
1

Journal of Optimization of Soft Computing (JOSC)

Vol. 2, Issue 4, pp: (1-15), Winter-2024

Journal homepage: https://sanad.iau.ir/journal/josc

 Paper Type (Research paper)

Real-Time Scalable Task Offloading in Edge Computing Using Semi-

Markov Decision Processes and Attention-Based Deep Reinforcement

Learning
Abbas Mirzaei1, Naser Mikaeilvand2, Babak Nouri-Moghaddam1, Sajjad Jahanbakhsh Gudakahriz3,

Ailin Khosravani1, Fatemeh Tahmasebizade1, Ali Seifi1, Hosein Hatami1
1. Department of Computer Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran

2. Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3. Department of Computer Engineering, Germi Branch, Islamic Azad University, Germi, Iran

Article Info Abstract

Article History:
Received: 2024/11/28
Revised: 2025/01/05

Accepted: 2025/02/02

DOI:

 Edge computing has emerged as a dynamic framework where

computational tasks are offloaded to distributed edge servers (ESs) to

provide low-latency and efficient services. As edge systems grow in

scale and complexity, leveraging Deep Reinforcement Learning (DRL)

has become a prominent approach to optimize task offloading and

Resource management. However, traditional DRL-based

methodologies encounter several challenges: (1) Discrete-time

decision frameworks, such as Markov Decision Processes (MDPs),

often enforce offloading in fixed timeslots, leading to scheduling

delays and inefficient Resource utilization. (2) Static computational

structures struggle to adapt to varying numbers of edge servers or user

devices, resulting in scalability issues and system inefficiencies. To

overcome these limitations, we introduce a novel DRL-driven real-time

offloading mechanism tailored for dynamic and scalable edge

environments. Our approach reformulates the offloading problem

within a Semi-Markov Decision Process (SMDP) framework and

introduces an adaptive optimization mechanism utilizing attention-

based graph operations for heterogeneous Resource environments. This

system, like how we prioritize tasks and divide resources, figures out

how much attention to pay to each task and which server should handle

it, to make things work smoothly. To make this work even better in the

real world, we use a special method to adjust the rewards, which helps

the system learn and improve its performance over time

Keywords:
Edge Computing; Task

Scheduling; Reinforcement

Learning; System Scalability.

*Corresponding Author’s Email

Address:

mirzaei_class_87@yahoo.com

1. Introduction

The rapid expansion of mobile networks and the

proliferation of connected devices have

transformed modern computing environments.

From autonomous vehicles to immersive

augmented reality applications, the demand for

high-speed, low-latency services has surged.

Traditional cloud computing architectures, despite

their powerful centralized Resources, often fall

short in meeting these latency-sensitive

requirements due to long transmission distances

and centralized processing bottlenecks [1]-[5]. This

gap has driven the evolution of edge computing,

which brings computation and storage closer to

end-users by deploying edge servers (ESs) within

the network's proximity. Within this paradigm,

tasks may be executed locally or offloaded to

nearby ESs. While ESs are equipped with more

robust computational capabilities compared to

UDs, the process of uploading tasks to ESs

introduces additional energy consumption and

latency. Moreover, the computational capacity of

ESs remains constrained compared to centralized

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

2

cloud servers, making them unsuitable for handling

large volumes of concurrent tasks. Resource

contention among multiple tasks can degrade

system performance and quality of service (QoS)

[6], [7]. Consequently, devising an efficient

scheduling mechanism for task offloading has

become critical. Such mechanisms aim to optimize

the selection of offloading targets and Resource

allocation strategies [8], often framed as mixed-

integer nonlinear programming (MINLP)

problems, which are known to be NP-hard [9].

Initially, mathematical approaches [10] were

developed to solve these optimization problems.

However, these model-based methods struggle

with generalization across diverse edge systems

characterized by heterogeneous transmission

technologies, application requirements, and

computational Resources. To address this

limitation, model-free metaheuristic algorithms

[11, 12] were introduced for task offloading.

Despite their flexibility, these algorithms face

significant challenges, including large search

spaces and poor adaptability to dynamic edge

environments. In recent years, Deep

Reinforcement Learning (DRL) has demonstrated

exceptional capabilities across various domains,

such as robotics control, autonomous driving, and

natural language processing. Leveraging deep

neural networks, DRL combines high-dimensional

data analysis with model-free learning, making it a

compelling choice for dynamic edge systems. Its

online learning capabilities enable adaptive policy

updates through continuous interaction with the

environment, offering real-time adaptability to

evolving edge conditions. As a result, DRL-based

methods have shown promising results in

optimizing task offloading and Resource allocation

in edge computing [13]-[16]. Despite its

advantages, DRL-based approaches face inherent

limitations, as illustrated in Fig. 1. Firstly, these

methods typically rely on discrete-time Markov

Decision Processes (MDPs), where decisions are

made at fixed intervals. This framework

necessitates batch processing of tasks, causing

delays as tasks wait for the next decision interval to

be scheduled [17]. Such wait-for-scheduling

latency increases Resource contention and lowers

task completion rates, particularly in systems with

stringent delay requirements. Secondly, traditional

DRL methods lack scalability [18, 19]. The fixed

computational graph of deep neural networks

requires consistent input and output dimensions,

making it challenging to adapt to varying system

scales [20]. For instance, in mobile edge

environments, the dynamic nature of vehicular

edge systems—with frequent arrivals and

departures of service or user vehicles—renders

non-scalable DRL approaches infeasible.

Retaining scalability under these conditions is

crucial but often necessitates retraining models, a

process that is both time-intensive and

computationally expensive.

Figure 1. Challenges in DRL-Based Offloading

Approaches.

Transitioning from a batched offloading

framework to a real-time approach, where tasks are

immediately scheduled upon arrival, intuitively

minimizes waiting time and avoids dimensional

mismatches caused by fluctuating task volumes.

However, the discrete-time MDP framework

utilized by classical DRL algorithms is inherently

unsuitable for such scenarios [21]-[23].

Additionally, scalability challenges, such as

mismatches in the dimensions of inputs and outputs

caused by dynamic variations in the number of

edge servers (ESs) and user devices (UDs), remain

unresolved. To address these challenges, we

propose a Real-time and Scalable Task Offloading

framework (ReSTO), leveraging a DRL-based

methodology.

In ReSTO, the task offloading problem is modeled

as a Semi-Markov Decision Process (Semi-MDP)

to enable decision-making at arbitrary task arrival

times. The framework introduces the Scalable

Continuous Proximal Policy Optimization

(SCPPO) algorithm, specifically designed to align

with the

Semi-MDP framework. To ensure scalability,

SCPPO employs a heterogeneous graph attention

mechanism for feature extraction, translating task-

specific characteristics into adaptive attention

scores for decision-making. Moreover, we develop

a hybrid reward mechanism that integrates model-

based and real-time feedback, referred to as the

homotopy reward. This reward scheme bridges the

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

3

gap between theoretical models and real-world

dynamics while enhancing exploration efficiency

during learning.

This paper aims to address the limitations of

existing DRL-based task offloading approaches in

edge computing environments. Specifically, we

focus on:

 1- Overcoming the limitations of discrete-time

MDPs: We propose a novel continuous-time DRL

framework that enables real-time, event-triggered

task scheduling, eliminating the need for batch

processing and reducing wait-for-scheduling

latency.

 2- Improving scalability in dynamic environments:

We introduce a scalable DRL architecture that can

adapt to varying numbers of tasks and edge servers

without requiring extensive model retraining.

By achieving these objectives, we aim to:

 Enhance task completion rates and

reduce latency in edge computing

systems with stringent performance

requirements.

 Improve resource utilization by

enabling more efficient task

scheduling and allocation.

 Increase the adaptability and

robustness of DRL-based offloading

solutions in dynamic and

unpredictable edge environments.

The key contributions of this work are as follows:

 Introduction of ReSTO

Framework:
We propose ReSTO, a novel real-time and

scalable task offloading framework. ReSTO

models the offloading problem using a Semi-

MDP and introduces the SCPPO algorithm for

real-time decision-making, eliminating the

latency associated with traditional batched

scheduling.

 Scalability via Graph Attention

Mechanism:
SCPPO employs heterogeneous graph

attention operations to extract task and

Resource features dynamically, enabling

adaptive attention score generation. This

approach prevents dimensional mismatches as

the number of ESs or UDs changes, ensuring

scalability.

 Development of Homotopy

Reward:
We formulate a hybrid reward system

combining theoretical model rewards with

real-time feedback. This homotopy reward

reduces the disparity between theoretical

assumptions and real-world conditions,

improving both performance and exploration

efficiency.

The remainder of this paper is organized as

follows: Section II reviews related works,

particularly focusing on real-time and scalable

RL/DRL-based approaches. Section III presents

the system model for real-time offloading and the

corresponding optimization problem. In Section

IV, we detail the ReSTO framework, including the

Semi-MDP formulation and the SCPPO algorithm

design. Section V evaluates ReSTO’s performance

against state-of-the-art algorithms, highlighting its

scalability and efficiency. Finally, Section VI

concludes the paper with insights and potential

future directions.

2. Related Works

In this section, we provide a comprehensive review

of DRL-based task offloading methods. Following

this, we delve into existing RL/DRL approaches

for real-time or scalable task offloading, analyzing

their achievements and limitations in comparison

to our proposed framework.

A. DRL-Based Task Offloading in Edge

Computing

Over the past decade, task offloading in edge

computing systems has increasingly relied on Deep

Reinforcement Learning (DRL) algorithms due to

their capacity for dynamic decision-making and

adaptability to complex environments. These

algorithms leverage the ability of neural networks

to process high-dimensional inputs and learn

optimal policies directly through interaction with

the environment. Numerous studies have tailored

DRL methods to address the unique challenges of

edge systems, such as Resource constraints,

latency requirements, and dynamic user demands.

One notable example is the work of Wang et al.

[12], who utilize Deep Q-Learning (DQN) to

optimize both task offloading and Resource

configuration in a blockchain-enabled edge

computing framework. Their approach introduces

trust mechanisms and leverages blockchain for

secure and efficient offloading. Similarly, Huang et

al. [13] employ a Twin Delayed Deep

Deterministic Policy Gradient (TD3) algorithm for

partial offloading systems, where tasks can be split

between local and edge processing. This method

improves decision-making by accounting for the

variability in task size and Resource availability,

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

4

demonstrating the potential of DRL in adaptive

task allocation.

Building on these foundational approaches,

subsequent research has focused on enhancing the

performance and robustness of DRL-based task

offloading. For instance, Xu et al. [14] and Ma et

al. [15] introduce temporal feature extraction to

capture the dynamic nature of edge environments,

utilizing historical state information to better

model system behavior and predict the effects of

various actions. This temporal awareness allows

the system to adapt to changing workloads and

network conditions, leading to more effective

offloading strategies.

Moreover, Xu et al. [16] propose an exploration-

exploitation strategy tailored to the training

process. By prioritizing exploration during the

early stages of training and gradually shifting

towards the exploitation of learned policies, their

approach strikes a balance between discovering

new solutions and refining existing ones. This

adaptive strategy improves policy performance and

ensures more reliable decision-making over time.

To address the computational complexity and

convergence challenges associated with large

action spaces, researchers have also explored

hybrid approaches that integrate DRL with

traditional optimization techniques. For example,

Chen et al. [17] enhance DQN-based task

offloading with sequential quadratic programming

for Resource allocation. This combination reduces

the dimensionality of the problem and accelerates

convergence, enabling more efficient use of edge

Resources.

Li et al. [18] take a multi-agent approach,

employing a Parameterized Multi-Agent Soft

Actor-Critic (SAC) algorithm to address the

interdependence of actions across agents. By

categorizing actions into those that affect other

agents and those that do not, they effectively

manage Resource contention in collaborative edge

environments. The use of a genetic algorithm

further refines Resource allocation decisions,

ensuring optimal system performance.

Despite these advancements, existing DRL-based

methods face inherent limitations due to their

reliance on the discrete-time Markov Decision

Process (MDP) framework. This framework

enforces decision-making at fixed intervals,

leading to batch processing of tasks. Such a

structure introduces scheduling delays, as tasks

must wait until the next decision point before

offloading can occur [24], [25]. This wait-for-

scheduling latency becomes particularly

problematic in latency-sensitive applications,

where even slight delays can significantly degrade

performance. Additionally, most DRL approaches

encode system states into a one-dimensional input

vector for processing by a multi-layer perceptron

(MLP). While this design simplifies

implementation, it limits scalability. Fixed input-

output dimensions in MLPs cannot adapt to

changes in the number of edge servers (ESs) or user

devices (UDs), resulting in dimensional

mismatches. This lack of flexibility hampers the

applicability of DRL algorithms in dynamic edge

environments, such as vehicular networks or large-

scale IoT systems, where the network topology and

Resource availability frequently change.

These challenges underscore the need for novel

frameworks and algorithms that overcome the

constraints of discrete-time MDPs and enable real-

time, scalable task offloading in edge computing

systems. Future solutions must address both the

latency introduced by batch processing and the

scalability issues arising from static neural network

architectures, paving the way for more adaptive

and efficient DRL applications in edge

environments.

 Categorization by Objective:

1. Latency Minimization: Focus on

methods specifically designed to

minimize task completion time or

end-to-end delay.

2. Energy Efficiency: Analyze methods

that prioritize minimizing energy

consumption at the device and

network levels.

3. Resource Allocation: Discuss

approaches that optimize resource

allocation among UDs and ESs,

considering factors like CPU,

memory, and bandwidth.

4. Load Balancing: Examine methods

that aim to distribute the

computational load evenly across the

available ESs.

B. Real-Time RL/DRL for Task Scheduling

Real-time decision-making is a critical component

of task scheduling in edge computing and

numerous other domains, where rapid responses to

dynamic changes are essential for maintaining

system performance and efficiency. However, the

discrete-time Markov Decision Process (MDP)

framework, which underpins most traditional

RL/DRL methods, introduces inherent constraints

when applied to real-time applications. By

requiring fixed decision intervals, the discrete-time

MDP framework creates bottlenecks, such as

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

5

delays in task execution, that compromise the

responsiveness and adaptability of RL-based

solutions. Alternative frameworks, such as the

multi-armed bandit [26]-[30], have been explored

to address some of these challenges. While these

models are computationally simpler and focus on

optimizing immediate rewards, they often fail to

account for the temporal dependencies and

cumulative effects of actions. This omission can

lead to suboptimal decision-making, particularly in

complex and dynamic environments where long-

term outcomes must be carefully balanced with

short-term gains [31]-[33].

In contrast, the Semi-Markov Decision Process

(Semi-MDP) framework is particularly well-suited

for real-time scheduling tasks. Unlike the discrete-

time MDP, Semi-MDP allows for variable

intervals between decision points, making it more

flexible and capable of handling tasks as they

arrive. This flexibility enables the development of

policies that optimize long-term performance while

addressing the immediate requirements of real-

time systems. For instance, Liang et al. [20] and

Hao et al. [21] successfully use Semi-MDPs to

model real-time scheduling problems,

demonstrating the framework’s potential to

accommodate dynamic workloads and varying

system conditions. Despite its advantages, adapting

existing algorithms to the Semi-MDP framework

poses unique challenges due to its structural

differences from the traditional MDP approach.

One common strategy involves normalization,

which converts Semi-MDP problems into an MDP-

compatible format, allowing established DRL

algorithms to be applied. For example, Liang et al.

[22] normalize Semi-MDP problems by estimating

theoretical model-based Q-values for supervised

pre-training [34]-[36]. This approach provides a

starting point for the policy, which is then refined

through interactions with the environment.

Similarly, Wu et al. [23] utilize state transition

probabilities during the normalization process to

transform Semi-MDPs into a form solvable by

value iteration techniques.

An alternative to normalization-based methods is

the direct design of algorithms tailored to the Semi-

MDP framework. These approaches avoid the

approximations and assumptions inherent in

normalization, enabling more accurate modeling of

real-world scenarios. For example, Van Huynh et

al. [24] propose a Dueling Double Deep Q-

Network (DDQN) approach that maximizes

cumulative single rewards without incorporating

discount factors, focusing instead on immediate

benefits within a Semi-MDP structure. Wei et al.

[9] employ an exponential decay model to compute

cumulative discounted returns, deriving a Bellman

optimality equation to guide decision-making with

DQN. Kim et al. [25] adapt the Soft Actor-Critic

(SAC) algorithm for the Semi-MDP framework,

introducing modifications that account for the

variable time intervals and cumulative reward

structures characteristic of Semi-MDPs. Despite

these advancements, existing methods still exhibit

notable limitations. Normalization-based

approaches often rely heavily on theoretical

assumptions, such as idealized transition models or

fixed state representations, which reduce their

generalizability to real-world, complex

environments [37]-[40]. These assumptions can

lead to performance degradation when applied to

heterogeneous and highly dynamic edge systems,

where practical constraints and unpredictable

factors frequently deviate from theoretical models.

On the other hand, model-free DRL approaches

[41]-[45] that bypass theoretical dependencies also

face challenges. These methods commonly employ

simplistic neural network architectures, such as

basic feedforward models, that lack the scalability

needed to adapt to dynamic edge network

conditions. In systems where the number of edge

servers (ESs) and user devices (UDs) can fluctuate

significantly, fixed input-output dimensions lead to

dimensional mismatches, requiring costly

retraining of the models to accommodate changes

[46]-[48]. This inflexibility limits the practical

deployment of model-free DRL solutions in

scenarios characterized by high variability and

evolving system requirements. Overall, while the

Semi-MDP framework offers significant potential

for enabling real-time decision-making in edge

computing, achieving effective and scalable

solutions necessitates innovative algorithmic

designs that address both the limitations of

normalization-based methods and the scalability

constraints of traditional DRL models. Future work

must focus on bridging these gaps to develop

robust and adaptable frameworks capable of

supporting real-time, scalable task scheduling in

edge environments.

 Weaknesses of Current Semi-MDP

Methods:

1. Normalization-Based Approaches:

2. Reliance on Theoretical Assumptions:

Often rely on idealized models and

assumptions, which can limit their

applicability in real-world scenarios

with high variability and uncertainty.

3. Potential for Accuracy Loss: The

normalization process can introduce

approximations that may lead to

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

6

suboptimal solutions or reduced

accuracy.

4. Limited Exploration of Direct Semi-

MDP Algorithms: While some direct

approaches exist, the field is still

relatively under-explored compared to

normalization-based methods.

5. Scalability Challenges: As the

complexity of the environment and the

number of tasks increase, solving

Semi-MDPs can become

computationally expensive, especially

for complex DRL algorithms.

6. Handling of Uncertainty: Many

existing methods may not adequately

address the inherent uncertainty and

stochasticity present in real-world

scheduling problems.

3. System Model and Problem Formulation

We consider a crowdsourcing-inspired MEC

system, as illustrated in Fig. 1, comprising multiple

applications and edge servers (ESs) with diverse

configurations and characteristics. These

applications may vary significantly in their

requirements, encompassing delay-sensitive

services such as networked gaming, autonomous

driving, and AR/VR, as well as resource-intensive

tasks like big data analytics, scientific computing,

and video surveillance [49]. Similarly, ESs can

range from micro data centers and edge clouds to

high-capacity computing servers or even gateways

deployed in residential or office settings. For

generality, we assume these ESs are managed and

operated by distinct edge service providers. To

maximize resource utilization and enhance system

performance in terms of scalability, reliability, and

other metrics, a third-party platform is introduced

to coordinate ES operations and handle workload

dispatch from end users. Acting as an intermediary,

this platform serves as a front-end interface for

edge computing services, bridging the gap between

clients submitting tasks and ESs providing

computational resources. Upon receiving a task,

the platform assigns it to the most suitable ES

hosting the requested service and ensures the

computation result is returned to the client

seamlessly. This interaction is transparent to users,

provided the system meets their application

performance expectations, such as low latency and

high computation quality.

Both application providers and ESs must undergo

an onboarding process with the platform before

accessing or delivering edge services. This

formalized process involves signing agreements

with the platform to define roles and

responsibilities. For application providers, this

includes specifying service requirements such as

task rates, task valuation, budget constraints,

computational demands, QoS parameters (e.g.,

maximum tolerable delay), and security or

compliance needs. Similarly, ESs seeking to

participate in the system are subject to a

comprehensive evaluation by the platform. This

involves reviewing their security protocols,

compliance certifications, and data management

practices to ensure adherence to industry standards

and regulatory requirements [50]. Additionally, a

risk assessment is often conducted to identify

potential vulnerabilities. ESs must provide detailed

information regarding their resource capacities,

operational costs, and revenue expectations.

Using this information, the platform optimizes task

offloading strategies and resource allocation for

ESs, subsequently formalizing agreements with

both parties. Once agreements are in place, ESs

configure the necessary accounts and

infrastructure, enabling application providers to

deploy their services. Importantly, ongoing

monitoring and auditing mechanisms are

established to ensure all parties adhere to the

agreed-upon terms, with regular performance and

compliance evaluations conducted throughout the

service lifecycle.

This study considers a scenario where application

providers make advance payments to the platform,

which, in turn, allocates a portion of these

payments to incentivize contributions from edge

servers (ESs). The platform's key decisions

include: (1) whether to accept both the application

providers and ESs into the system, (2) determining

the amount of resources each ES should allocate to

applications, and (3) devising an efficient task

dispatching strategy to distribute tasks among the

backend ESs hosting the services. To simplify

notation, we define the set of ESs and

applications/services in the system as M and N,

respectively, with the corresponding cardinalities

denoted by ∣M∣ and ∣N∣. For clarity, the terms

"applications" and "application providers" are used

interchangeably in this paper unless otherwise

specified. The primary notations employed

throughout this work are summarized in Table 1.

Each application 𝑖 ∈ 𝑁𝑖 is characterized by a tuple

(𝑝𝑖 , 𝑣𝑖, 𝛼𝑖 , 𝐷𝑖, 𝑠𝑖),where:
1. 𝑝𝑖: The payment made by application

provider iii to the platform for task

offloading.

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

7

2. 𝑣𝑖: The utility gained by i from offloading

a task, such as reduced energy consumption

at user devices, enhanced computational

quality, or shorter response times.

Generally, 𝑝𝑖 ≤ 𝑣𝑖 Offloading offers net

benefits to the application.

3. 𝛼𝑖: The arrival rate of tasks for application

i.

4. 𝑠𝑖: The workload (measured in CPU cycles)

required to process a task.

5. 𝐷𝑖: The maximum latency tolerable by

application i.

Given the stochastic nature of the system and the

uncertainty in resource allocation at ESs, the actual

value derived by an application from task

offloading depends on the quality of the edge

computing service. We represent this with a utility

function 𝑢𝑖𝑗 ∈ [0,1], which quantifies the

satisfaction level of application i when offloading

tasks to 𝐸𝑆𝑗. This utility function is an abstract

representation and can vary depending on the

application's requirements.

For instance, for delay-sensitive applications,

𝑢𝑖𝑗may be defined based on reductions in task

latency. For resource-intensive applications,

𝑢𝑖𝑗could reflect the computational quality, such as

compression ratios or prediction accuracy.

Moreover, the form of 𝑢𝑖𝑗 can differ even within

the same application category. For example, in

delay-sensitive applications, 𝑢𝑖𝑗 could be a step

function to model satisfaction levels in the

presence of hard deadlines.

𝑢𝑖𝑗 = {
1, if 𝑡𝑖𝑗 ≤ 𝐷𝑖

0, otherwise
 (1)

A. Platform Model
The platform operates under the following assumptions:

1. The platform employs a probabilistic task

dispatching mechanism, where each

application task is routed to a specific ES

based on predefined probabilities.

2. The payment 𝑝𝑖 made by application iii is

distributed between the platform and the

ES executing the task. Specifically, the

ES receives a reward of (1 − 𝜆𝑖)𝑝𝑖,

where 𝜆𝑖 ≤ 1, while the platform retains

𝜆𝑖𝑝𝑖 as its service charge or maintenance

fee. The parameter 𝜆𝑖 , a critical system

variable, is determined by the platform

and forms part of the contractual

agreement with the ES.

4. Real-time and Scalable Task Offloading

Framework

Before detailing the algorithm, we first describe the

calculation of 𝑢𝑖𝑗 and 𝑡𝑖𝑗 under a fixed resource

allocation 𝐹𝑖𝑗 = 𝐹0. The following assumptions,

drawn from prior studies, are applied:

1. Tasks from each application arrive

according to a Poisson process [46].

Consequently, the arrival of tasks from

application i at 𝐸𝑆𝑗 also follows a Poisson

process with a rate of 𝑟𝑖𝑗 = 𝛼𝑖𝑥𝑖𝑗 , where

𝛼𝑖 represents the task arrival rate, and 𝑥𝑖𝑗

denotes the probability of task dispatch to

𝐸𝑆𝑗 .

2. The workload of tasks from each

application is assumed to follow an

exponential distribution (in CPU cycles)

[27][36]. This implies that the processing

time for a task from application i at 𝐸𝑆𝑗

also follows an exponential distribution

with a mean of 1/wij1/w where 𝑤𝑖𝑗 =

𝐹𝑖𝑗(0) and 𝑠𝑖 represents the workload of

the task.

Based on these assumptions, the task processing

system for an application i at 𝐸𝑆𝑗 can be modeled

as an M/M/1queue. The probability density

function (pdf) for the task delay 𝑡𝑖𝑗 this system is

then expressed as:

𝑓𝑇(𝑡𝑖𝑗 ≤ 𝑡) = (𝑤𝑖𝑗 − 𝑟𝑖𝑗) ∙ 𝑒−(𝑤𝑖𝑗−𝑟𝑖𝑗)𝑡 (2)

Assuming 𝑢𝑖𝑗 is defined as in Eq. (2) and 𝑥𝑖𝑗 > 0

(indicating that tasks from application i are

offloaded to 𝐸𝑆𝑗), the relationship derived from

constraint (3b) is as follows:

Pr (𝑡𝑖𝑗 < (1 −
𝑝𝑖

𝑣𝑖
) 𝐷𝑖) ≥ prob𝑖

 (3)

Combining (7) and (8), we get:

𝑥𝑖𝑗 ≤
1

𝛼𝑖
 [

ln (1− 𝑝𝑟𝑜𝑏𝑖)

(1−
𝑝𝑖
𝑣𝑖

)𝐷𝑖

+
𝐹𝑖𝑗

0

𝑠𝑖
] (4)

Let 𝑥𝑖𝑗𝐻𝑥 denote the right-hand side (RHS) of the

inequality mentioned above, defined as:

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

8

𝑥𝑖𝑗
𝐻 ≜

1

𝛼𝑖
 [

ln (1− 𝑝𝑟𝑜𝑏𝑖)

(1−
𝑝𝑖
𝑣𝑖

)𝐷𝑖

+
𝐹𝑖𝑗

0

𝑠𝑖
] (5)

Clearly, 𝑥𝑖𝑗𝐻𝑥 represents the upper bound of the

offloading probability for which application

provider i is satisfied with offloading its tasks to

𝐸𝑆𝑗 , meeting the QoS requirements. Notably, this

upper bound is independent of 𝜆𝑖 and is solely

determined by 𝐹𝑖𝑗 (0) and the workload profiles.

Similarly, from constraint (3c) and assuming 𝑥𝑖𝑗 >

0, we derive:

𝑥𝑖𝑗 ≥
(1+𝛽𝑗𝑖)𝑐𝑗(𝐹𝑖𝑗

0)

𝛼𝑖(1−𝜆𝑖)𝑝𝑖
 , (6)

Let the right-hand side (RHS) of the above

inequality be denoted as 𝑥𝑖𝑗
𝐿 , defined as:

𝑥𝑖𝑗
𝐿 ≜

(1+𝛽𝑗𝑖)𝑐𝑗(𝐹𝑖𝑗
0)

𝛼𝑖(1−𝜆𝑖)𝑝𝑖
 . (7)

Algorithm 1 Deriving the optimal resource

allocation, task offloading probabilities, and ratios

under a given resource allocation 𝐹𝑖𝑗
0 ′

s.

 Input: Task profiles (𝛼𝑖
′𝑠, 𝑝𝑖

′𝑠, 𝑣𝑖
′𝑠, 𝐷𝑖

′𝑠, 𝑠𝑖
′𝑠); ES

profiles (𝑐𝑗(𝐹𝑖𝑗)
′
𝑠, 𝐹𝑗

′𝑠, 𝛽𝑗𝑖
′ 𝑠); Initial resource

allocations 𝐹𝑖𝑗
0 ′

𝑠;

 Output: Resource allocations 𝐹𝑖𝑗
0,~′

𝑠; Ratios

𝜆𝑖
0,~′

𝑠; Task offloading probabilities 𝑥𝑖𝑗
0,~′

𝑠;

1 for 𝑖 ∈ 𝒩 𝒅𝒐

2 for 𝑗 ∈ ℳ 𝒅𝒐

3 Derive 𝑥𝑖𝑗
𝐻 and 𝜆𝑖𝑗

0 according to Eq 5.

4 for 𝑖 ∈ 𝒩 𝒅𝒐

5 Get 𝜆𝑖
0 and 𝑥𝑖𝑗

0

6 for 𝑗 ∈ ℳ 𝒅𝒐

7 Get 𝒴𝑖𝑗
0 �́�

8 Obtain 𝜆𝑖
0,∼ �́�, 𝐹𝑖𝑗

0,∼�́� and 𝑥𝑖𝑗
0,∼𝑠 ́

5. Simulation Experiments

A. Experimental Setup

The simulation framework was developed using

Python 3.9 and PyTorch 2.3.0, running on a high-

performance desktop system powered by an Intel

Core i9-13900K processor and an Nvidia GeForce

RTX 3090 GPU. This computational setup was

chosen to ensure efficient processing of the

complex algorithms and large-scale datasets

involved. The simulation leverages vehicle

trajectory data from the Peachtree Street section of

the Next Generation Simulation (NGSIM) dataset

[36]. This dataset provides detailed and realistic

representations of urban traffic flow, making it

suitable for modeling dynamic user-device

behaviors in edge computing scenarios.

In our simulation environment, user devices (UDs)

are designed to move along stochastic trajectories

generated from the NGSIM dataset. These

trajectories simulate real-world mobility patterns,

such as vehicles traveling through a busy

metropolitan area. UDs are assumed to exit the

system once their respective trajectories conclude,

reflecting the dynamic entry and exit behavior

typical in edge networks. Edge nodes (ENs) are

deployed strategically at random locations along

these trajectories, ensuring adequate coverage of

user mobility patterns while capturing the inherent

randomness of real-world deployments. The

system parameters used in the simulation are

comprehensively detailed in Table II. These

include network characteristics, Resource

configurations, and mobility patterns, ensuring that

the simulation accurately reflects the operational

constraints and requirements of modern edge

computing environments.

Training Process and Network Design

The training process was meticulously designed to

optimize the learning performance of the proposed

algorithm. The neural network architecture

incorporates several specialized components to

handle the complexity of real-time task offloading

and Resource allocation. The hidden feature

dimension d was set to 256, balancing

computational efficiency with model

expressiveness. The attention mechanism

employed K=4 attention heads, enabling the model

to capture intricate relationships between tasks and

edge nodes across multiple dimensions.

Three encoder components—𝐻𝐸𝑁, 𝐻𝐶𝑒𝑙𝑙, and

𝐻𝑇𝑎𝑠𝑘 —were implemented as two-layer

multilayer perceptrons (MLPs), each employing

Tanh activation functions. These encoders

transform raw input data into high-dimensional

representations suitable for downstream

processing. The MLP Dc, responsible for

computing Resource allocation, was configured

with two layers, ensuring lightweight and efficient

computation. In contrast, the MLP Dv within the

critic network was designed with four layers to

enhance its capacity for estimating value functions,

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

9

which are critical for effective policy evaluation

and improvement.

Key Parameters for the Continuous-Time PPO

Algorithm

To align the training process with the Semi-

Markov Decision Process (Semi-MDP)

framework, we tailored the continuous-time

Proximal Policy Optimization (PPO) algorithm

with carefully selected hyperparameters. The

discount factor α was set to 0.1, ensuring a

balanced emphasis on immediate rewards and

long-term gains. The importance sampling ratio ϵ,

set to 0.2, controlled the degree of policy updates

to maintain stability during training. The

Generalized Advantage Estimation (GAE)

hyperparameter λ was configured as 0.98 to

improve the estimation of advantages, enhancing

the convergence rate and overall learning

efficiency.

B. Training Configuration and Iterations

The training process spanned 400 episodes,

providing sufficient iterations for the algorithm to

converge to an optimal policy. Each episode was

further divided into a maximum of 200 iterations,

allowing the model to explore diverse states and

actions comprehensively. During training, the

model continually interacted with the simulated

environment, refining its policy through trial and

error while leveraging feedback from the

homotopy reward mechanism. This hybrid reward

system combined theoretical insights with real-

time observations, bridging the gap between

simulated models and practical deployments.

The overall design of the simulation environment,

coupled with the robust training setup, ensures that

the proposed algorithm is well-equipped to handle

dynamic and scalable edge computing scenarios.

By incorporating realistic mobility patterns,

stochastic task generation, and advanced neural

network architectures, the simulation framework

provides a reliable foundation for evaluating the

effectiveness of real-time task offloading and

Resource allocation strategies in next-generation

edge systems.

TABLE I.

PARAMETER SETTINGS OF SIMULATION

Notations
Simulation

Value
Notations

Simulation

Value

M 8 𝛼 U(1.0, 1.2)

MB U (0.8,

1.0) GCycle

U (1, 2)

Second

𝒇𝒎
U (2, 4)

GHz
β

𝒅𝒎 50 Meter ϑ

N 30 p

1 Watt

𝒒𝒎𝒂𝒙 3 𝜍 -3

𝜾 1 𝜎2
-114

dBm/MHz

X 0.1 B 1 MHz

𝒇𝒏
U (1, 2)

GHz
Ω 1

ϒ 4 Κ 10−27

The data reuse frequency was configured to 10

iterations. For the actor-network, the learning rate

was set to 1 × 10−4, while the critic network

utilized a higher learning rate of 1 × 10−3.The

Adam optimizer, with 𝜀 = 1 × 10−5,was

employed for parameter updates.

To evaluate the performance of the proposed

method, we conducted a comparative analysis with

four state-of-the-art DRL-based methods designed

to address scalability, as well as a single-step

greedy method. A brief overview of these

approaches is as follows:

 Single-Step Greedy (SSG): This method

selects actions greedily based on

immediate task benefits. While intuitive, it

focuses exclusively on short-term gains,

neglecting long-term system optimization.

 Sequence to Sequence (S2S) [11]:

This approach leverages recurrent neural

networks (RNNs) for sequential system

feature extraction and multi-action

generation. However, it operates under a

batched offloading framework and

struggles to adapt action dimensions to

dynamic variations in the number of edge

nodes (ENs).

 Self-Attention (SA) [10]:
Using a self-attention mechanism, this

method integrates task features and

generates actions in parallel. Despite this,

it inherits the limitations of S2S, including

reliance on batched offloading and the

inability to adapt to changes in EN counts

due to its concatenation of EN states as

input.

 Event-Driven DQN (EDQ) [9]:

This real-time approach employs an event-

driven Deep Q-learning framework based

on task and EN states. However, its

reliance on a multilayer perceptron (MLP)

architecture for the Q-network constrains

scalability, particularly in large-scale

systems.

 GNN-based Multi-agent DRL (GMD)

[30]:

This method utilizes a distributed multi-

agent DRL framework with graph neural

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

10

networks (GNNs), allowing user devices

(UDs) to independently select actions. By

representing offloading targets as positive

integers instead of one-hot vectors, it

offers significant scalability. However,

multi-agent DRL frameworks are

challenging to train in large-scale

environments, often leading to diminished

performance.

For a fair comparison, we set the batch interval to

0.2 in subsequent experiments for the S2S, SA, and

GMD methods, which follow a batched offloading

framework.

Notably, the ReSTO framework outperformed all

baselines in terms of system cost, even under zero-

shot transfer scenarios, surpassing re-trained

methods as well. This underscores the exceptional

scalability and efficiency of ReSTO. Interestingly,

we observed that the system costs of SA and EDQ

remained stable or even increased as additional

ENs became available. This phenomenon is

attributable to their reliance on concatenated EN

states as input, which inflates the input dimensions,

causing the critic network to struggle with accurate

evaluations. For EDQ, the increase in selectable

actions further complicates Q-network

convergence, exacerbating its limitations in larger

systems.

C. Batched Offloading V.S. Real-Time

Offloading

To highlight the performance benefits of

transitioning from batched offloading to real-time

offloading, we compare the proposed ReSTO

method with existing approaches under two load

scenarios. The results, as illustrated in Fig. 2,

consider a normal scenario with baseline system

settings and a harsh scenario where the load factor

𝛽 ∈ 𝑢(1.2,1.4). For consistency, we introduce

artificial delays in task execution to emulate

batched offloading for ReSTO, SSG, and EDQ,

which inherently support real-time offloading.

Other methods, lacking real-time capabilities, are

excluded from this analysis. Batched offloading is

tested with four discrete timeslot intervals: 0.8, 0.6,

0.4, and 0.2.

The experimental findings indicate that reducing

the interval duration in batched offloading

substantially lowers system costs under both load

scenarios, with the real-time offloading approach

consistently achieving the best performance. This

improvement is especially pronounced under

higher load conditions, as shorter decision intervals

minimize the delay between task arrival and

scheduling, allowing for more effective Resource

management. Conversely, under increased system

loads, extended waiting periods in batched

offloading sharply reduce the scope for scheduling

adjustments, leading to greater performance

degradation. Notably, at elevated load levels with

larger timeslot intervals, DRL-based methods

display inferior performance compared to the SSG

approach. This can be attributed to challenges in

learning from delayed and sparse rewards during

training, particularly when task failures dominate

the early learning phase. As a result, many DRL-

based methods converge to suboptimal solutions,

unable to recover effectively. In contrast, the

ReSTO framework, supported by the homotopy

reward mechanism, provides more immediate and

structured reward feedback during early training

stages. This design facilitates more efficient

exploration and allows ReSTO to avoid local

optima, delivering significantly better performance

even under harsh conditions.

D. Ablation Study

An ablation study was conducted to investigate the

impact of the homotopy reward design and graph-

based cell state aggregation on the performance of

the proposed framework. The experiments were

carried out under both normal and harsh scenarios

to provide a comprehensive evaluation across

varying load levels. Two key components were

evaluated: (1) the reward mechanism, with three

configurations considered—model-based reward,

reality reward, and the proposed homotopy

reward—and (2) the user device (UD) state fusion

method, comparing direct aggregation of UD states

independently versus graph-based aggregation of

cell states. These configurations were

systematically combined into multiple algorithm

variants, and their performance was assessed.

The study revealed significant differences in

performance across the reward settings. Among the

configurations, the reality reward (blue line)

exhibited the largest fluctuations during training.

These fluctuations can be attributed to the reward

mechanism's reliance on real-time feedback, which

is inherently noisy and less predictable. The lack of

robust guidance in the early training stages often

led to instability in task success rates, particularly

under harsh scenarios where Resource constraints

are more pronounced. Additionally, this

configuration struggled to balance immediate

performance with long-term optimization,

highlighting its limitations in dynamic and

unpredictable environments.

Conversely, the model-based reward demonstrated

greater stability but was less effective in capturing

the complexities of real-world conditions. This

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

11

resulted in suboptimal exploration, limiting its

ability to adapt to diverse scenarios. The proposed

homotopy reward bridged the gap between the

model-based and reality rewards, effectively

integrating theoretical guidance with real-time

feedback. This hybrid approach significantly

improved exploration efficiency, enabling the

algorithm to converge faster and achieve better

performance across both normal and harsh

scenarios. The homotopy reward design also

mitigated the challenges of sparse rewards,

ensuring consistent progress during training.

The study further examined the effects of state

aggregation methods. Directly aggregating UD

states independently often resulted in subpar

system performance due to the lack of contextual

understanding of Resource and task interactions

within the network. In contrast, the graph-based

cell state aggregation effectively captured spatial

and temporal dependencies, enhancing the

framework's ability to adapt to changes in system

dynamics. By leveraging graph structures to model

interactions between tasks and edge servers (ESs),

this method provided a holistic view of the

network, leading to more informed and efficient

decision-making.

The analysis also sheds light on the limitations of

the GMD algorithm, which demonstrated a

tendency to prioritize tasks with higher energy

consumption. This behavior can be traced to its

distributed multi-agent DRL framework, where

each agent operates with limited visibility into the

overall system state. Without a comprehensive

view of the network, agents often opted to process

tasks at a higher frequency to minimize CPU

occupancy and avoid Resource contention. While

this strategy may reduce immediate delays, it

inadvertently increases energy consumption and

diminishes the overall system efficiency.

In summary, the results highlight the advantages of

the proposed homotopy reward design and graph-

based cell state aggregation in improving system

performance and scalability. By addressing the

shortcomings of traditional reward mechanisms

and state aggregation methods, the proposed

approach achieves superior stability, faster

convergence, and enhanced adaptability,

particularly under challenging operational

conditions.

E. Comparisons under Different Environmental

Settings

This section evaluates the performance of our

proposed algorithm against other methods under

varying simulation parameters, specifically

focusing on the task generation interval parameter

(𝛺) of the exponential distribution and the user

preference for required CPU cycles 𝛽). These

parameters influence the system load by altering

the task arrival rate and the computational demand

of each task. Our analytics illustrate the system

costs across different values of 𝛺. A reduction in 𝛺

corresponds to an increased number of tasks and a

heavier overall system load. The results reveal that

DRL-based methods consistently outperform the

SSG approach in all scenarios. This is due to the

long-term optimization capabilities inherent in

DRL, which enable proactive and foresight-driven

decision-making. In contrast, the SSG method

prioritizes immediate task optimization without

accounting for future system demands, leading to

significant queue delays and higher overall costs.

Among the DRL-based methods, the S2S approach

exhibits comparatively higher system costs. This

can be attributed to its vulnerability to the memory-

forgetting issue associated with processing long

task sequences. As 𝛺 decreases, the number of

tasks requiring scheduling within each discrete

timeslot increases, further amplifying this

limitation. In contrast, the proposed ReSTO

framework achieves the lowest system cost across

all scenarios, with the performance gap widenthe

ing as 𝛺 decreases. This superior performance

stems from the fundamental differences between

real-time and batched offloading. As the system

load intensifies with a higher task arrival rate, the

limitations of batched offloading become more

pronounced, leading to greater performance

degradation for methods relying on discrete

scheduling intervals. These findings reaffirm the

advantages of the real-time offloading strategy

employed in ReSTO, particularly under high-load

conditions.

Our analytics compares the performance of the

algorithms across different values of 𝛽, which

represents the computational load associated with

tasks. Higher 𝛽 values indicate that tasks demand

more CPU cycles for processing, thereby

increasing the system load. The results reveal that

under low-load scenarios, DRL-based methods

demonstrate a clear advantage over the Single-Step

Greedy (SSG) approach, achieving significantly

lower system costs. This improvement is attributed

to the long-term optimization capabilities of DRL,

which enable more efficient Resource allocation

and task scheduling by anticipating future system

states. In contrast, SSG focuses solely on

immediate task optimization, often resulting in

suboptimal Resource utilization and increased

queuing delays. As the system load intensifies with

higher 𝛽 values, the performance gap between

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

12

DRL-based methods and SSG narrows. This

reduction in effectiveness stems from the

challenges introduced by the more demanding

environment. Heavier system loads generate

delayed and sparse rewards, complicating the

training process for DRL algorithms and limiting

their ability to converge to optimal policies. Under

these conditions, traditional DRL-based

approaches are more likely to become trapped in

local optima, as the sparse feedback makes it

difficult to identify and reinforce effective

scheduling strategies.

The proposed ReSTO framework, however,

addresses these limitations through its innovative

homotopy reward mechanism. By combining

model-based and reality-based rewards, the

homotopy reward provides consistent and

structured feedback throughout the training

process. This design enables ReSTO to navigate

complex and dynamic system states more

effectively, avoiding local optima and guiding the

algorithm toward globally optimized solutions.

The ability to adapt to varying load conditions is

further enhanced by the real-time offloading

strategy employed in ReSTO, which eliminates the

delays associated with batched scheduling. This

combination of timely decision-making and robust

reward feedback allows ReSTO to maintain

superior performance across all load conditions.

Moreover, the advantages of ReSTO become

increasingly pronounced as the system load rises.

In high-load scenarios, where tasks require

significant computational Resources and delays are

more detrimental, the benefits of real-time

offloading are particularly evident. By reducing the

waiting time between task arrival and execution,

ReSTO not only minimizes queuing delays but also

maximizes Resource utilization efficiency. These

factors collectively contribute to ReSTO’s

consistent outperformance of competing methods,

demonstrating its scalability, adaptability, and

resilience under diverse operational conditions.

In summary, the integration of the homotopy

reward mechanism and real-time offloading in

ReSTO provides a significant edge over existing

DRL-based approaches and heuristic methods like

SSG. The framework’s ability to maintain low

system costs under both low and high system loads

highlights its robustness and makes it a promising

solution for real-time and scalable task offloading

in dynamic edge computing environments.

Fig 2. System Costs Across Algorithms for Varying Task

CPU Cycle Requirements.

6. Conclusions

While DRL-based algorithms have demonstrated

exceptional capabilities in optimizing task

offloading for edge computing, several persistent

challenges limit their potential for broader practical

deployment. Key among these is the waiting time

associated with batched decision-making and the

dimensional mismatches arising from dynamic

system scales. These limitations not only impede

performance improvements but also hinder the

scalability and adaptability of such methods in real-

world applications. To address these critical issues,

we introduce ReSTO, a DRL-driven real-time and

scalable offloading framework designed to

overcome the inherent challenges of existing

methods. ReSTO redefines the task-offloading

paradigm by shifting from a batched scheduling

approach to a real-time offloading framework.

Tasks are scheduled immediately upon arrival,

eliminating waiting times and enabling more

efficient Resource utilization. This is achieved by

modeling the offloading problem as a Semi-

Markov Decision Process (Semi-MDP), allowing

decision-making at arbitrary task arrival times

rather than fixed intervals. To effectively solve the

problem, ReSTO employs a novel continuous-time

Proximal Policy Optimization (PPO) algorithm,

enhanced with specially designed scalable actor

and critic networks that adapt seamlessly to

varying numbers of edge nodes (ENs) and user

devices (UDs). This architecture ensures robust

performance across dynamic system conditions.

In addition to its innovative decision-making

framework, ReSTO introduces two key

mechanisms to further enhance its performance.

First, the homotopy reward mechanism integrates

model-based and reality-based rewards to bridge

the gap between theoretical assumptions and real-

world dynamics. This approach improves learning

efficiency, enabling the algorithm to avoid local

optima and converge toward globally optimal

policies. Second, ReSTO clusters UDs into cells,

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

13

aggregating state information to reduce

dimensional complexity and improve decision

accuracy. This clustering approach ensures

scalability and effective Resource allocation even

in large-scale systems with high task loads.

Extensive experimental evaluations highlight the

significant advantages of ReSTO over state-of-the-

art algorithms. The results demonstrate that ReSTO

consistently achieves lower system costs while

exhibiting better scalability as the number of ENs

and UDs fluctuates. These findings underscore the

robustness and adaptability of the proposed

framework, making it well-suited for the dynamic

and heterogeneous environments characteristic of

modern edge computing systems. However,

transitioning from batch to real-time offloading

also brings new challenges, particularly in terms of

the computational overhead associated with state

acquisition and decision-making processes. The

need for rapid, real-time decisions places greater

importance on minimizing time complexity to

ensure the practical viability of ReSTO in large-

scale deployments. Future work will focus on

exploring and developing algorithms with reduced

time complexity, capable of operating under

partially updated or approximate state information.

By addressing these challenges, we aim to further

enhance the efficiency and scalability of real-time

offloading solutions, paving the way for their

widespread adoption in edge computing.

 Experimental Results and Validation:

Extensive simulations demonstrate the

superior performance of ReSTO compared to

state-of-the-art methods. Specifically, ReSTO

consistently achieves lower system costs (e.g.,

energy consumption, latency) while exhibiting

better scalability as the number of ENs and

UDs fluctuates. These results validate the

effectiveness of ReSTO in optimizing resource

allocation and adapting to dynamic system

conditions.

Conceptual Explanations:

 Addressing Batching Limitations: By

moving to a real-time framework,

ReSTO eliminates the inherent delay

associated with batched decision-

making, leading to more responsive

and efficient resource allocation.
References
[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B.

Letaief, “A survey on mobile edge computing: The

communication perspective,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,

2017.

[2] Mirzaei, A. and Najafi Souha, A., 2021.

Towards optimal configuration in MEC Neural

networks: deep learning-based optimal resource

allocation. Wireless Personal Communications, 121(1),

pp.221-243.

[3] Zhou, Guoliang, and Amin Mohajer. "Blind

reconfigurable intelligent surfaces for dynamic

offloading in fixed-NOMA mobile edge networks."

International Journal of Sensor Networks 46, no. 3

(2024): 142-160.

[4] H. Guo, J. Li, J. Liu, N. Tian, and N. Kato, “A

survey on space-airground- sea integrated network

security in 6g,” IEEE Communications Surveys &

Tutorials, vol. 24, no. 1, pp. 53–87, 2022.

[5] Duan, H., & Mirzaei, A. (2023). Adaptive Rate

Maximization and Hierarchical Resource Management

for Underlay Spectrum Sharing NOMA HetNets with

Hybrid Power Supplies. Mobile Networks and

Applications, 1-17.

[6] Zhou, Nan, Ya Nan Li, and Amin Mohajer.

"Distributed capacity optimisation and resource

allocation in heterogeneous mobile networks using

advanced serverless connectivity strategies."

International Journal of Sensor Networks 45, no. 3

(2024): 127-147.

[7] X. Huang, Y. Chen, J. Liu, M. Wang, P. Li,

and Q. Zhao, “Joint interdependent task scheduling and

energy balancing for multi-uav enabled aerial edge

computing: A multi-objective optimization approach,”

IEEE Internet of Things Journal, vol. 10, no. 4, pp.

3147–3160, 2023.

[8] Z. Yang, C. Pan, K. Wang, and M. Shikh-

Bahaei, “Energy efficient Resource allocation in uav

enabled mobile edge computing networks,”IEEE

Transactions on Wireless Communications, vol. 18, no.

9, pp. 4576–4589, 2019.

[9] Mohajer, Amin, Mohammad Yousefvand,

Ehsan Noori Ghalenoo, Parviz Mirzaei, and Ali Zamani.

"Novel approach to sub-graph selection over coded

wireless networks with QoS constraints." IETE Journal

of Research 60, no. 3 (2014): 203-210.

[10] X. Zhang, J. Zhang, J. Xiong, L. Zhou, J. Wei,

and H. Li, “Energyefficient multi-uav-enabled

multiaccess edge computing incorporating noma,” IEEE

Internet of Things Journal, vol. 7, no. 6, pp. 5613–5627,

2020.

[11] Mirzaei, A. (2022). A novel approach to QoS‐

aware resource allocation in NOMA cellular HetNets

using multi‐layer optimization. Concurrency and

Computation: Practice and Experience, 34(21), e7068.

[12] T. Zhang, Y. Xu, J. Loo, D. Yang, L. Xiao, and

Y. Zhao, “Joint computation and communication design

for uav-assisted mobile edge computing in iot,” IEEE

Transactions on Industrial Informatics, vol. 16, no. 8,

pp. 5505–5516, 2020.

[13] Z. Liu, X. Tan, M. Wen, S. Wang, C. Liang,

and Q. Zhao, “An energyefficient selection mechanism

of relay and edge computing in uavassisted cellular

networks,” IEEE Transactions on Green

Communications and Networking, vol. 5, no. 3, pp.

1306–1318, 2021.

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

14

[14] Mohajer, Amin, Javad Hajipour, and Victor

CM Leung. "Dynamic Offloading in Mobile Edge

Computing with Traffic-Aware Network Slicing and

Adaptive TD3 Strategy." IEEE Communications Letters

(2024).

[15] Yang, Jiuting, and Amin Mohajer. "Multi

objective constellation optimization and dynamic link

utilization for sustainable information delivery using

PD-NOMA deep reinforcement learning." Wireless

Networks (2024): 1-21.

[16] Somarin, A. M., Barari, M., & Zarrabi, H.

(2018). Big data based self-optimization networking in

next generation mobile networks. Wireless Personal

Communications, 101(3), 1499-1518.

[17] Kuang, Shuhong, Jiyong Zhang, and Amin

Mohajer. "Reliable information delivery and dynamic

link utilization in MANET cloud using deep

reinforcement learning." Transactions on Emerging

Telecommunications Technologies 35, no. 9 (2024):

e5028.

[18] Hua, Yuxiu, Rongpeng Li, Zhifeng Zhao,

Xianfu Chen, and Honggang Zhang. "GAN-powered

deep distributional reinforcement learning for resource

management in network slicing." IEEE Journal on

Selected Areas in Communications 38, no. 2 (2019):

334-349.

[19] X. Qin, Z. Song, Y. Hao, and X. Sun, “Joint

Resource allocation and trajectory optimization for

multi-uav-assisted multi-access mobile edge

computing,” IEEE Wireless Communications Letters,

vol. 10, no. 7, pp. 1400–1404, 2021.

[20] Wang, Qianxing, Wei Li, and Amin Mohajer.

"Load-aware continuous-time optimization for multi-

agent systems: Toward dynamic resource allocation and

real-time adaptability." Computer Networks 250 (2024):

110526.

[21] H. Hu, Z. Chen, F. Zhou, Z. Han, and H. Zhu,

“Joint Resource and trajectory optimization for

heterogeneous-uavs enabled aerial-ground cooperative

computing networks,” IEEE Transactions on Vehicular

Technology, vol. 72, no. 6, pp. 7119–7133, 2023.

[22] Mirzaei, A., Barari, M., & Zarrabi, H. (2019).

Efficient resource management for non-orthogonal

multiple access: A novel approach towards green

hetnets. Intelligent Data Analysis, 23(2), 425-447.

[23] Gu, LiFen, and Amin Mohajer. "Joint

throughput maximization, interference cancellation, and

power efficiency for multi-IRS-empowered UAV

communications." Signal, Image and Video Processing

18, no. 5 (2024): 4029-4043.

[24] G. Chen, Q. Wu, R. Liu, J. Wu, and C. Fang,

“Irs aided mec systems with binary offloading: A

unified framework for dynamic irs beamforming,”IEEE

Journal on Selected Areas in Communications, vol. 41,

no. 2, pp. 349–365, 2023.

[25] X. Li, Y. Qin, J. Huo, and W. Huangfu,

“Computation offloading and trajectory planning of

multi-uav-enabled mec: A knowledge-assisted

multiagent reinforcement learning approach, IEEE

Internet of Things Journal, 2023.

[26] Yang, Ting, Jiabao Sun, and Amin Mohajer.

"Queue stability and dynamic throughput maximization

in multi-agent heterogeneous wireless networks."

Wireless Networks (2024): 1-27.

[27] Mirzaei, A., & Rahimi, A. (2019). A Novel

Approach for Cluster Self-Optimization Using Big Data

Analytics. Information Systems & Telecommunication,

50.

[28] Y. Gu, C. Yin, Y. Guo, B. Xia, and Z. Chen,

“Communicationcomputation- aware user association in

mec hetnets: A meta-analysis,” IEEE Transactions on

Wireless Communications, vol. 22, no. 9, pp. 6090–

6105, 2023.

[29] Zhang, Qi, Zhigang Li, Zhenteng Qin,

Xiaochuan Sun, and Haijun Zhang. "Temporal Feature-

Enhanced Deep Reinforcement Learning for RAN

Slicing with User Mobility." IEEE Communications

Letters (2023).

[30] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian,

“Computation rate maximization in uav-enabled

wireless-powered mobile-edge computing systems,”

IEEE Journal on Selected Areas in Communications,

vol. 36, no. 9, pp. 1927–1941, 2018.

[31] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G.

Y. Li, “Joint offloading and trajectory design for uav-

enabled mobile edge computing systems,”IEEE Internet

of Things Journal, vol. 6, no. 2, pp. 1879–1892, 2019.

[32] Zhao, Zhongyong, Yu Chen, Jiangnan Liu,

Yingying Cheng, Chao Tang, and Chenguo Yao.

"Evaluation of operating state for smart electricity

meters based on transformer–encoder–BiLSTM." IEEE

Transactions on Industrial Informatics 19, no. 3 (2022):

2409-2420.

[33] Mohajer, Amin, Maryam Bavaghar, Rashin

Saboor, and Ali Payandeh. "Secure dominating set-

based routing protocol in MANET: Using reputation."

In 2013 10th International ISC Conference on

Information Security and Cryptology (ISCISC), pp. 1-7.

IEEE, 2013.

[34] Y. Xu, T. Zhang, Y. Liu, D. Yang, L. Xiao,

and M. Tao, “Cellular connected multi-uav mec

networks: An online stochastic optimization approach,”

IEEE Transactions on Communications, vol. 70, no. 10,

pp. 6630–6647, 2022.

[35] Nemati, Z., Mohammadi, A., Bayat, A., &

Mirzaei, A. (2024). Metaheuristic and Data Mining

Algorithms-based Feature Selection Approach for

Anomaly Detection. IETE Journal of Research, 1-15.

[36] Li, Rongpeng, Chujie Wang, Zhifeng Zhao,

Rongbin Guo, and Honggang Zhang. "The LSTM-based

advantage actor-critic learning for resource

management in network slicing with user

mobility." IEEE Communications Letters 24, no. 9

(2020): 2005-2009.

[37] L. Zhang, J. Li, Y. Wang, Z. Chen, Q. Liu, and

Y. Sun, “Task offloading and trajectory control for uav-

assisted mobile edge computing using deep

reinforcement learning,” IEEE Access, vol. 9, pp. 53

708–53 719, 2021.

[38] X. Zhang, J. Zhang, J. Xiong, L. Zhou, J. Wei,

and H. Li, “Energy efficient multi-uav-enabled

multiaccess edge computing incorporating noma,” IEEE

Internet of Things Journal, vol. 7, no. 6, pp. 5613–5627,

2020.

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

15

[39] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam,

and L. Hanzo, “Multiagent deep reinforcement learning-

based trajectory planning for multiuav assisted mobile

edge computing,” IEEE Transactions on Cognitive

Communications and Networking, vol. 7, no. 1, pp. 73–

84, 2021.

[40] T. Zhang, Y. Xu, J. Loo, D. Yang, L. Xiao, and

Y. Zhao, “Joint computation and communication design

for uav-assisted mobile edge computing in iot,” IEEE

Transactions on Industrial Informatics, vol. 16, no. 8,

pp. 5505–5516, 2020.

[41] Z. Liu, X. Tan, M. Wen, S. Wang, C. Liang,

and Q. Zhao, “An energy efficient selection mechanism

of relay and edge computing in uavassisted cellular

networks,” IEEE Transactions on Green

Communications and Networking, vol. 5, no. 3, pp.

1306–1318, 2021.

[42] Yan, Dandan, Benjamin K. Ng, Wei Ke, and

Chan-Tong Lam. "Deep reinforcement learning based

resource allocation for network slicing with massive

MIMO." IEEE Access (2023).

[43] C.-Y. Hsieh, Y. Ren, and J.-C. Chen, “Edge-

cloud offloading: Knapsack potential game in 5g multi-

access edge computing,” IEEE Transactions on

Wireless Communications, vol. 22, no. 4, pp. 3124–

3136, 2023.

[44] N. Zhao, C. Xu, W. Zhang, S. Yang, G.-M.

Muntean, and F. Zhou,“5g-enabled uav-to community

offloading: Joint trajectory design and task scheduling,”

IEEE Journal on Selected Areas in Communications,

vol. 39, no. 11, pp. 3306–3320, 2021.

[45] H. Guo and J. Liu, “Uav-enhanced intelligent

offloading for internet of things at the edge, IEEE

Transactions on Industrial Informatics, vol. 16, no. 4,

pp. 2737–2746, 2020.

[46] Wang, Zhaoying, Yifei Wei, F. Richard Yu,

and Zhu Han. "Utility optimization for resource

allocation in multi-access edge network slicing: A twin-

actor deep deterministic policy gradient

approach." IEEE Transactions on Wireless

Communications 21, no. 8 (2022): 5842-5856.

[47] X. Qin, Z. Song, Y. Hao, and X. Sun, “Joint

Resource allocation and trajectory optimization for

multi-uav-assisted multi-access mobile edge

computing,” IEEE Wireless Communications Letters,

vol. 10, no. 7, pp. 1400–1404, 2021.

[48] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao,

and X. Shen, “Energyefficient uav-assisted mobile edge

computing: Resource allocation and trajectory

optimization,” IEEE Transactions on Vehicular

Technology, vol. 69, no. 3, pp. 3424–3438, 2020.

[49] Wang, Yue, Yu Gu, and Xiaofeng Tao. "Edge

network slicing with statistical QoS

provisioning." IEEE Wireless Communications

Letters 8, no. 5 (2019): 1464-1467.

[50] H. Guo and J. Liu, “Uav-enhanced intelligent

offloading for internet of things at the edge, IEEE

Transactions on Industrial Informatics, vol. 16, no. 4,

pp. 2737–2746, 2020.

