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 Edge computing has emerged as a dynamic framework where 

computational tasks are offloaded to distributed edge servers (ESs) to 

provide low-latency and efficient services. As edge systems grow in 

scale and complexity, leveraging Deep Reinforcement Learning (DRL) 

has become a prominent approach to optimize task offloading and 

Resource management. However, traditional DRL-based 

methodologies encounter several challenges: (1) Discrete-time 

decision frameworks, such as Markov Decision Processes (MDPs), 

often enforce offloading in fixed timeslots, leading to scheduling 

delays and inefficient Resource utilization. (2) Static computational 

structures struggle to adapt to varying numbers of edge servers or user 

devices, resulting in scalability issues and system inefficiencies. To 

overcome these limitations, we introduce a novel DRL-driven real-time 

offloading mechanism tailored for dynamic and scalable edge 

environments. Our approach reformulates the offloading problem 

within a Semi-Markov Decision Process (SMDP) framework and 

introduces an adaptive optimization mechanism utilizing attention-

based graph operations for heterogeneous Resource environments. This 

system, like how we prioritize tasks and divide resources, figures out 

how much attention to pay to each task and which server should handle 

it, to make things work smoothly. To make this work even better in the 

real world, we use a special method to adjust the rewards, which helps 

the system learn and improve its performance over time 
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1. Introduction 

The rapid expansion of mobile networks and the 

proliferation of connected devices have 

transformed modern computing environments. 

From autonomous vehicles to immersive 

augmented reality applications, the demand for 

high-speed, low-latency services has surged. 

Traditional cloud computing architectures, despite 

their powerful centralized Resources, often fall 

short in meeting these latency-sensitive 

requirements due to long transmission distances 

and centralized processing bottlenecks [1]-[5]. This 

gap has driven the evolution of edge computing, 

which brings computation and storage closer to 

end-users by deploying edge servers (ESs) within 

the network's proximity. Within this paradigm, 

tasks may be executed locally or offloaded to 

nearby ESs. While ESs are equipped with more 

robust computational capabilities compared to 

UDs, the process of uploading tasks to ESs 

introduces additional energy consumption and 

latency. Moreover, the computational capacity of 

ESs remains constrained compared to centralized 
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cloud servers, making them unsuitable for handling 

large volumes of concurrent tasks. Resource 

contention among multiple tasks can degrade 

system performance and quality of service (QoS) 

[6], [7]. Consequently, devising an efficient 

scheduling mechanism for task offloading has 

become critical. Such mechanisms aim to optimize 

the selection of offloading targets and Resource 

allocation strategies [8], often framed as mixed-

integer nonlinear programming (MINLP) 

problems, which are known to be NP-hard [9]. 

Initially, mathematical approaches [10] were 

developed to solve these optimization problems. 

However, these model-based methods struggle 

with generalization across diverse edge systems 

characterized by heterogeneous transmission 

technologies, application requirements, and 

computational Resources. To address this 

limitation, model-free metaheuristic algorithms 

[11, 12] were introduced for task offloading. 

Despite their flexibility, these algorithms face 

significant challenges, including large search 

spaces and poor adaptability to dynamic edge 

environments. In recent years, Deep 

Reinforcement Learning (DRL) has demonstrated 

exceptional capabilities across various domains, 

such as robotics control, autonomous driving, and 

natural language processing. Leveraging deep 

neural networks, DRL combines high-dimensional 

data analysis with model-free learning, making it a 

compelling choice for dynamic edge systems. Its 

online learning capabilities enable adaptive policy 

updates through continuous interaction with the 

environment, offering real-time adaptability to 

evolving edge conditions. As a result, DRL-based 

methods have shown promising results in 

optimizing task offloading and Resource allocation 

in edge computing [13]-[16]. Despite its 

advantages, DRL-based approaches face inherent 

limitations, as illustrated in Fig. 1. Firstly, these 

methods typically rely on discrete-time Markov 

Decision Processes (MDPs), where decisions are 

made at fixed intervals. This framework 

necessitates batch processing of tasks, causing 

delays as tasks wait for the next decision interval to 

be scheduled [17]. Such wait-for-scheduling 

latency increases Resource contention and lowers 

task completion rates, particularly in systems with 

stringent delay requirements. Secondly, traditional 

DRL methods lack scalability [18, 19]. The fixed 

computational graph of deep neural networks 

requires consistent input and output dimensions, 

making it challenging to adapt to varying system 

scales [20]. For instance, in mobile edge 

environments, the dynamic nature of vehicular 

edge systems—with frequent arrivals and 

departures of service or user vehicles—renders 

non-scalable DRL approaches infeasible. 

Retaining scalability under these conditions is 

crucial but often necessitates retraining models, a 

process that is both time-intensive and 

computationally expensive. 

 

 
Figure 1. Challenges in DRL-Based Offloading 

Approaches. 

 

 

Transitioning from a batched offloading 

framework to a real-time approach, where tasks are 

immediately scheduled upon arrival, intuitively 

minimizes waiting time and avoids dimensional 

mismatches caused by fluctuating task volumes. 

However, the discrete-time MDP framework 

utilized by classical DRL algorithms is inherently 

unsuitable for such scenarios [21]-[23]. 

Additionally, scalability challenges, such as 

mismatches in the dimensions of inputs and outputs 

caused by dynamic variations in the number of 

edge servers (ESs) and user devices (UDs), remain 

unresolved. To address these challenges, we 

propose a Real-time and Scalable Task Offloading 

framework (ReSTO), leveraging a DRL-based 

methodology. 

In ReSTO, the task offloading problem is modeled 

as a Semi-Markov Decision Process (Semi-MDP) 

to enable decision-making at arbitrary task arrival 

times. The framework introduces the Scalable 

Continuous Proximal Policy Optimization 

(SCPPO) algorithm, specifically designed to align 

with the  

 

Semi-MDP framework. To ensure scalability, 

SCPPO employs a heterogeneous graph attention 

mechanism for feature extraction, translating task-

specific characteristics into adaptive attention 

scores for decision-making. Moreover, we develop 

a hybrid reward mechanism that integrates model-

based and real-time feedback, referred to as the 

homotopy reward. This reward scheme bridges the 



Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes 

3 

 

gap between theoretical models and real-world 

dynamics while enhancing exploration efficiency 

during learning. 

 

This paper aims to address the limitations of 

existing DRL-based task offloading approaches in 

edge computing environments. Specifically, we 

focus on: 

 1- Overcoming the limitations of discrete-time 

MDPs: We propose a novel continuous-time DRL 

framework that enables real-time, event-triggered 

task scheduling, eliminating the need for batch 

processing and reducing wait-for-scheduling 

latency. 

 2- Improving scalability in dynamic environments: 

We introduce a scalable DRL architecture that can 

adapt to varying numbers of tasks and edge servers 

without requiring extensive model retraining. 

By achieving these objectives, we aim to: 

 Enhance task completion rates and 

reduce latency in edge computing 

systems with stringent performance 

requirements. 

 Improve resource utilization by 

enabling more efficient task 

scheduling and allocation. 

 Increase the adaptability and 

robustness of DRL-based offloading 

solutions in dynamic and 

unpredictable edge environments.

The key contributions of this work are as follows: 

 

 Introduction of ReSTO 

Framework:  
We propose ReSTO, a novel real-time and 

scalable task offloading framework. ReSTO 

models the offloading problem using a Semi-

MDP and introduces the SCPPO algorithm for 

real-time decision-making, eliminating the 

latency associated with traditional batched 

scheduling. 

 Scalability via Graph Attention 

Mechanism:  
SCPPO employs heterogeneous graph 

attention operations to extract task and 

Resource features dynamically, enabling 

adaptive attention score generation. This 

approach prevents dimensional mismatches as 

the number of ESs or UDs changes, ensuring 

scalability. 

 Development of Homotopy 

Reward:  
We formulate a hybrid reward system 

combining theoretical model rewards with 

real-time feedback. This homotopy reward 

reduces the disparity between theoretical 

assumptions and real-world conditions, 

improving both performance and exploration 

efficiency. 

 

The remainder of this paper is organized as 

follows: Section II reviews related works, 

particularly focusing on real-time and scalable 

RL/DRL-based approaches. Section III presents 

the system model for real-time offloading and the 

corresponding optimization problem. In Section 

IV, we detail the ReSTO framework, including the 

Semi-MDP formulation and the SCPPO algorithm 

design. Section V evaluates ReSTO’s performance 

against state-of-the-art algorithms, highlighting its 

scalability and efficiency. Finally, Section VI 

concludes the paper with insights and potential 

future directions.  

 

2. Related Works  

In this section, we provide a comprehensive review 

of DRL-based task offloading methods. Following 

this, we delve into existing RL/DRL approaches 

for real-time or scalable task offloading, analyzing 

their achievements and limitations in comparison 

to our proposed framework. 

 

A. DRL-Based Task Offloading in Edge 

Computing 

Over the past decade, task offloading in edge 

computing systems has increasingly relied on Deep 

Reinforcement Learning (DRL) algorithms due to 

their capacity for dynamic decision-making and 

adaptability to complex environments. These 

algorithms leverage the ability of neural networks 

to process high-dimensional inputs and learn 

optimal policies directly through interaction with 

the environment. Numerous studies have tailored 

DRL methods to address the unique challenges of 

edge systems, such as Resource constraints, 

latency requirements, and dynamic user demands. 

One notable example is the work of Wang et al. 

[12], who utilize Deep Q-Learning (DQN) to 

optimize both task offloading and Resource 

configuration in a blockchain-enabled edge 

computing framework. Their approach introduces 

trust mechanisms and leverages blockchain for 

secure and efficient offloading. Similarly, Huang et 

al. [13] employ a Twin Delayed Deep 

Deterministic Policy Gradient (TD3) algorithm for 

partial offloading systems, where tasks can be split 

between local and edge processing. This method 

improves decision-making by accounting for the 

variability in task size and Resource availability, 
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demonstrating the potential of DRL in adaptive 

task allocation. 

Building on these foundational approaches, 

subsequent research has focused on enhancing the 

performance and robustness of DRL-based task 

offloading. For instance, Xu et al. [14] and Ma et 

al. [15] introduce temporal feature extraction to 

capture the dynamic nature of edge environments, 

utilizing historical state information to better 

model system behavior and predict the effects of 

various actions. This temporal awareness allows 

the system to adapt to changing workloads and 

network conditions, leading to more effective 

offloading strategies. 

Moreover, Xu et al. [16] propose an exploration-

exploitation strategy tailored to the training 

process. By prioritizing exploration during the 

early stages of training and gradually shifting 

towards the exploitation of learned policies, their 

approach strikes a balance between discovering 

new solutions and refining existing ones. This 

adaptive strategy improves policy performance and 

ensures more reliable decision-making over time. 

To address the computational complexity and 

convergence challenges associated with large 

action spaces, researchers have also explored 

hybrid approaches that integrate DRL with 

traditional optimization techniques. For example, 

Chen et al. [17] enhance DQN-based task 

offloading with sequential quadratic programming 

for Resource allocation. This combination reduces 

the dimensionality of the problem and accelerates 

convergence, enabling more efficient use of edge 

Resources. 

Li et al. [18] take a multi-agent approach, 

employing a Parameterized Multi-Agent Soft 

Actor-Critic (SAC) algorithm to address the 

interdependence of actions across agents. By 

categorizing actions into those that affect other 

agents and those that do not, they effectively 

manage Resource contention in collaborative edge 

environments. The use of a genetic algorithm 

further refines Resource allocation decisions, 

ensuring optimal system performance. 

Despite these advancements, existing DRL-based 

methods face inherent limitations due to their 

reliance on the discrete-time Markov Decision 

Process (MDP) framework. This framework 

enforces decision-making at fixed intervals, 

leading to batch processing of tasks. Such a 

structure introduces scheduling delays, as tasks 

must wait until the next decision point before 

offloading can occur [24], [25]. This wait-for-

scheduling latency becomes particularly 

problematic in latency-sensitive applications, 

where even slight delays can significantly degrade 

performance. Additionally, most DRL approaches 

encode system states into a one-dimensional input 

vector for processing by a multi-layer perceptron 

(MLP). While this design simplifies 

implementation, it limits scalability. Fixed input-

output dimensions in MLPs cannot adapt to 

changes in the number of edge servers (ESs) or user 

devices (UDs), resulting in dimensional 

mismatches. This lack of flexibility hampers the 

applicability of DRL algorithms in dynamic edge 

environments, such as vehicular networks or large-

scale IoT systems, where the network topology and 

Resource availability frequently change. 

These challenges underscore the need for novel 

frameworks and algorithms that overcome the 

constraints of discrete-time MDPs and enable real-

time, scalable task offloading in edge computing 

systems. Future solutions must address both the 

latency introduced by batch processing and the 

scalability issues arising from static neural network 

architectures, paving the way for more adaptive 

and efficient DRL applications in edge 

environments. 

 Categorization by Objective: 

1. Latency Minimization: Focus on 

methods specifically designed to 

minimize task completion time or 

end-to-end delay. 

2. Energy Efficiency: Analyze methods 

that prioritize minimizing energy 

consumption at the device and 

network levels. 

3. Resource Allocation: Discuss 

approaches that optimize resource 

allocation among UDs and ESs, 

considering factors like CPU, 

memory, and bandwidth. 

4. Load Balancing: Examine methods 

that aim to distribute the 

computational load evenly across the 

available ESs. 
 

B.  Real-Time RL/DRL for Task Scheduling 

Real-time decision-making is a critical component 

of task scheduling in edge computing and 

numerous other domains, where rapid responses to 

dynamic changes are essential for maintaining 

system performance and efficiency. However, the 

discrete-time Markov Decision Process (MDP) 

framework, which underpins most traditional 

RL/DRL methods, introduces inherent constraints 

when applied to real-time applications. By 

requiring fixed decision intervals, the discrete-time 

MDP framework creates bottlenecks, such as 
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delays in task execution, that compromise the 

responsiveness and adaptability of RL-based 

solutions. Alternative frameworks, such as the 

multi-armed bandit [26]-[30], have been explored 

to address some of these challenges. While these 

models are computationally simpler and focus on 

optimizing immediate rewards, they often fail to 

account for the temporal dependencies and 

cumulative effects of actions. This omission can 

lead to suboptimal decision-making, particularly in 

complex and dynamic environments where long-

term outcomes must be carefully balanced with 

short-term gains [31]-[33]. 

In contrast, the Semi-Markov Decision Process 

(Semi-MDP) framework is particularly well-suited 

for real-time scheduling tasks. Unlike the discrete-

time MDP, Semi-MDP allows for variable 

intervals between decision points, making it more 

flexible and capable of handling tasks as they 

arrive. This flexibility enables the development of 

policies that optimize long-term performance while 

addressing the immediate requirements of real-

time systems. For instance, Liang et al. [20] and 

Hao et al. [21] successfully use Semi-MDPs to 

model real-time scheduling problems, 

demonstrating the framework’s potential to 

accommodate dynamic workloads and varying 

system conditions. Despite its advantages, adapting 

existing algorithms to the Semi-MDP framework 

poses unique challenges due to its structural 

differences from the traditional MDP approach. 

One common strategy involves normalization, 

which converts Semi-MDP problems into an MDP-

compatible format, allowing established DRL 

algorithms to be applied. For example, Liang et al. 

[22] normalize Semi-MDP problems by estimating 

theoretical model-based Q-values for supervised 

pre-training [34]-[36]. This approach provides a 

starting point for the policy, which is then refined 

through interactions with the environment. 

Similarly, Wu et al. [23] utilize state transition 

probabilities during the normalization process to 

transform Semi-MDPs into a form solvable by 

value iteration techniques. 

An alternative to normalization-based methods is 

the direct design of algorithms tailored to the Semi-

MDP framework. These approaches avoid the 

approximations and assumptions inherent in 

normalization, enabling more accurate modeling of 

real-world scenarios. For example, Van Huynh et 

al. [24] propose a Dueling Double Deep Q-

Network (DDQN) approach that maximizes 

cumulative single rewards without incorporating 

discount factors, focusing instead on immediate 

benefits within a Semi-MDP structure. Wei et al. 

[9] employ an exponential decay model to compute 

cumulative discounted returns, deriving a Bellman 

optimality equation to guide decision-making with 

DQN. Kim et al. [25] adapt the Soft Actor-Critic 

(SAC) algorithm for the Semi-MDP framework, 

introducing modifications that account for the 

variable time intervals and cumulative reward 

structures characteristic of Semi-MDPs. Despite 

these advancements, existing methods still exhibit 

notable limitations. Normalization-based 

approaches often rely heavily on theoretical 

assumptions, such as idealized transition models or 

fixed state representations, which reduce their 

generalizability to real-world, complex 

environments [37]-[40]. These assumptions can 

lead to performance degradation when applied to 

heterogeneous and highly dynamic edge systems, 

where practical constraints and unpredictable 

factors frequently deviate from theoretical models. 

On the other hand, model-free DRL approaches 

[41]-[45] that bypass theoretical dependencies also 

face challenges. These methods commonly employ 

simplistic neural network architectures, such as 

basic feedforward models, that lack the scalability 

needed to adapt to dynamic edge network 

conditions. In systems where the number of edge 

servers (ESs) and user devices (UDs) can fluctuate 

significantly, fixed input-output dimensions lead to 

dimensional mismatches, requiring costly 

retraining of the models to accommodate changes 

[46]-[48]. This inflexibility limits the practical 

deployment of model-free DRL solutions in 

scenarios characterized by high variability and 

evolving system requirements. Overall, while the 

Semi-MDP framework offers significant potential 

for enabling real-time decision-making in edge 

computing, achieving effective and scalable 

solutions necessitates innovative algorithmic 

designs that address both the limitations of 

normalization-based methods and the scalability 

constraints of traditional DRL models. Future work 

must focus on bridging these gaps to develop 

robust and adaptable frameworks capable of 

supporting real-time, scalable task scheduling in 

edge environments. 

 Weaknesses of Current Semi-MDP 

Methods: 

1. Normalization-Based Approaches: 

2. Reliance on Theoretical Assumptions: 

Often rely on idealized models and 

assumptions, which can limit their 

applicability in real-world scenarios 

with high variability and uncertainty. 

3. Potential for Accuracy Loss: The 

normalization process can introduce 

approximations that may lead to 
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suboptimal solutions or reduced 

accuracy. 

4. Limited Exploration of Direct Semi-

MDP Algorithms: While some direct 

approaches exist, the field is still 

relatively under-explored compared to 

normalization-based methods. 

5. Scalability Challenges: As the 

complexity of the environment and the 

number of tasks increase, solving 

Semi-MDPs can become 

computationally expensive, especially 

for complex DRL algorithms. 

6. Handling of Uncertainty: Many 

existing methods may not adequately 

address the inherent uncertainty and 

stochasticity present in real-world 

scheduling problems. 
 

 

3. System Model and Problem Formulation 

We consider a crowdsourcing-inspired MEC 

system, as illustrated in Fig. 1, comprising multiple 

applications and edge servers (ESs) with diverse 

configurations and characteristics. These 

applications may vary significantly in their 

requirements, encompassing delay-sensitive 

services such as networked gaming, autonomous 

driving, and AR/VR, as well as resource-intensive 

tasks like big data analytics, scientific computing, 

and video surveillance [49]. Similarly, ESs can 

range from micro data centers and edge clouds to 

high-capacity computing servers or even gateways 

deployed in residential or office settings. For 

generality, we assume these ESs are managed and 

operated by distinct edge service providers. To 

maximize resource utilization and enhance system 

performance in terms of scalability, reliability, and 

other metrics, a third-party platform is introduced 

to coordinate ES operations and handle workload 

dispatch from end users. Acting as an intermediary, 

this platform serves as a front-end interface for 

edge computing services, bridging the gap between 

clients submitting tasks and ESs providing 

computational resources. Upon receiving a task, 

the platform assigns it to the most suitable ES 

hosting the requested service and ensures the 

computation result is returned to the client 

seamlessly. This interaction is transparent to users, 

provided the system meets their application 

performance expectations, such as low latency and 

high computation quality. 

Both application providers and ESs must undergo 

an onboarding process with the platform before 

accessing or delivering edge services. This 

formalized process involves signing agreements 

with the platform to define roles and 

responsibilities. For application providers, this 

includes specifying service requirements such as 

task rates, task valuation, budget constraints, 

computational demands, QoS parameters (e.g., 

maximum tolerable delay), and security or 

compliance needs. Similarly, ESs seeking to 

participate in the system are subject to a 

comprehensive evaluation by the platform. This 

involves reviewing their security protocols, 

compliance certifications, and data management 

practices to ensure adherence to industry standards 

and regulatory requirements [50]. Additionally, a 

risk assessment is often conducted to identify 

potential vulnerabilities. ESs must provide detailed 

information regarding their resource capacities, 

operational costs, and revenue expectations. 

Using this information, the platform optimizes task 

offloading strategies and resource allocation for 

ESs, subsequently formalizing agreements with 

both parties. Once agreements are in place, ESs 

configure the necessary accounts and 

infrastructure, enabling application providers to 

deploy their services. Importantly, ongoing 

monitoring and auditing mechanisms are 

established to ensure all parties adhere to the 

agreed-upon terms, with regular performance and 

compliance evaluations conducted throughout the 

service lifecycle. 

This study considers a scenario where application 

providers make advance payments to the platform, 

which, in turn, allocates a portion of these 

payments to incentivize contributions from edge 

servers (ESs). The platform's key decisions 

include: (1) whether to accept both the application 

providers and ESs into the system, (2) determining 

the amount of resources each ES should allocate to 

applications, and (3) devising an efficient task 

dispatching strategy to distribute tasks among the 

backend ESs hosting the services. To simplify 

notation, we define the set of ESs and 

applications/services in the system as M and N, 

respectively, with the corresponding cardinalities 

denoted by ∣M∣ and ∣N∣. For clarity, the terms 

"applications" and "application providers" are used 

interchangeably in this paper unless otherwise 

specified. The primary notations employed 

throughout this work are summarized in Table 1. 

Each application 𝑖 ∈ 𝑁𝑖 is characterized by a tuple 

(𝑝𝑖 , 𝑣𝑖, 𝛼𝑖 , 𝐷𝑖, 𝑠𝑖),where: 
1. 𝑝𝑖: The payment made by application 

provider iii to the platform for task 

offloading. 
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2. 𝑣𝑖: The utility gained by i from offloading 

a task, such as reduced energy consumption 

at user devices, enhanced computational 

quality, or shorter response times. 

Generally, 𝑝𝑖 ≤ 𝑣𝑖  Offloading offers net 

benefits to the application. 

3. 𝛼𝑖: The arrival rate of tasks for application 

i. 

4. 𝑠𝑖: The workload (measured in CPU cycles) 

required to process a task. 

5. 𝐷𝑖: The maximum latency tolerable by 

application i. 

 

Given the stochastic nature of the system and the 

uncertainty in resource allocation at ESs, the actual 

value derived by an application from task 

offloading depends on the quality of the edge 

computing service. We represent this with a utility 

function 𝑢𝑖𝑗 ∈ [0,1], which quantifies the 

satisfaction level of application i when offloading 

tasks to 𝐸𝑆𝑗. This utility function is an abstract 

representation and can vary depending on the 

application's requirements. 

For instance, for delay-sensitive applications, 

𝑢𝑖𝑗may be defined based on reductions in task 

latency. For resource-intensive applications, 

𝑢𝑖𝑗could reflect the computational quality, such as 

compression ratios or prediction accuracy. 

Moreover, the form of 𝑢𝑖𝑗 can differ even within 

the same application category. For example, in 

delay-sensitive applications, 𝑢𝑖𝑗 could be a step 

function to model satisfaction levels in the 

presence of hard deadlines.  

 

𝑢𝑖𝑗 = {
1,   if   𝑡𝑖𝑗 ≤ 𝐷𝑖 

0,   otherwise  
     (1) 

 

 

A. Platform Model 
The platform operates under the following assumptions: 

1. The platform employs a probabilistic task 

dispatching mechanism, where each 

application task is routed to a specific ES 

based on predefined probabilities. 

2. The payment 𝑝𝑖  made by application iii is 

distributed between the platform and the 

ES executing the task. Specifically, the 

ES receives a reward of (1 − 𝜆𝑖)𝑝𝑖, 

where 𝜆𝑖 ≤ 1, while the platform retains 

𝜆𝑖𝑝𝑖  as its service charge or maintenance 

fee. The parameter 𝜆𝑖 , a critical system 

variable, is determined by the platform 

and forms part of the contractual 

agreement with the ES. 

 

4. Real-time and Scalable Task Offloading 

Framework 

Before detailing the algorithm, we first describe the 

calculation of 𝑢𝑖𝑗  and 𝑡𝑖𝑗 under a fixed resource 

allocation 𝐹𝑖𝑗 =  𝐹0. The following assumptions, 

drawn from prior studies, are applied: 

1. Tasks from each application arrive 

according to a Poisson process [46]. 

Consequently, the arrival of tasks from 

application i at 𝐸𝑆𝑗 also follows a Poisson 

process with a rate of 𝑟𝑖𝑗 = 𝛼𝑖𝑥𝑖𝑗  , where 

𝛼𝑖 represents the task arrival rate, and 𝑥𝑖𝑗  

denotes the probability of task dispatch to 

𝐸𝑆𝑗 . 

 

2. The workload of tasks from each 

application is assumed to follow an 

exponential distribution (in CPU cycles) 

[27][36]. This implies that the processing 

time for a task from application i at 𝐸𝑆𝑗 

also follows an exponential distribution 

with a mean of 1/wij1/w where 𝑤𝑖𝑗 =

𝐹𝑖𝑗(0)  and 𝑠𝑖 represents the workload of 

the task. 

Based on these assumptions, the task processing 

system for an application i at 𝐸𝑆𝑗 can be modeled 

as an M/M/1queue. The probability density 

function (pdf) for the task delay 𝑡𝑖𝑗 this system is 

then expressed as: 

 

𝑓𝑇(𝑡𝑖𝑗 ≤ 𝑡) = (𝑤𝑖𝑗 − 𝑟𝑖𝑗) ∙ 𝑒−(𝑤𝑖𝑗−𝑟𝑖𝑗)𝑡              (2) 

 

Assuming 𝑢𝑖𝑗  is defined as in Eq. (2) and 𝑥𝑖𝑗 > 0 

(indicating that tasks from application i are 

offloaded to 𝐸𝑆𝑗 ), the relationship derived from 

constraint (3b) is as follows: 

Pr (𝑡𝑖𝑗 < (1 −  
𝑝𝑖

𝑣𝑖
) 𝐷𝑖)  ≥  prob𝑖  

 (3) 

 

Combining (7) and (8), we get: 

𝑥𝑖𝑗 ≤  
1

𝛼𝑖
 [

ln (1− 𝑝𝑟𝑜𝑏𝑖)

(1− 
𝑝𝑖
𝑣𝑖

)𝐷𝑖

+  
𝐹𝑖𝑗

0

𝑠𝑖
]  (4) 

 

Let 𝑥𝑖𝑗𝐻𝑥  denote the right-hand side (RHS) of the 

inequality mentioned above, defined as: 
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𝑥𝑖𝑗
𝐻  ≜  

1

𝛼𝑖
 [

ln (1− 𝑝𝑟𝑜𝑏𝑖)

(1− 
𝑝𝑖
𝑣𝑖

)𝐷𝑖

+  
𝐹𝑖𝑗

0

𝑠𝑖
]  (5) 

 

Clearly, 𝑥𝑖𝑗𝐻𝑥 represents the upper bound of the 

offloading probability for which application 

provider i is satisfied with offloading its tasks to 

𝐸𝑆𝑗 , meeting the QoS requirements. Notably, this 

upper bound is independent of 𝜆𝑖 and is solely 

determined by 𝐹𝑖𝑗 (0) and the workload profiles. 

Similarly, from constraint (3c) and assuming 𝑥𝑖𝑗 >

0, we derive: 

 

𝑥𝑖𝑗 ≥  
(1+𝛽𝑗𝑖)𝑐𝑗(𝐹𝑖𝑗

0 )

𝛼𝑖(1−𝜆𝑖)𝑝𝑖
 ,  (6) 

 

Let the right-hand side (RHS) of the above 

inequality be denoted as 𝑥𝑖𝑗
𝐿  , defined as: 

 

𝑥𝑖𝑗
𝐿  ≜  

(1+𝛽𝑗𝑖)𝑐𝑗(𝐹𝑖𝑗
0 )

𝛼𝑖(1−𝜆𝑖)𝑝𝑖
 .  (7) 

 
 

Algorithm 1 Deriving the optimal resource 

allocation, task offloading probabilities, and ratios 

under a given resource allocation 𝐹𝑖𝑗
0 ′

s. 

 Input: Task profiles (𝛼𝑖
′𝑠, 𝑝𝑖

′𝑠, 𝑣𝑖
′𝑠, 𝐷𝑖

′𝑠, 𝑠𝑖
′𝑠); ES 

profiles (𝑐𝑗(𝐹𝑖𝑗)
′
𝑠, 𝐹𝑗

′𝑠, 𝛽𝑗𝑖
′ 𝑠); Initial resource 

allocations 𝐹𝑖𝑗
0 ′

𝑠; 

 Output: Resource allocations 𝐹𝑖𝑗
0,~′

𝑠; Ratios 

𝜆𝑖
0,~′

𝑠; Task offloading probabilities 𝑥𝑖𝑗
0,~′

𝑠; 

1 for 𝑖 ∈  𝒩 𝒅𝒐 

2  for 𝑗 ∈  ℳ 𝒅𝒐 

3   Derive 𝑥𝑖𝑗
𝐻 and 𝜆𝑖𝑗 

0 according to Eq 5. 

4 for 𝑖 ∈ 𝒩 𝒅𝒐 

5  Get 𝜆𝑖
0  and  𝑥𝑖𝑗

0  

6 for 𝑗 ∈ ℳ 𝒅𝒐 

7  Get 𝒴𝑖𝑗
0  �́�  

8 Obtain 𝜆𝑖
0,∼ �́�,  𝐹𝑖𝑗

0,∼�́�  and 𝑥𝑖𝑗
0,∼𝑠  ́  

 

 

5. Simulation Experiments  

 

A. Experimental Setup 

The simulation framework was developed using 

Python 3.9 and PyTorch 2.3.0, running on a high-

performance desktop system powered by an Intel 

Core i9-13900K processor and an Nvidia GeForce 

RTX 3090 GPU. This computational setup was 

chosen to ensure efficient processing of the 

complex algorithms and large-scale datasets 

involved. The simulation leverages vehicle 

trajectory data from the Peachtree Street section of 

the Next Generation Simulation (NGSIM) dataset 

[36]. This dataset provides detailed and realistic 

representations of urban traffic flow, making it 

suitable for modeling dynamic user-device 

behaviors in edge computing scenarios. 

In our simulation environment, user devices (UDs) 

are designed to move along stochastic trajectories 

generated from the NGSIM dataset. These 

trajectories simulate real-world mobility patterns, 

such as vehicles traveling through a busy 

metropolitan area. UDs are assumed to exit the 

system once their respective trajectories conclude, 

reflecting the dynamic entry and exit behavior 

typical in edge networks. Edge nodes (ENs) are 

deployed strategically at random locations along 

these trajectories, ensuring adequate coverage of 

user mobility patterns while capturing the inherent 

randomness of real-world deployments. The 

system parameters used in the simulation are 

comprehensively detailed in Table II. These 

include network characteristics, Resource 

configurations, and mobility patterns, ensuring that 

the simulation accurately reflects the operational 

constraints and requirements of modern edge 

computing environments. 

 

Training Process and Network Design 

The training process was meticulously designed to 

optimize the learning performance of the proposed 

algorithm. The neural network architecture 

incorporates several specialized components to 

handle the complexity of real-time task offloading 

and Resource allocation. The hidden feature 

dimension d was set to 256, balancing 

computational efficiency with model 

expressiveness. The attention mechanism 

employed K=4 attention heads, enabling the model 

to capture intricate relationships between tasks and 

edge nodes across multiple dimensions. 

Three encoder components—𝐻𝐸𝑁, 𝐻𝐶𝑒𝑙𝑙, and 

𝐻𝑇𝑎𝑠𝑘 —were implemented as two-layer 

multilayer perceptrons (MLPs), each employing 

Tanh activation functions. These encoders 

transform raw input data into high-dimensional 

representations suitable for downstream 

processing. The MLP Dc, responsible for 

computing Resource allocation, was configured 

with two layers, ensuring lightweight and efficient 

computation. In contrast, the MLP Dv within the 

critic network was designed with four layers to 

enhance its capacity for estimating value functions, 
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which are critical for effective policy evaluation 

and improvement. 

 

Key Parameters for the Continuous-Time PPO 

Algorithm 

 

To align the training process with the Semi-

Markov Decision Process (Semi-MDP) 

framework, we tailored the continuous-time 

Proximal Policy Optimization (PPO) algorithm 

with carefully selected hyperparameters. The 

discount factor α was set to 0.1, ensuring a 

balanced emphasis on immediate rewards and 

long-term gains. The importance sampling ratio ϵ, 

set to 0.2, controlled the degree of policy updates 

to maintain stability during training. The 

Generalized Advantage Estimation (GAE) 

hyperparameter λ was configured as 0.98 to 

improve the estimation of advantages, enhancing 

the convergence rate and overall learning 

efficiency. 

 

B. Training Configuration and Iterations 

The training process spanned 400 episodes, 

providing sufficient iterations for the algorithm to 

converge to an optimal policy. Each episode was 

further divided into a maximum of 200 iterations, 

allowing the model to explore diverse states and 

actions comprehensively. During training, the 

model continually interacted with the simulated 

environment, refining its policy through trial and 

error while leveraging feedback from the 

homotopy reward mechanism. This hybrid reward 

system combined theoretical insights with real-

time observations, bridging the gap between 

simulated models and practical deployments. 

The overall design of the simulation environment, 

coupled with the robust training setup, ensures that 

the proposed algorithm is well-equipped to handle 

dynamic and scalable edge computing scenarios. 

By incorporating realistic mobility patterns, 

stochastic task generation, and advanced neural 

network architectures, the simulation framework 

provides a reliable foundation for evaluating the 

effectiveness of real-time task offloading and 

Resource allocation strategies in next-generation 

edge systems. 

 
TABLE I. 

PARAMETER SETTINGS OF SIMULATION 

Notations 
Simulation 

Value 
Notations 

Simulation 

Value 

M 8 𝛼 U(1.0, 1.2) 

MB U (0.8, 

1.0) GCycle 

U (1, 2) 

Second 

𝒇𝒎 
U (2, 4) 

GHz 
β 

𝒅𝒎 50 Meter ϑ 

N 30 p 

1 Watt 

𝒒𝒎𝒂𝒙 3 𝜍 -3 

𝜾 1 𝜎2 
-114 

dBm/MHz 

X 0.1 B 1 MHz 

𝒇𝒏 
U (1, 2) 

GHz 
Ω 1 

ϒ 4 Κ 10−27 
 

The data reuse frequency was configured to 10 

iterations. For the actor-network, the learning rate 

was set to 1 × 10−4, while the critic network 

utilized a higher learning rate of 1 × 10−3.The 

Adam optimizer, with 𝜀 = 1 × 10−5,was 

employed for parameter updates. 

To evaluate the performance of the proposed 

method, we conducted a comparative analysis with 

four state-of-the-art DRL-based methods designed 

to address scalability, as well as a single-step 

greedy method. A brief overview of these 

approaches is as follows: 

 Single-Step Greedy (SSG): This method 

selects actions greedily based on 

immediate task benefits. While intuitive, it 

focuses exclusively on short-term gains, 

neglecting long-term system optimization. 

 Sequence to Sequence (S2S) [11]:  

This approach leverages recurrent neural 

networks (RNNs) for sequential system 

feature extraction and multi-action 

generation. However, it operates under a 

batched offloading framework and 

struggles to adapt action dimensions to 

dynamic variations in the number of edge 

nodes (ENs). 

 Self-Attention (SA) [10]:  
Using a self-attention mechanism, this 

method integrates task features and 

generates actions in parallel. Despite this, 

it inherits the limitations of S2S, including 

reliance on batched offloading and the 

inability to adapt to changes in EN counts 

due to its concatenation of EN states as 

input. 

 Event-Driven DQN (EDQ) [9]:  

This real-time approach employs an event-

driven Deep Q-learning framework based 

on task and EN states. However, its 

reliance on a multilayer perceptron (MLP) 

architecture for the Q-network constrains 

scalability, particularly in large-scale 

systems. 

 GNN-based Multi-agent DRL (GMD) 

[30]: 

This method utilizes a distributed multi-

agent DRL framework with graph neural 
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networks (GNNs), allowing user devices 

(UDs) to independently select actions. By 

representing offloading targets as positive 

integers instead of one-hot vectors, it 

offers significant scalability. However, 

multi-agent DRL frameworks are 

challenging to train in large-scale 

environments, often leading to diminished 

performance. 

 

For a fair comparison, we set the batch interval to 

0.2 in subsequent experiments for the S2S, SA, and 

GMD methods, which follow a batched offloading 

framework. 

Notably, the ReSTO framework outperformed all 

baselines in terms of system cost, even under zero-

shot transfer scenarios, surpassing re-trained 

methods as well. This underscores the exceptional 

scalability and efficiency of ReSTO. Interestingly, 

we observed that the system costs of SA and EDQ 

remained stable or even increased as additional 

ENs became available. This phenomenon is 

attributable to their reliance on concatenated EN 

states as input, which inflates the input dimensions, 

causing the critic network to struggle with accurate 

evaluations. For EDQ, the increase in selectable 

actions further complicates Q-network 

convergence, exacerbating its limitations in larger 

systems. 

 

C. Batched Offloading V.S. Real-Time 

Offloading 

To highlight the performance benefits of 

transitioning from batched offloading to real-time 

offloading, we compare the proposed ReSTO 

method with existing approaches under two load 

scenarios. The results, as illustrated in Fig. 2, 

consider a normal scenario with baseline system 

settings and a harsh scenario where the load factor 

𝛽 ∈ 𝑢(1.2,1.4). For consistency, we introduce 

artificial delays in task execution to emulate 

batched offloading for ReSTO, SSG, and EDQ, 

which inherently support real-time offloading. 

Other methods, lacking real-time capabilities, are 

excluded from this analysis. Batched offloading is 

tested with four discrete timeslot intervals: 0.8, 0.6, 

0.4, and 0.2. 

The experimental findings indicate that reducing 

the interval duration in batched offloading 

substantially lowers system costs under both load 

scenarios, with the real-time offloading approach 

consistently achieving the best performance. This 

improvement is especially pronounced under 

higher load conditions, as shorter decision intervals 

minimize the delay between task arrival and 

scheduling, allowing for more effective Resource 

management. Conversely, under increased system 

loads, extended waiting periods in batched 

offloading sharply reduce the scope for scheduling 

adjustments, leading to greater performance 

degradation. Notably, at elevated load levels with 

larger timeslot intervals, DRL-based methods 

display inferior performance compared to the SSG 

approach. This can be attributed to challenges in 

learning from delayed and sparse rewards during 

training, particularly when task failures dominate 

the early learning phase. As a result, many DRL-

based methods converge to suboptimal solutions, 

unable to recover effectively. In contrast, the 

ReSTO framework, supported by the homotopy 

reward mechanism, provides more immediate and 

structured reward feedback during early training 

stages. This design facilitates more efficient 

exploration and allows ReSTO to avoid local 

optima, delivering significantly better performance 

even under harsh conditions. 

 

D. Ablation Study 

An ablation study was conducted to investigate the 

impact of the homotopy reward design and graph-

based cell state aggregation on the performance of 

the proposed framework. The experiments were 

carried out under both normal and harsh scenarios 

to provide a comprehensive evaluation across 

varying load levels. Two key components were 

evaluated: (1) the reward mechanism, with three 

configurations considered—model-based reward, 

reality reward, and the proposed homotopy 

reward—and (2) the user device (UD) state fusion 

method, comparing direct aggregation of UD states 

independently versus graph-based aggregation of 

cell states. These configurations were 

systematically combined into multiple algorithm 

variants, and their performance was assessed.  

The study revealed significant differences in 

performance across the reward settings. Among the 

configurations, the reality reward (blue line) 

exhibited the largest fluctuations during training. 

These fluctuations can be attributed to the reward 

mechanism's reliance on real-time feedback, which 

is inherently noisy and less predictable. The lack of 

robust guidance in the early training stages often 

led to instability in task success rates, particularly 

under harsh scenarios where Resource constraints 

are more pronounced. Additionally, this 

configuration struggled to balance immediate 

performance with long-term optimization, 

highlighting its limitations in dynamic and 

unpredictable environments. 

Conversely, the model-based reward demonstrated 

greater stability but was less effective in capturing 

the complexities of real-world conditions. This 
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resulted in suboptimal exploration, limiting its 

ability to adapt to diverse scenarios. The proposed 

homotopy reward bridged the gap between the 

model-based and reality rewards, effectively 

integrating theoretical guidance with real-time 

feedback. This hybrid approach significantly 

improved exploration efficiency, enabling the 

algorithm to converge faster and achieve better 

performance across both normal and harsh 

scenarios. The homotopy reward design also 

mitigated the challenges of sparse rewards, 

ensuring consistent progress during training. 

The study further examined the effects of state 

aggregation methods. Directly aggregating UD 

states independently often resulted in subpar 

system performance due to the lack of contextual 

understanding of Resource and task interactions 

within the network. In contrast, the graph-based 

cell state aggregation effectively captured spatial 

and temporal dependencies, enhancing the 

framework's ability to adapt to changes in system 

dynamics. By leveraging graph structures to model 

interactions between tasks and edge servers (ESs), 

this method provided a holistic view of the 

network, leading to more informed and efficient 

decision-making. 

The analysis also sheds light on the limitations of 

the GMD algorithm, which demonstrated a 

tendency to prioritize tasks with higher energy 

consumption. This behavior can be traced to its 

distributed multi-agent DRL framework, where 

each agent operates with limited visibility into the 

overall system state. Without a comprehensive 

view of the network, agents often opted to process 

tasks at a higher frequency to minimize CPU 

occupancy and avoid Resource contention. While 

this strategy may reduce immediate delays, it 

inadvertently increases energy consumption and 

diminishes the overall system efficiency. 

In summary, the results highlight the advantages of 

the proposed homotopy reward design and graph-

based cell state aggregation in improving system 

performance and scalability. By addressing the 

shortcomings of traditional reward mechanisms 

and state aggregation methods, the proposed 

approach achieves superior stability, faster 

convergence, and enhanced adaptability, 

particularly under challenging operational 

conditions. 

 

E. Comparisons under Different Environmental 

Settings 

This section evaluates the performance of our 

proposed algorithm against other methods under 

varying simulation parameters, specifically 

focusing on the task generation interval parameter 

(𝛺) of the exponential distribution and the user 

preference for required CPU cycles 𝛽). These 

parameters influence the system load by altering 

the task arrival rate and the computational demand 

of each task. Our analytics illustrate the system 

costs across different values of 𝛺. A reduction in 𝛺 

corresponds to an increased number of tasks and a 

heavier overall system load. The results reveal that 

DRL-based methods consistently outperform the 

SSG approach in all scenarios. This is due to the 

long-term optimization capabilities inherent in 

DRL, which enable proactive and foresight-driven 

decision-making. In contrast, the SSG method 

prioritizes immediate task optimization without 

accounting for future system demands, leading to 

significant queue delays and higher overall costs. 

Among the DRL-based methods, the S2S approach 

exhibits comparatively higher system costs. This 

can be attributed to its vulnerability to the memory-

forgetting issue associated with processing long 

task sequences. As 𝛺 decreases, the number of 

tasks requiring scheduling within each discrete 

timeslot increases, further amplifying this 

limitation. In contrast, the proposed ReSTO 

framework achieves the lowest system cost across 

all scenarios, with the performance gap widenthe 

ing as 𝛺 decreases. This superior performance 

stems from the fundamental differences between 

real-time and batched offloading. As the system 

load intensifies with a higher task arrival rate, the 

limitations of batched offloading become more 

pronounced, leading to greater performance 

degradation for methods relying on discrete 

scheduling intervals. These findings reaffirm the 

advantages of the real-time offloading strategy 

employed in ReSTO, particularly under high-load 

conditions. 

Our analytics compares the performance of the 

algorithms across different values of 𝛽, which 

represents the computational load associated with 

tasks. Higher 𝛽 values indicate that tasks demand 

more CPU cycles for processing, thereby 

increasing the system load. The results reveal that 

under low-load scenarios, DRL-based methods 

demonstrate a clear advantage over the Single-Step 

Greedy (SSG) approach, achieving significantly 

lower system costs. This improvement is attributed 

to the long-term optimization capabilities of DRL, 

which enable more efficient Resource allocation 

and task scheduling by anticipating future system 

states. In contrast, SSG focuses solely on 

immediate task optimization, often resulting in 

suboptimal Resource utilization and increased 

queuing delays. As the system load intensifies with 

higher 𝛽 values, the performance gap between 
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DRL-based methods and SSG narrows. This 

reduction in effectiveness stems from the 

challenges introduced by the more demanding 

environment. Heavier system loads generate 

delayed and sparse rewards, complicating the 

training process for DRL algorithms and limiting 

their ability to converge to optimal policies. Under 

these conditions, traditional DRL-based 

approaches are more likely to become trapped in 

local optima, as the sparse feedback makes it 

difficult to identify and reinforce effective 

scheduling strategies. 

The proposed ReSTO framework, however, 

addresses these limitations through its innovative 

homotopy reward mechanism. By combining 

model-based and reality-based rewards, the 

homotopy reward provides consistent and 

structured feedback throughout the training 

process. This design enables ReSTO to navigate 

complex and dynamic system states more 

effectively, avoiding local optima and guiding the 

algorithm toward globally optimized solutions. 

The ability to adapt to varying load conditions is 

further enhanced by the real-time offloading 

strategy employed in ReSTO, which eliminates the 

delays associated with batched scheduling. This 

combination of timely decision-making and robust 

reward feedback allows ReSTO to maintain 

superior performance across all load conditions. 

Moreover, the advantages of ReSTO become 

increasingly pronounced as the system load rises. 

In high-load scenarios, where tasks require 

significant computational Resources and delays are 

more detrimental, the benefits of real-time 

offloading are particularly evident. By reducing the 

waiting time between task arrival and execution, 

ReSTO not only minimizes queuing delays but also 

maximizes Resource utilization efficiency. These 

factors collectively contribute to ReSTO’s 

consistent outperformance of competing methods, 

demonstrating its scalability, adaptability, and 

resilience under diverse operational conditions. 

In summary, the integration of the homotopy 

reward mechanism and real-time offloading in 

ReSTO provides a significant edge over existing 

DRL-based approaches and heuristic methods like 

SSG. The framework’s ability to maintain low 

system costs under both low and high system loads 

highlights its robustness and makes it a promising 

solution for real-time and scalable task offloading 

in dynamic edge computing environments. 

 

 
Fig 2. System Costs Across Algorithms for Varying Task 

CPU Cycle Requirements. 

 

6. Conclusions 

While DRL-based algorithms have demonstrated 

exceptional capabilities in optimizing task 

offloading for edge computing, several persistent 

challenges limit their potential for broader practical 

deployment. Key among these is the waiting time 

associated with batched decision-making and the 

dimensional mismatches arising from dynamic 

system scales. These limitations not only impede 

performance improvements but also hinder the 

scalability and adaptability of such methods in real-

world applications. To address these critical issues, 

we introduce ReSTO, a DRL-driven real-time and 

scalable offloading framework designed to 

overcome the inherent challenges of existing 

methods. ReSTO redefines the task-offloading 

paradigm by shifting from a batched scheduling 

approach to a real-time offloading framework. 

Tasks are scheduled immediately upon arrival, 

eliminating waiting times and enabling more 

efficient Resource utilization. This is achieved by 

modeling the offloading problem as a Semi-

Markov Decision Process (Semi-MDP), allowing 

decision-making at arbitrary task arrival times 

rather than fixed intervals. To effectively solve the 

problem, ReSTO employs a novel continuous-time 

Proximal Policy Optimization (PPO) algorithm, 

enhanced with specially designed scalable actor 

and critic networks that adapt seamlessly to 

varying numbers of edge nodes (ENs) and user 

devices (UDs). This architecture ensures robust 

performance across dynamic system conditions. 

In addition to its innovative decision-making 

framework, ReSTO introduces two key 

mechanisms to further enhance its performance. 

First, the homotopy reward mechanism integrates 

model-based and reality-based rewards to bridge 

the gap between theoretical assumptions and real-

world dynamics. This approach improves learning 

efficiency, enabling the algorithm to avoid local 

optima and converge toward globally optimal 

policies. Second, ReSTO clusters UDs into cells, 
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aggregating state information to reduce 

dimensional complexity and improve decision 

accuracy. This clustering approach ensures 

scalability and effective Resource allocation even 

in large-scale systems with high task loads. 

Extensive experimental evaluations highlight the 

significant advantages of ReSTO over state-of-the-

art algorithms. The results demonstrate that ReSTO 

consistently achieves lower system costs while 

exhibiting better scalability as the number of ENs 

and UDs fluctuates. These findings underscore the 

robustness and adaptability of the proposed 

framework, making it well-suited for the dynamic 

and heterogeneous environments characteristic of 

modern edge computing systems. However, 

transitioning from batch to real-time offloading 

also brings new challenges, particularly in terms of 

the computational overhead associated with state 

acquisition and decision-making processes. The 

need for rapid, real-time decisions places greater 

importance on minimizing time complexity to 

ensure the practical viability of ReSTO in large-

scale deployments. Future work will focus on 

exploring and developing algorithms with reduced 

time complexity, capable of operating under 

partially updated or approximate state information. 

By addressing these challenges, we aim to further 

enhance the efficiency and scalability of real-time 

offloading solutions, paving the way for their 

widespread adoption in edge computing. 

 Experimental Results and Validation: 

Extensive simulations demonstrate the 

superior performance of ReSTO compared to 

state-of-the-art methods. Specifically, ReSTO 

consistently achieves lower system costs (e.g., 

energy consumption, latency) while exhibiting 

better scalability as the number of ENs and 

UDs fluctuates. These results validate the 

effectiveness of ReSTO in optimizing resource 

allocation and adapting to dynamic system 

conditions. 

Conceptual Explanations: 

 Addressing Batching Limitations: By 

moving to a real-time framework, 

ReSTO eliminates the inherent delay 

associated with batched decision-

making, leading to more responsive 

and efficient resource allocation. 
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