ ⊖ µϵc̃ (17)

Taking α-cut on both sides of the model (17) and applying Definitions 2.4 & 2.5, it is evident that the lower
and upper functions of each variable of model (17) can be solved by proceeding in a similar way (6), the
required solutions can be represented as:

s̃−(tj+1) = s̃−
0 +

(1 − ς)ϑtϑ−1
j

∆(ς)
ψ̃1

−(tj, s
−, i−, l−, u−, c−)+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ̃1

−(tn, s−, i−, l−, u−, c−)((j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)
)

− tϑ−1
n−1ψ̃1

−(tn−1, s
−, i−, l−, u−, c−)((j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]
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ĩ−(tj+1) = ĩ−0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ̃2
−(tj , s−, i−, l−, u−, c−)+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ̃2

−(tn, s−, i−, l−, u−, c−)((j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)
)

− tϑ−1
n−1ψ̃2

−(tn−1, s
−, i−, l−, u−, c−)((j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]

l̃−(tj+1) = l̃−0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ̃3
−(tj, s

−, i−, l−, u−, c−)+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ̃3

−(tn, s−, i−, l−, u−, c−)((j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)
)

− tϑ−1
n−1ψ̃3

−(tn−1, s
−, i−, l−, u−, c−)((j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]

ũ−(tj+1) = ũ−
0 +

(1 − ς)ϑtϑ−1
j

∆(ς)
ψ̃4

−(tj, s
−, i−, l−, u−, c−)+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ̃4

−(tj, s
−, i−, l−, u−, c−)((j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)

)

− tϑ−1
n−1ψ̃4

−(tn−1, s
−, i−, l−, u−, c−)((j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]

c̃−(tj+1) = c̃−
0 +

(1 − ς)ϑtϑ−1
j

∆(ς)
ψ̃5

−(tj, s
−, i−, l−, u−, c−)+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ̃5

−(tn, s−, i−, l−, u−, c−)((j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)
)

− tϑ−1
n−1ψ̃5

−(tn−1, s
−, i−, l−, u−, c−)((j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]

s̃+(tj+1) = s̃+
0 +

(1 − ς)ϑtϑ−1
j

∆(ς)
ψ̃1

+(tj, s
+, i+, l+, u+, c+)+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ̃1

+(tn, s+, i+, l+, u+, c+)((j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)
)

− tϑ−1
n−1ψ̃1

+(tn−1, s
+, i+, l+, u+, c+)((j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]

ĩ+(tj+1) = ĩ+0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ̃2
+(tj , s+, i+, l+, u+, c+)+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ̃2

+(tn, s+, i+, l+, u+, c+)((j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)
)

− tϑ−1
n−1ψ̃2

+(tn−1, s
+, i+, l+, u+, c+)((j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]
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l̃+(tj+1) = l̃+0 +
(1 − ς)ϑtϑ−1

j
∆(ς)

ψ̃3
+(tj, s

+, i+, l+, u+, c+)+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ̃3

+(tn, s+, i+, l+, u+, c+)((j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)
)

− tϑ−1
n−1ψ̃3

+(tn−1, s
+, i+, l+, u+, c+)((j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]

ũ+(tj+1) = ũ+
0 +

(1 − ς)ϑtϑ−1
j

∆(ς)
ψ̃4

+(tj, s
+, i+, l+, u+, c+)+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ̃4

+(tn, s+, i+, l+, u+, c+)((j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)
)

− tϑ−1
n−1ψ̃4

+(tn−1, s
+, i+, l+, u+, c+)((j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]

c̃+(tj+1) = c̃+
0 +

(1 − ς)ϑtϑ−1
j

∆(ς)
ψ̃5

+(tj, s
+, i+, l+, u+, c+)+ ϑbς

∆(ς)Γ(ς + 2)

×
j∑

n=0

[
tϑ−1
n ψ̃5

+(tn, s+, i+, l+, u+, c+)((j + 1 − n)ς(j − n+ 2 + ς) − (j − n)ς(j − n+ 2 + 2ς)
)

− tϑ−1
n−1ψ̃5

+(tn−1, s
+, i+, l+, u+, c+)((j − n+ 1)ς+1 − (j − n)ς(j − n+ 1 + ς)

)]
(18)

7.1 Fuzzy Fractal-Fractional Model Results

The solutions (18) have been evaluated through MATLAB for several values of ς & ϑ with initial conditions
[s̃0]α = [0.57 + 0.03α, 0.63 − 0.03α], [̃i0]α = [0.27 + 0.03α, 0.33 − 0.03α], [̃l0]α = [0.4 + 0.05α, 0.5 − 0.05α],
[ũ0]α = [0.65 + 0.05α, 0.75 − 0.05α] and [̃c0]α = 1 ⊖ [ũ0]α and the results obtained for α = 0 are discussed.
Figure 8 illustrates the fuzzy initial conditions. By applying the α-cut method to the fuzzy system, the
model is systematically decomposed into a family of interval-valued differential equations, each corresponding
to a fixed α-level. This transformation yields deterministic lower and upper bound systems, which are
then solved numerically using the same fractal-fractional operator. The interval-valued solutions obtained
accurately reflect the uncertainty associated with the fuzzy formulation at each α-cut. The fuzzy trajectories
for each population compartment exhibit consistent variation between their lower and upper bounds, revealing
the effect of uncertainty on the system dynamics. Hence, the embedding strategy not only simplifies the
computational treatment of the fuzzy system but also ensures theoretical consistency through the α-cut
representation, thereby validating the modelling approach adopted in this work. Figure 7 reveals that,

• The susceptible population Hs(t) decreases over time, with lower and upper bounds highlighting the
range of expected reductions.

• The infected population Hi(t) initially increases, peaks, and then declines, with lower and upper bounds
reflecting variability in infection dynamics.
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Figure 7: Fuzzy Population Dynamics for varying ς and ϑ; Solid lines represent the upper bound and dotted
lines represent the lower bound of the solutions.



Enhanced Modelling of Listeriosis Disease Transmission Using Fractal-Fractional Differential Equations
with Fuzzy Logic Trans. Fuzzy Sets Syst. 2026; 5(2) 107

(a) (b)

(c) (d)

(e)

Figure 8: Fuzzy Initial conditions for α ∈ [0,1]

• The recovered population Hr(t) shows an upward trend, with lower and upper bounds indicating the
range of expected recoveries.

• The Listeriosis bacteria population L(t) decreases significantly, with lower and upper bounds capturing
the variability in bacterial dynamics.

• The unspoiled food U(t) decreases, while the spoiled food C(t) increases over time, with respective lower
and upper bounds highlighting the uncertainty in food contamination and spoilage dynamics.

This comprehensive analysis underscores the importance of considering both lower and upper solutions to
account for uncertainties in the model parameters, offering a more accurate representation of the disease’s
behaviour. In this work, fuzzy numbers are represented using their parametric form, where each fuzzy quantity
is described at every α ∈ [0, 1] by a closed interval. All fuzzy computations, including differential operations,
are performed through their α-cut representations, ensuring consistency and interpretability across the entire
fuzzy domain. To compute differences between two fuzzy numbers, the generalized difference formulation
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in Definition 2.5 guarantees that the resulting set remains a valid interval at each α-level and utilizes a
computationally efficient method consistent with parametric fuzzy arithmetic. This method has also been
validated through the results in Figure 7, where the evolution of each compartment under uncertainty is
clearly bounded by lower and upper solutions derived from the parametric structure.

8 Conclusion
The study demonstrates the utility of combining fractal-fractional differential equations and fuzzy logic to
model and analyse the complex dynamics of listeriosis. By incorporating fractal calculus, the model captures
intricate, multi-scale behaviours that reflect real-world disease transmission more accurately than traditional
models. The inclusion of fuzzy initial conditions addresses the inherent uncertainties in initial parameters,
enhancing the robustness and predictive power of the analysis.

Key properties, such as existence, uniqueness, and Ulam-Hyers stability, affirm the mathematical sound-
ness of the model, ensuring reliable outcomes. Computational simulations show that variations in fractional
orders and fractal dimensions significantly influence the spread of infection and the overall behaviour of the
population dynamics. This provides valuable insights for designing targeted intervention strategies.

The fuzzy fractal-fractional approach adds depth by simulating a realistic range of scenarios, captur-
ing potential fluctuations, and supporting more informed decision-making under uncertain conditions. This
methodological advancement illustrates the potential for broader application in epidemic modelling and pub-
lic health policy.

In conclusion, the integration of fractal-fractional calculus and fuzzy systems in disease modelling marks
a significant step forward in understanding and controlling complex public health issues like listeriosis. The
approach presented not only reinforces the need for advanced mathematical tools in epidemiology, but also
paves the way for future studies that can further refine these models to address other infectious diseases and
uncertainties in real-world data.
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