
A Hybrid Method for Estimating Fuzzy Regression Parameters Data 
 

 

32

A Hybrid Method for Estimating  

Fuzzy Regression Parameters Data 

Ali Maleki
1*
 

 

Abstract – In this study, a hybrid fuzzy regression method for trapezoidal fuzzy data is proposed. 

Initially, a new definition of a weighted fuzzy arithmetic for trapezoidal fuzzy data is introduced. 

Subsequently, a method for hybrid fuzzy least squares linear regression based on this definition is 

developed. Additionally, methods for bivariate and multivariate regression models are obtained. 

Finally, reliability measures for the hybrid regression model using the new definition of weighted 

fuzzy arithmetic for trapezoidal fuzzy data are calculated. 
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1. Introduction 
 

Fuzzy linear regression was first introduced by Tanaka et 

al. in 1982 [1]. They formulated linear regression models 

with fuzzy parameters, non-fuzzy inputs, and fuzzy outputs 

as linear programming problems. Their objective was to 

minimize the ambiguity of the fuzzy linear regression 

model such that the support of the estimated values would 

cover the support of the observed values at a certain level. 

Although this method was later improved by Tanaka and 

Watada [2] and Tanaka et al. [3], as noted by Redden and 

Woodall [4], it was highly sensitive to outliers. 

Additionally, this method could produce an infinite number 

of solutions, and the width of the estimated values 

increased with more data, limiting its practical application. 

Subsequently, several improved fuzzy regression 

methods were proposed using the criterion of minimizing 

model ambiguity. Tanaka and Ishibushi [5] introduced 

quadratic membership functions to obtain fuzzy coefficients. 

Tanaka et al. [3] proposed possibility regression. In these 

improved methods, minimizing model ambiguity was used 

as the fitting criterion. The main drawback of all these 

methods is that the concept of least squares was not 

considered. 

   In 1988, Diamond [6] defined a metric on the set of 

fuzzy numbers and proposed a fuzzy least squares method 

for fuzzy linear regression models based on it. Diamond 

considered the case where both the inputs and outputs are 

fuzzy, and determined the fuzzy parameters such that the 

sum of the distances between the observed and estimated 

values was minimized. Diamond only discussed univariate 

models. 

Sakawa and Yano [7] considered fuzzy linear regression 

models with fuzzy inputs and outputs, and formulated three 

multi-objective programming problems to determine the 

fuzzy parameters using three indices for equality between 

two fuzzy numbers. They used minimizing (maximizing) 

model ambiguity and the degree of equality between 

observed and estimated values as fitting criteria. 

Kim and Bishu [8] proposed another method based on the 

criterion of minimizing the discrepancy between the 

membership function values of the observed and estimated 

values to determine fuzzy linear regression models. They 

also used the discrepancy between the membership function 

values of the observed and estimated values as a criterion 

for evaluating the performance of fuzzy linear regression 

models, demonstrating with two numerical examples that 

their method outperforms Tanaka et al.'s method [3]. 

Hong et al. [9] considered fuzzy linear regression models 

with fuzzy inputs and outputs and formulated a 

programming problem to determine the fuzzy parameters 

using the extension principle and the criterion of 

minimizing model ambiguity. 

Also, in recent years, Razzaghnia et. al. [10,11,12] had 

studied and investigated regression methods based on 

ANFIS. 

This paper introduces a weighted fuzzy arithmetic for 

trapezoidal fuzzy data. This arithmetic defines arithmetic 

operations between two fuzzy numbers as two 

corresponding values in each fuzzy set at the same 

membership level, merging each weighted operation level 

with the membership level for fuzzy sets, and dividing the 
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weighted integral by the total integral of the membership 

function. The weighted fuzzy arithmetic transforms the set 

of fuzzy values obtained from a weighted arithmetic 

operation into a real constant using the concept of 

defuzzification. The resulting value can then be interpreted 

as an average from a weighted fuzzy arithmetic, in contrast 

to ordinary fuzzy arithmetic, which represents all possible 

values as a fuzzy set. The next section presents the 

necessary definitions and concepts for the paper. 

 

2. Preliminary Concepts and Definitions: 

Definition 1: If X is a non-empty set, then a fuzzy set Aɶ

of X is specified by a set of ordered pairs as follows: 

{( , ( )) | )}
A

A x x x Xµ= ∈ɶ

ɶ                          (1) 

or in other words, ( ) : [0,1]
A
x Xµ →ɶ where 

x X x∈ ∀  . ( )
A
xµ ɶ denotes the membership degree of x

in Aɶ within the range [0,1] . 

Definition 2: The h-level set (h-cut) of a fuzzy set Aɶ : 

Suppose ( )A F X∈ɶ  is a fuzzy set. For any [0,1]h∈  , the 

h-level set of Aɶ , denoted by [ ]
h

Aɶ , is defined as: 

( )[ ] { | }
h

h
A A x X A x h= = ∈ ≥ɶ ɶ ɶ                     (2) 

The set ( ) }
~

|{]
~

[ hxAXxA h >∈= is called the strong 

h-level set (strong cut). 

Definition 3: Suppose : [0,1] [0,1] [0,1]T × →  is a 

function that satisfies the following conditions for any 

, , [0,1]a b c∈ : 

(i) ( ),1T a a=  and ( )0, 0T a =  (boundedness),  

(ii) ( , ) ( , )T a c T b c≤ for a b≤  (monotonicity),  

(iii) ),(),( abTbaT =  (commutativity),  

(iv) )),(,()),,(( cbTaTcbaTT =  (associativity).  

Then T is called a triangular norm (t-norm). 

Definition 4: A fuzzy quantity Aɶ  is called a fuzzy 

number if it satisfies the following three conditions [13]:  

(i) There exists at least one x R∈ such that ( ) 1A x =ɶ .  

(ii) Aɶ  is upper semicontinuous.  

(iii) The support of Aɶ  is bounded. 

Definition 5: A fuzzy quantity Aɶ  is called a L R−

fuzzy number if its membership function A
~
 is of the form: 

( 2)

( 2)

( 2) ( 2)

( 2)

( 2)

( ); , ( 0)

( ) 1 ;

( ); , ( 0)

a x
L x a

A x a x a

x a
R x a

α
α

β
β

−
≤ >

= ≤ ≤

−
≥ >









ɶ              (3) 

where , : [0, ) [0,1]L R ∞ →  

are continuous, decreasing, and invertible on the 

interval [0,1] . (0) (0) 1L R= =  and (1) (1) 0L R= =  . 

( 2) (2)
, , ,a a α β  are the centers, left spread, and right spread 

of the fuzzy number Aɶ , respectively. L  and R  are called 

the reference functions. 

Definition 6: (Trapezoidal Fuzzy Numbers): If 

( ) ( ) max(0,1 )L x R x x= = − are the reference functions, Aɶ  

is a trapezoidal fuzzy number, denoted as 
(1) ( 2 ) (3) ( 4 )

( , , , )A a a a a=ɶ . 

3. Hybrid Fuzzy Least Squares Regression with 

Trapezoidal Fuzzy Data: 

In this section, methods for obtaining hybrid fuzzy least 

squares linear regression using a weighted fuzzy arithmetic 

are presented. The weighted fuzzy arithmetic is used to 

formulate the sum of squared errors between the predicted 

and observed variables using fuzzy numbers. Initially, a 

bivariate regression model is obtained. Then, it is extended 

to a multivariate regression model, and reliability measures 

for hybrid fuzzy linear regression are determined. In this 

part, we need to calculate the weighted fuzzy arithmetic 

with trapezoidal data. 

Definition 7: If 
(1) ( 2 ) (3) ( 4 )

( , , , )A a a a a=ɶ  and 

(1) (2) (3) (4)
( , , , )B b b b b=ɶ  are two trapezoidal fuzzy numbers, 

then at the membership level µ , the intervals Aɶ  and Bɶ  

are expressed as follows: 
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( ) ( ) ( ) ( )2 1 3 4

[ , ]

[ (1 ) , (1 ) ]

L R
A AA

ha h a ha h a

µ µ µ=

= + − + −

ɶ

(4) 

( ) ( ) ( ) ( )2 1 3 4

[ , ]

[ (1 ) , (1 ) ]

L R
B BB

hb h b hb h b

µ µ µ=

= + − + −

ɶ

         (5) 

In this case, the sum of two trapezoidal fuzzy numbers 

with the weighted operator is defined as: 

([ ( ) ] [ ( ) ] )
L L R R
A B L A B R

h h

h

hdh hdh
B

hdh
A

µ µ µ µ+ + +
+ =

∫ ∫
∫

ɶ ɶ (6) 

where in the denominator we have: 

1

0
2 1hdh hdh= =∫ ∫                               (7) 

By , ,
LRLA A Bµ µ µ and 

RB
µ into formula (6), we have: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

0

1

2 1

2 1 1 1

2

1 1 2

0

2 1

2

[ ( ) ] (1 ) ]

[ (1 ) ]} [( )

( )]

1 1
( ) ( ) 

6 3

{[
L L
A B L

h
hdh ha h a

hb h b hdh a b

h a a b b hdh

a b a b

µ µ =+ + −

+ + − = + +

− + −

= + + +

∫∫

∫
          (8) 

and similarly, 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 4

3 4

4 4 3 4 4

1

0

1

4 3

0

3

4 3

[ ( ) ] (1 ) ]

[ (1 ) ]}

[( ) ( )]

1 1
( ) ( ) 

{[

6 3

R R
A B L

h
hdh ha h a

hb h b hdh

a b h a a b b hdh

a b a b

µ µ+ + −

+ + −

= + + − + −

= + + +

=

∫

∫ ∫

  (9) 

By adding two equations (8) and (9), the formula for the 

weighted sum of two trapezoidal fuzzy numbers is obtained 

as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 4 1 4

2 3 2 3

1
( )

6

1
( ) 

3

B a a b b

a a b b

A + = + + +

+ + + +

ɶ ɶ

                (10) 

Additionally, the difference between two weighted 

fuzzy numbers Aɶ and Bɶ is defined as follows: 

([ ( ) ] [ ( ) ] )
L L R R
A B L A B R

h h

h

hdh hdh
B

hdh
A

µ µ µ µ− + −
− =

∫ ∫
∫

ɶ ɶ  (11) 

By substituting , ,
LRL

A A B
µ µ µ and 

R
B

µ  into equation 

(11), the following relationship is obtained: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 3 3

1 1 4 4

1
( ) 

3

1
( )

6

A B a b a b

a b a b

− = − + −

+ − + −

ɶ ɶ

                (12) 

 

Additionally, the multiplication and division of two 

weighted fuzzy numbers Aɶ and Bɶ are calculated as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2 3 3 1 4 1 2

4 3 1 1 4 4

2 1

2 1

3 4

3 4

1

0

1

0

1 1
( ) (

4 12

)

(1 )

(1 )

(1 )

(1 )
d

B a b a b b b a b

a b a b a b

ha

h

A

A
h

h
dh

h

h h

a

b h bB

ha a

hb h b

=

= + + + +

+ + +

+ −

+ −

+

+ −

+

−

∫

∫

ɶ

ɶ

ɶ

ɶ

   (13) 

 

 

On the condition that Bɶ  in the denominator of formula 

(13) does not become zero. 

3.1 Bivariate Regression Model: 

In this section, we use asymmetric trapezoidal fuzzy 

numbers to present a hybrid linear regression model. The 

use of trapezoidal fuzzy numbers reduces the ambiguity of 

the model and decreases the regression error (for more 

details, refer to the works of Razzaghnia et al. [10, 11, 12]). 

A bivariate regression model is expressed as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

0 1
0 0 0 0

1 2 3 4

1 1 1 1

( , , , )

( , , , )

i
i

Y A A X a a a a

a a a a X

= + = +
⌢
ɶ ɶ ɶ

(14) 

where 
i
X  is the independent variable with a crisp 

value, and 
0
Aɶ and

1
Aɶ  are trapezoidal fuzzy parameters. 

i
Y
⌢
ɶ

is the predicted value of the dependent variable, which is 

given by: 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 2 2 3 3

0 1 0 1 0 1

4 4

0 1

( , ,

, )

i
i i i

i

Y a a X a a X a a X

a a X

= + + +

+

⌢
ɶ

(15) 

Let 1, 2, ...,i n=  where n  is the sample size. Each 

observed value of the trapezoidal fuzzy dependent variable 

is represented as 
( ) ( ) ( ) ( )1 2 3 4

( , , , )i
i i i i

Y Y Y Y Y=ɶ . Here, ,i LY

⌢
ɶ  and 

,i RY

⌢
ɶ denote the left and right bounds of the predicted iY

⌢
ɶ  at 

level h , and ,i LYɶ and ,i RYɶ  denote the left and right bounds 

of the observed iYɶ  at level h . These quantities are 

expressed as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( 2) (1)

(3) ( 4)

,

2 2 1 1

,
0 1 0 1

3 3 4 4

0 1 0 1

,

,

(1 ) (1 )

(1 ) (1 )

(1 )

(1 )

i

i

i

i

i

L
i i

R
i i

i L

R
i i

Y a

hY Y

h

h ha X h a h a X

Y ha ha X h a h a X

Y

Y h

YY h

=

= + + − + −

= + + − +

−+

=

−

−+

⌢
ɶ

⌢
ɶ

ɶ

ɶ

(16) 

Using the definition of the weighted fuzzy operator, the 

sum of the squared residual errors between the predicted 

iY

⌢
ɶ  and the observed iYɶ  is calculated as follows: 

2

1

1
2

2

1

1
2

, , , ,
0 0

)( ) (

[ ( ) ] [ ( ) ]
   

n

i i

i

i L i L i R i R
L

h

n
R

i

residualerrors Y Y

Y Y hdh Y Y hdh

hdh=

=

=

−

−

+
=

−

∑ ∑

∫ ∫
∫

∑

⌢
ɶ ɶ

⌢ ⌢
ɶ ɶ ɶ ɶ

(17) 

The denominator is the integral of the membership 

function, which is 1hdh =∫ . Also: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

1
2

, ,
0

1
2 2 11 1

0 1 0 1
0

1
2 2 2 2

0 1 0
0

2 1 1

1

(

0 1

2 1 1

0 1

2 2

0 1

(2) ( ) 2

( 2) 2

2) (1)

(1) 2

( 2

2

)

0

2

(

[ ( ) ]

[ ( (1 )(

[ ( 1 )(

(

(1

)

) (

) )]

2

) )

) ]

1
)

4

1

6

(

(

i i

i

i L i L
L

i

i i

i i

i

i

i

i

i

i

Y Y hdh

h a a X h a a X

h a a X h a

a

Y Y hdh

a X

Y

a a X

h a a X

a X

a

Y h

Y Y

hdh

Y

−

+ − + −

+ −

+ + −

− +

+

= − +

=

+

− +

−

+

= −

+

−

∫

∫

∫

⌢
ɶ ɶ

( ) ( ) ( )2 1 1

0

( (

1 1

2) 1)
) )(

i ii i
a X a a YXY −− +

 

( ) ( ) 21 1 (

0 1

1)1

1
( )

2
ii

a a X Y+ −+  

Similarly: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

1
2

, ,
0

1
3 3 4 (4

0 1 0 1
0

1

2

(3) 4) 2

(3

2

2 3 3

0

) 2

(3) ( 4)

( 4) 2

(3)

1
0

3 3 4 4

0 1 0 1

4 4

0 1

3 3

0 1

3

0

[ ( ) ]

[ ( (1 )(

[ (

1 )( (

(1 ) (

) )]

)

2 ( ) )

) ]

1
)

4

1

(

(
6

i i

i

ii i

i

i

i

R i R
L

i i

i

i

i

i

Y Y hdh

h a a X h a a X

h a a X

h

X

Y Y hd

a

h

Y

h Y Ya a X a a X

h a da X

a Ya

Y h h

−

+ − + −

+

− + + −

− + −

+

+

= − +

= −

+ −

+

= −

+

∫

∫

∫

⌢
ɶ ɶ

( ) ( ) ( )

( ) ( )

(3) ( 4)

( 4) 2

3 4 4

1 0 1

4 4

0 1

) )

)

(

(
1

12

ii i

i

i

i

a X a a X Y

a a X

Y

Y+

+ −

−

−

+

 

Therefore: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2

2 2

0 1

2 2 1 1

0 1 0 1

4

(2) 2

1

( 2) (1)

1

(1)

(

1 1 2

0 1

3 3

0 1

3 3 3 4 4

0 0

3) 2

( ) ( 4)

1

1
[ )
4

1
) )

6

1
)

12

1
)

4

1
) )

6

( )

(

( (

(

(

( (

i

i

i

i

i

i

i i

i

i

i

ii i

i

R residualerrors

a a X

a a X a a X

a a X

a a X

a a

Y

Y Y

Y

a

Y

Y Ya X X

=

=

= +

+ + +

+ +

+ +

−

− −

−

−

− −+ + +

∑

∑

(18) 

Equation (18) contains 8 unknown parameters. To 

derive formulas for the unknown regression coefficients 

based on minimizing the error, we differentiate equation (18) 

with respect to the 8 unknown parameters and set the 

derivatives to zero: 
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( )
( ) ( )

( ) ( )

2 2

0 11

0

1 1

0 1

1

(2)

(1)

1

0(

1
)

6

1

(

)
6

n

i i

i

n

ii

i

R
Y

Y

a a X
a

a a X

=

=

=

∂
= −

∂

+ −

+

+

∑

∑
 

( )
( ) ( )

( ) ( )

1

2 2

0 11

1

1

(2)

(1)1

1

1

0

(

(

1
)

6

1
) 0

6

n

i

i

i

n

i i

i

i i
a a X X

X

a

a

R
Y

Ya X

=

=

∂
= −

∂

+ −

+

+ =

∑

∑
 

( )
( ) ( )

( ) ( )

2 2

0 12

0

1 1

0 1

1

(2)

(1)

1

1
)

2

1
) 0

6

(

(

n

i i

i

n

ii

i

R
Y

Y

a a X
a

a a X

=

=

∂
= −

∂

+

+

+ − =

∑

∑
 

( )
( ) ( )

( ) ( )

1

2 2

0 12

1

1

2

1

0 1

( )

(1)

1

0

(

( )

1
)

2

1

6

n

i i

i

n

i ii

i

i
Xa

R
Y

Y X

a X
a

a a X

=

=

=

∂
= −

∂

+ −

+

+

∑

∑
 

( )
( ) ( )

( ) ( )

3 3

0 13

0

4 4

0 1

1

(3)

( 4)

1

0(

1
)

2

1

(

)
6

n

i i

i

n

ii

i

R
Y

Y

a a X
a

a a X

=

=

=

∂
= −

∂

+ −

+

+

∑

∑
 

( )
( ) ( )

( ) ( )

3 3

0 13

1

4 4

0 1

1

(3)

(4)

1

1
)

2

1
) 0

6

(

(

n

i

i

i

i

i i

i

n

i

a a X X
a

a

R
Y

Ya X X

=

=

∂
= −

∂

+

+

+ − =

∑

∑
 

( )
( ) ( )

( ) ( )

4 4

0 14

0

3 3

0 1

1

(4)

(3)

1

1
)

6

1
) 0

6

(

(

n

i i

i

n

ii

i

R
Y

Y

a a X
a

a a X

=

=

∂
= −

∂

+

+

+ − =

∑

∑
 

( )
( ) ( )

( ) ( )

4 4

0 14

1

3 3

0 1

1

(4)

(3)

1

1
)

6

1
) 0

6

(

(

n

i

i

i

n

i

i

i

i

i
a a X X

a

a

R

X

Y

Ya X

=

=

∂
= −

∂

+ −

+

+ =

∑

∑
 

These equations are formulated as follows to obtain the 

unknown coefficients: 

( ) ( ) ( )

( ) ( ) ( )

1 1 1

0 1

1 1

1 2 1 1

0 1

1 1 1

n n

i i

i i

n n n

i i i i

i i i

a

na X a y

X a X X y

= =

= = =

+ =

+ =







 
 
 

   
   
   

∑ ∑

∑ ∑ ∑
(19) 

By solving the system(19), the parameters
( )1
0
a and

( )1
1
a  

are calculated, 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

0 1

1 1

2 2 2 2

0 1

1 1 1

n n

i i

i i

n n n

i i i i

i i i

a

na X a y

X a X X y

= =

= = =

+ =

+ =







 
 
 

   
   
   

∑ ∑

∑ ∑ ∑
(20) 

By solving the system(20), the parameters
( )2
0
a and 

( )2
1
a

are calculated, 

( ) ( ) ( )

( ) ( ) ( )

3 3 3

0 1

1 1

3 2 3 3

0 1

1 1 1

n n

i i

i i

n n n

i i i i

i i i

a

na X a y

X a X X y

= =

= = =

+ =

+ =







 
 
 

   
   
   

∑ ∑

∑ ∑ ∑
(21) 

By solving the system(21), the parameters
( )3
0
a and 

( )3
1
a  

are calculated, 

( ) ( ) ( )

( ) ( ) ( )

4 4 4

0 1

1 1

4 2 4 4

0 1

1 1 1

n n

i i

i i

n n n

i i i i

i i i

a

na X a y

X a X X y

= =

= = =

+ =

+ =







 
 
 

   
   
   

∑ ∑

∑ ∑ ∑
(22) 

By solving the system (22), the parameters
( )4
0
a and 

( )4
1
a  

are calculated, 

3.2 Multivariate Regression Model: 

In this section, the bivariate regression model is 

generalized to a multivariate regression model. The hybrid 

multivariate regression model includes multiple predictor 

variables and is expressed as follows: 

0 1
1 2

2 ...i
i i ip

pY A A X A X A X= + + + +
⌢
ɶ ɶ ɶ ɶ ɶ        (23) 
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where 
( ) ( ) ( ) ( )1 2 3 4

( , , , )
j j

j
j j

A a a a a=ɶ  and 1, 2, ...,i n= and

1, 2, ...,j p=  represent the sample size and the number of 

parameters, respectively. 

Using the hybrid fuzzy univariate regression model 

obtained in the previous section, the normal equations for 

the multivariate case are expressed as follows: 

Normal equations to obtain 
( ) ( ) ( )
0 1

, , ...,
k k k

p
a a a , where 

1, 2, 3, 4k =  

 

For a set of data ( ), i
ij
X Yɶ , the normal equations for the 

trapezoidal fuzzy coefficients are as follows:� 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0 1 1

1 1 1

2

1 0 1 1 1

1 1 1 1

2

0 1 1

1 1 1

. . . .

. . . .

. . . .

...

...

...

n n n
k k k p

i ip p i

i i i

n n n n
k k k k

i i i ip p i i

i i i i

n n n
k k k

ip ip i ip p

i i i

a X a X a y

X a X a X X a X y

X a X X a X a X

n

= = =

= = = =

= = =

+ + + =

+ + + =

+ + + =

   
   
   

     
     
     

     
     
     

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ( )

1

n
k

i i

i

y

=

∑

(24) 

These normal equations can be solved to obtain the 

coefficients 
( ) ( ) ( )
0 1

, , ...,
k k k

p
a a a  for 1, 2, 3, 4k = . 

To further elucidate the proposed methodology, we have 

introduced a comprehensive framework that leverages the 

unique properties of weighted fuzzy arithmetic for 

trapezoidal fuzzy data. Specifically, this section delineates 

the step-by-step process of applying the weighted fuzzy 

arithmetic to formulate the sum of squared errors between 

predicted and observed variables. By incorporating this 

methodology into both bivariate and multivariate regression 

models, we not only enhance the robustness of the 

regression analysis but also significantly reduce model 

ambiguity and regression error. This meticulous approach 

ensures that the proposed hybrid fuzzy regression models 

are both reliable and accurate, thereby substantiating the 

practical applicability of our method in various real-world 

scenarios. 

4. Reliability Measures for the Hybrid Regression 

Model: 

After obtaining the regression coefficients, we calculate 

the reliability of the hybrid regression equation in this 

section. The mean of the observed fuzzy numbers �iY  is 

calculated as a constant using the weighted fuzzy operator 

and is given by: 

( ) ( ) ( )( )

( ) ( )( )

1 2 3

1

1 4

1

1 1

3

1

6

i

n

i

i

n

i i

i

n

i i

i

Y

Y

n n

y y

y y

=

=

=

= = +

+ +







∑
∑

∑

ɶ

ɶ

        (25) 

To evaluate reliability, we need to calculate the hybrid 

standard error ( )
e

HS  and the dispersion of the hybrid 

regression data ( )
y
Sɶ . The hybrid standard error ( )

e
HS  

indicates the goodness of fit between the hybrid regression 

model and the observed fuzzy values, while ( )
y
Sɶ  shows 

the data dispersion. Two indices, ( )eHS and e

y

HS

S

 
  
 ɶ

, are 

used to evaluate the performance of different regression 

models [14]. 

( )

( ) ( )( ){

2

1

2
(1) (1) ( 2 ) (1)

1 1

1

1

1 1 2

1 2 3

n

iy

i

n n

i i i i

i i

S Y Y
n

y Y y Y y y
n

=

= =

= −
−

= − + − −
−

∑

∑ ∑

ɶ

ɶ ɶ

ɶ ɶ

 

( ) ( )

( )( ) ( ) }

2
2

(2) (1) ( 4)

1 1

1

22
(4) (3) ( 4) (3) ( 4)

1 1

1 1

4 2

2 1

3 4

n n

i i i

i i

n n

i i i i i

i i

y y y Y

y Y y y y y

= =

= =

+ − + −

+ − − + −

∑ ∑

∑ ∑

ɶ

ɶ

(26) 
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( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) }

2 2

0 1

2 2 1 1

0 1 0 1

1 1 3 3

0 1 0

2

1

( 2 ) 2

1

( 2 ) (1)

(1) 2 (3) 2

(3) ( 4 )

1

3 3 4 4

0 1 0 1

4
2

4

0

1

(

1

4 ) 2

(

( (

(

1

1

1 1
)

1 4

1
) )

6

1 1
) )

12 4

1
) )

6

1
)

(

(

1

(

2
(

n

e i i

i

n

i

i

i i

i i

i

i

i

i i

i i

i

i

i i

a a X

a a

H

X a a X

a a X a a X

a a X a a

S Y Y
n p

Y
n p

Y Y

Y Y

Y Y

X Y

X

a a

=

=

= −
− −

= −
− −

++ − −

+ − + −

+ − −

+

+

+ +

+ +

+ −+




∑

∑

⌢
ɶ ɶ

  (27) 

Therefore, the performance of the regression model can 

be obtained using formulas (26) and (27). 

5.Numerical Example: 

To demonstrate the effectiveness of the proposed model, 

we use the data from Chang [14], which has been converted 

into asymmetric trapezoidal fuzzy numbers. In this example, 

we have 8 data pairs where the input variable (independent) 

is crisp and non-fuzzy, and the output variable (dependent) 

consists of asymmetric trapezoidal fuzzy numbers. 

( )( ) ( )( )[

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )]

2 : 12.8,13.7,14.6,15.6 , 4 : 14.4,15.57,16.74,17.9

, 6 : 12.6,13.6,14.6,15.7 8 : 16.8,17.8,18.8,19.8

, 10 : 15.7,17.1,18.5,19.9 , 12 : 20.5, 21.5, 22.5, 23.7

14 : 15.3,16.8, 18.3,19.9 , 16 : 20.9, 21.9, 22.9, 23.9

,

,

,

i
i
X Y

=

  
ɶ

(28) 

We use the formulas from the previous section to 

calculate the estimated values, which are presented in the 

table below. 

Table 1: Observed values and estimated values using the proposed model. 

i 
i
X ( ) ( ) ( ) ( )1 2 3 4

( , , , )i
i i i i

Y Y Y Y Y=ɶ ( ) ( ) ( ) ( )1 2 3 4

( , , , )i i i i iY Y Y Y Y=
⌢ ⌢ ⌢ ⌢ ⌢
ɶ ɶ ɶ ɶ ɶ 

1

2

3

4

5

6

7

8

  

2

4

6

8

10

12

14

16

 

( )
( )
( )
( )
( )
( )
( )
( )

12.8,13.7,14.6,15.6

14.4,15.57,16.74,17.9

12.6,13.6,14.6,15.7

16.8,17.8,18.8,19.8

15.7,17.1,18.5,19.9

20.5, 21.5, 22.5, 23.7

15.3,16.8,18.3,19.9

20.9, 21.9, 22.9, 23.9

 

( )
( )
( )
( )
( )
( )
( )
( )

12.63,13.61,14.66,15.7

13.63,14.65,15.72,16.8

14.63,15.69,16.78,17.9

15.63,16.73,17.84,19

16.63,17.77,18.9, 20.1

17.63,18.81,19.96, 21.2

18.63,19.85, 21.02, 22.3

19.63, 20.89, 22.08, 23.4

 

  

To evaluate the performance of the proposed model, the 

values of ( )
y
Sɶ  and ( )

e
HS  are calculated as follows: 

( )2

1

1
3.31

1

n

iy

i

S Y Y
n =

= − =
−

∑ɶ

ɶ ɶ  

( )
2

1

1
1.96

1

n

e i i

i

HS Y Y
n p =

= − =
− −

∑
⌢
ɶ ɶ  

The estimated values for Chang's model [14] and the 

proposed model are shown in Table 2. 

Based on the values in Table 2, using trapezoidal fuzzy 

data in the proposed model reduces the data dispersion 

ɶ( )yS . To evaluate reliability, we use the values of ( )
e

HS

and e

y

HS

S

 
  
 ɶ

. As shown in Table 2, both of these indices are 

greater in the proposed model compared to the method 

proposed by Chang [14]. 
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6.Conclusion: 

   In this paper, we propose a novel regression method 

using trapezoidal fuzzy data, which significantly reduces 

the fuzziness of the data for hybrid fuzzy least squares 

regression. The introduction of weighted fuzzy arithmetic 

allows for a more precise formulation of the sum of squared 

errors between predicted and observed variables, enhancing 

the accuracy of the regression models. This method has 

been validated through both bivariate and multivariate 

regression models, demonstrating its applicability across 

different types of data sets. Furthermore, when comparing 

the reliability measures with other conventional regression 

methods, our approach yields superior predictive values, 

showcasing its robustness and effectiveness. The reduced 

ambiguity and improved accuracy make this hybrid fuzzy 

regression method a valuable tool for researchers and 

practitioners dealing with uncertain and imprecise data. 

Overall, the proposed methodology not only advances 

the field of fuzzy regression but also opens new avenues for 

its application in various real-world scenarios, from 

economics to engineering. Future research can explore the 

integration of this method with other fuzzy and non-fuzzy 

techniques to further enhance its capabilities and 

applications. 

Table 2: Reliability measures for two regression models 

 Regression Method
 y

S ɶ
 

eHS
 

ɶ

e

y

HS

S
 

'  

 

Chang s Method

Proposed Method
 

3.37

3.31
 

1.85

1.96
 

0.55

0.59
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