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Abstract 

Data Envelopment Analysis (DEA) is a mathematical programming-based technique used to 

determine the efficiency of a set of homogeneous decision-making units (DMUs). In certain 

cases, these units operate as a multi-stage process, where the outputs of one stage serve as 

inputs for the next. Such a structure is particularly common in production lines of industrial 

and manufacturing systems, where raw materials are used as inputs in the first stage, and the 

desired product is progressively completed through various stages, with the final product 

being the main output in the last stage. In most production activities and daily operations, 

besides desirable outputs, undesirable outputs such as harmful emissions, production waste, 

etc., are also generated. As a result, numerous studies in economics, management, and 

production emphasize reducing energy consumption to protect the environment and control 

pollution. In this paper, a new model is proposed that includes undesirable outputs and 

allocates fixed costs within networks. The focus of these models is to design approaches for 

allocating fixed costs where the reduction ratio of undesirable outputs is higher than that of 

desirable outputs. 
 
Keywords: Network Data Envelopment Analysis, Fixed Cost Allocation, Undesirable 

Outputs.
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1. Introduction 

Data envelopment analysis is a non-

parametric method for evaluating the units 

under evaluation with several inputs and 

outputs, which was presented by Farrell 

1957 for the first time. So, Charnes et al. 

presented the CCR model in 1978 [1]. 

Although the initial models focused only 

on evaluating non-negative input and 

output performance, but due to the wide 

use of DEA models in different industries, 

different types of DEA models were 

presented in different industries. It has 

been reported that in addition to 

performance evaluation, other concepts 

such as pattern finding, determining the 

eleventh type, scale, cost efficiency, etc. 

have been discussed [1]. Among these 

studies can be the research done by [2-5]. 

Another point to consider is that in 

classical DEA, the focus has always been 

on increasing outputs and reducing inputs. 

However, this approach sometimes fails to 

provide accurate assessments of DMUs for 

managers. For example, in a gas-fired 

power plant, electricity is a desirable final 

product, but alongside it, undesirable 

outputs such as air or environmental 

pollution are also generated. In this 

context, merely increasing outputs might 

not yield satisfactory results for managers. 

Jahanshahloo et al. (2004) introduced a 

multi-objective linear programming 

(MOLP) model to estimate the level of 

outputs or inputs in the presence of 

undesirable factors, ensuring that 

efficiency indices remain unchanged [6]. 

Jahanshahloo et al. (2005) also presented a 

model for evaluating the efficiency of 

DMUs with both desirable and undesirable 

outputs. Their non-radial model altered the 

traditional DEA view, which was based on 

increasing outputs and decreasing inputs 

[7]. Amirteimoori et al. (2006) introduced 

a model to improve the performance of 

DMUs in DEA, where undesirable inputs 

increased and undesirable outputs 

decreased [8]. Chen et al. (2012) examined 

undesirable factors in DEA models for 

companies that simultaneously produce 

desirable and undesirable outputs with 

integer values, such as the number of road 

accidents or human fatalities in a 

transportation system. Their proposed 

model was based on the additive DEA 

model [9].  

The research history from the perspective 

of production technology shows that Hailu 

and Weeman (2001) proposed a 

technology for handling undesirable 

outputs by treating them as inputs. Their 

justification was that both undesirable 

inputs and outputs impose costs on DMUs, 

leading them to use the strong 

disposability principle to introduce a 

production possibility set (PPS). Fare and 

Grosskopf (2008) criticized Hailu and 

Weeman’s postulates for not aligning with 

production laws, arguing that finite inputs 

cannot produce infinite outputs. Later, 

Fare and Grosskopf (2013) introduced a 

PPS based on the weak disposability 

principle with equal contraction 

coefficients for both desirable and 

undesirable outputs [10]. Kuosmanen 

(2005) introduced a PPS with unequal 

contraction coefficients for the presence of 

weak disposability, suggesting a method to 

linearize the nonlinear PPS [11]. 

Kuosmanen and Podinovsky (2009) 

proposed a method using different 

contraction factors for undesirable outputs 

to maintain the convexity condition of the 

PPS, addressing issues with equal 

coefficients [12]. The postulates they used 

included: (a) inclusion of observations, (b) 

convexity, (c) strong disposability for 

desirable inputs and outputs, and (d) weak 

disposability for all products, both 

desirable and undesirable. Amirteimoori 

and colleagues (2017) redefined weak 

disposability for undesirable outputs by 

using a linear relationship instead of 

contraction coefficients to limit 

undesirable products [13]. They subtracted 

a positive value from both desirable and 
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undesirable outputs, allowing undesirable 

outputs to approach zero without affecting 

desirable outputs. Toloo and Hanclova 

(2020) evaluated the efficiency of DMUs 

with multi-valued and undesirable outputs 

in DEA, where concepts like 

unemployment in economics, which has 

multiple indices, were used to define it 

[14]. Monzeli and colleagues (2020) 

introduced an appropriate production 

possibility set (PPS) based on the 

problem's assumptions, then proposed a 

new method for determining the 

undesirable performance of some inputs 

and outputs in DMUs [15]. Streimikis and 

Saraji (2022) provided a comprehensive 

review of DEA studies measuring 

efficiency in the presence of undesirable 

outputs, systematically reviewing 58 

articles published between 2000 and 2020 

[16]. 

The presence of undesirable factors has 

also been considered in Network DEA 

(NDEA) models. Kordrostami et al. (2005) 

evaluated the efficiency of a multi-stage 

DEA network, where undesirable output 

variables were introduced with a negative 

sign [17]. Lozano et al. (2013) used the 

weak disposability principle to introduce a 

PPS for a comprehensive network 

structure in the presence of undesirable 

products and then evaluated efficiency 

[18]. Maghbouli et al. (2014) examined a 

two-stage network structure with 

undesirable outputs, addressing efficiency 

evaluation by considering undesirable 

products either as final outputs or 

intermediate undesirable products [19]. 

Bian et al. (2015) used the SBM model to 

assess efficiency and decompose 

efficiency for a two-stage network with 

undesirable outputs [20]. Wu et al. (2015) 

introduced a collective model for a two-

stage network where undesirable outputs 

were generated in the first stage [21]. Liu 

et al. (2015) evaluated the performance of 

Chinese banks using a two-stage network 

model with intermediate undesirable 

outputs [22]. Wu et al. (2016) proposed a 

reuse approach for intermediate 

undesirable outputs in a two-stage 

production process with a common 

resource [23]. Kalhor and Kazemi Matin 

(2018) considered a comprehensive 

network structure. To define the 

technology on this network, two 

approaches were examined [24]. One 

approach, the effect of uniform contraction 

coefficients of the Fare and Grosskoph 

model using the principle of weak 

Disposability, and the other approach, the 

effect of non-uniform contraction 

coefficients using the principle of weak 

Disposability, were considered to 

construct PPS. Then they checked their 

proposed model to evaluate the efficiency 

of the comprehensive network on Spanish 

airports. A network data envelopment 

analysis (NDEA) model with undesirable 

output was developed by Yu et al. (2020) 

to evaluate the environmental efficiency of 

30 Chinese provinces [25]. Chen et al. 

(2020) discuss NDEA by considering the 

inputs and outputs of the production 

process surrounding a bank as additional 

adverse factors [26]. Shi et al. (2021) 

evaluated the efficiency of one of the bank 

branches in China, which were considered 

undesirable factors in this research. They 

used the SBM method to analyze the 

introduced series and parallel network 

[27]. Amirtimuri et al. (2021) evaluated 

the efficiency of 32 paper factories in 

China by using the network data overlay 

analysis in the presence of adverse factors. 

They used constants and undesirable 

outputs [28]. Zhou et al. (2022) evaluated 

the energy efficiency in different 

countries, they examined the three-stage 

network structure in the presence of 

adverse outputs in this research and the 

result was that China, Japan and Australia 

are on the efficiency border and the best 

They have energy efficiency [28]. Ma et al. 
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(2022) investigated the efficiency of the 

two-stage network in the presence of 

adverse factors, and the purpose of the 

proposed model was to evaluate industrial 

water treatment in China. Along with 

economic growth, the production of 

industrial water waste was investigated as 

an undesirable output [29]. Soofizadeh and 

Fallahnejad (2022) presented a 

bargaining-based method for DEA 

network evaluation by considering 

common inputs and undesirable outputs 

[30]. A mixed integer network (MI-

NDEA) with common inputs and 

undesirable outputs has been proposed by 

Omrani et al. (2023) to evaluate the 

efficiency of decision-making units [31]. 

In another article, Omrani et al. (2023) 

present a Network Data Envelopment 

Analysis (NDEA) model to evaluate the 

road transport sector by considering 

desirable and undesirable outputs [32]. 

Khoshandam and Nematizadeh (2024) 

presented an inverse DEA model for a 

production system with a two-stage 

network structure in the presence of 

adverse factors using the principle of weak 

Disposability [33]. 

In data coverage analysis to estimate the 

efficiency of decision-making units or 

production units, the ratio of the increase 

in outputs to the decrease in inputs is 

examined, but if there is an undesirable 

output, it is not possible to simply increase 

the outputs to evaluate the efficiency. In 

such a situation, targeting for the 

efficiency of the decision-making units 

should be carried out in such a way that the 

consumption of inputs and the production 

of undesirable products both decrease, 

while at the same time, the production of 

the final desired products increases. 

Different approaches have been 

considered for modeling decision-making 

units in the presence of adverse factors. 

One of these approaches is to build a set of 

production possibilities using the principle 

of weak Disposability. 

The article is organized as follows: in the 

next part, the basic and preliminary 

concepts of DEA are given, in the third 

part, fixed cost allocation in the network 

with the presence of undesirable outputs is 

done. In the fourth part, an applied 

example with fixed cost allocation and 

structure A network is performed in the 

presence of undesirable outputs, and 

conclusions and suggestions are given in 

the fifth section. 

 

2. Preliminaries 

Weak Disposability in the Presence of 

Undesirable Outputs  

Weak Disposability (Shephard):  

Suppose desirable outputs (𝒚𝑔) and 

undesirable outputs (𝒚𝑏) are produced 

using inputs (x). Hence, the production 

technology is defined as follows (2015): 

𝑇= {(𝒚𝑔, 𝒚𝑏 , 𝐱)| produce x  by (𝒚𝑔, 𝒚𝑏)} 

Definition 1: Desirable and undesirable 

outputs have the property of weak 

disposability if and only if for every 

(𝑦𝑔, 𝑦𝑏, 𝑥) ∈ 𝑇 and 0 ≤ 𝜃 ≤ 10, we have 

(𝜃𝑦𝑔, 𝜃𝑦𝑏, 𝑥) ∈ 𝑇. Mathematically, it can 

be expressed as: 

∀ (𝒚𝑔, 𝒚𝑏 , 𝐱), ∀𝜃 [(𝒚𝑔, 𝒚𝑏 , 𝐱)ϵ𝑇 &0 ≤

θ ≤ 1 → (𝜃𝐲𝑔, 𝜃𝒚𝑏 , 𝐱)ϵ𝑇  ] 

The Farrell-Grosskopf Production 

Possibility Set (2003) in the Presence of 

Undesirable Outputs 

Suppose there are n 𝐷𝑀𝑈𝑠, and for 𝐷𝑀𝑈𝑗, 

𝒙𝒊𝒋 is the input vector with m inputs, 𝒚(𝒓𝟏𝒋)
𝑔

 

is the desirable output vector with 𝑠1 

desirable outputs, and 𝒚(𝒓𝟐𝒋)
𝑏  is the 

undesirable output vector with 𝑠2 

undesirable outputs. Fare and Grosskopf 

proposed efficiency measures using 

axioms that included the weak 

disposability condition. The production 

possibility set (1) represents the 

production possibility set proposed by 

Fare and Grosskopf (2003) [34]. 
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They introduced their production 

possibility set using fixed contraction 

coefficients θ to limit undesirable outputs 

as much as possible. They also considered 

the axioms of convexity, strong 

disposability for inputs and desirable 

outputs, and weak disposability for all 

outputs to propose their model. 

 

The Kuosmanen Production Possibility 

Set (2005) in the Presence of 

Undesirable Outputs 

Since the set proposed by Fare and 

Grosskopf (2003) might not fully exhibit 

convexity, Kuosmanen later proposed 

relations that better represented the 

convexity property (2005). Kuosmanen 

constructed the PPS using the axioms of 

convexity, strong disposability for all 

inputs and desirable outputs, and weak 

disposability for all outputs. In 

Kuosmanen's technology, unequal 

contraction coefficients were used to better 

exhibit the convexity property. This 

production possibility set is expressed as 

(2). 
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For linearizing the relations in (2), the 

following variable transformation was 

used: 

 (1 )
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 For linearizing the relations in (2), the 

following variable transformation was 

used: 
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Model (4) is the linearized version of 

Kuosmanen’s equations, which 

successfully demonstrates the convexity 

property using unequal contraction 

coefficients in the production possibility 

set. 

 

3. Fixed Cost Allocation in 

Networks with Undesirable 

Outputs 

Suppose there are n units under evaluation 

with a two-stage network structure similar 

to Figure (1). In Figure (1),  

𝑋 = (𝑥1, . . . , 𝑥𝑚) are the inputs for the first 

stage, and 𝑍 = (𝑧1, . . . , 𝑧ℎ)  are the outputs 

of the first stage, which serve as inputs to 

the second stage. 𝑌𝐷 = (𝑦1
𝐷 , . . . , 𝑦𝑠1

𝐷 ) are 

the desirable outputs for the second stage, 

and 𝑌𝑈𝐷 = (𝑦1
𝑈𝐷 , . . . , 𝑦𝑆2

𝑈𝐷)are the 

undesirable outputs for the second stage. 

To evaluate the efficiency of the network 

shown in Figure (1), Kuosmanen’s 

technology is used. Kuosmanen utilized 

the axioms of convexity, strong 
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disposability for all inputs and desirable 

outputs, and weak disposability for all 

outputs to construct the PPS. Kuosmanen's 

technology employed unequal contraction 

coefficients to better demonstrate the 

convexity property. The production 

possibility set, along with the weak 

disposability condition using contraction 

coefficients for the two-stage network, is 

defined in relation (5): 

(5) 
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After considering the production 

possibility set (5) shown in Figure (1), 

model (6) is proposed for evaluating the 

performance of two-stage systems, as 

depicted in Figure (1). 
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To linearize model (6), variable 

transformations (7) are used. 

 

1

2

2

2

, 1,...,

, 1,...,

, 1,...,

1 , 1,...,

 

  

 

  

j j

j j j

j j j

j j j

j n

j n

j n

j n

 

  

  

  

        (7) 

To linearize model (6), variable 

transformations (7) are used. 

 

 

min

.

1

1

0, 0, 0, 1,...,





 







 

   



 









T

j j p

j

j j j j j

j j

D D

j j p

j

UD UD

j j p

j

j

j

j j

j

j j j

e

s t X X

Z Z

Y Y

Y Y

j n



 

  







 

  

    8

 

Figure (1): Network with two-stage DMUj structure in the presence of undesirable output 
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Figure 2: DMUj two-stage network in the presence of undesirable output and fixed cost allocation 

Model (9) is the arranged version of model 

(8): 
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Also, the dual of model (9) is written as 

model (10): 

                                                             (10) 
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By solving model (10) for each DMU, the 

maximum efficiency for the unit under 

evaluation is obtained. 

Efficiency Evaluation with Fixed Cost 

Allocation in Network Structures with 

Undesirable Outputs 

One of the issues in data envelopment 

analysis (DEA) is how to allocate fixed 

costs among decision-making units 

(DMUs). DEA techniques propose 

methods for fair and equitable cost 

allocation to meet the organization’s 

overall objective. The management's goal 

is to allocate these costs in a way that does 

not alter or improves relative efficiency. 
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Using model (11), which is the fractional 

form of model (10), fixed cost allocation 

in a two-stage network with undesirable 

outputs will be carried out. Consider the 

structure shown in Figure (2). It is 

assumed that there is a fixed cost R that 

must be allocated. 

As shown in Figure (2), each unit receives 

a non-negative cost allocation 𝑅𝑗 , such 

that:  
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1

,   0,   1,...,


  
n

j j

j

R R R j n           (12) 

Here, the fixed cost allocation in the first 

and second stages is represented by 𝑅1𝑗
 

and 𝑅2𝑗
, respectively, with relation (13) 

holding true: 

1 2 1 2,  ,  0, 1,...,   j j j j jR R R R R j n (13) 

Therefore, for fixed cost allocation in the 

two-stage network of Figure (2), model 

(14) is proposed: 

 
1 2 1 2

1 1 1 2

1

1 1

1 2 2

1 2

14

. 1, 1,...,

1, 1,...,

D UD

P P

p m P m P

j

j m j

D UD

j j

j m j

U Y U Y
Max

VX v R v R

WZ
s t j n

VX v R

U Y U Y
j n

WZ v R

 





 





  

 


 



 
 



 

 1 2 1 2

1

2

1

    , 0, 1,

1, 1,...,

,

( , , ) 0

j

n

j j j j

j

R R R R R j n

j n
WZ

V W U









  







  

Model (14) is a fractional programming 

model, which, by applying the Charnes-

Cooper transformation (1962), is 

converted to the linear form in model (15). 

 15 

 

2

1 2 1 2

1

1 2 1 2

1 1 1 2

1

1 1

1 2 2

1 2

1

. 1

0, 1,...,

0, 1,...,

0, 1,...,

( , , ) 0

     , 0, 1, ,











  

  

    

     

  

    





D UD

P P

p m P m P

j j m j

n

j j j j

j

D UD

j j j m j

j

M x

R R R R

a U Y U Y

s t VX v R v R

WZ VX v R j n

U Y U Y WZ v R j n

WZ j n

V

n

U

R

W

j

 







 

Since the constraints contain the product 

of variables, model (15) is a nonlinear 

programming model. To solve this issue, 

variable transformations (for each) are 

used, and model (15) is rewritten as model 

(16): 

 

 1 2 1 1 2

1

1 2 1 2

1 2

1

1

1 2 2

2

2

1

       16

. 1

0, 1,...,

0, 1,...,

0, 1,...,

( , , ) 0

    , 0,    1, ,



  

  

    



 

   

   

  





D UD

P P

p P P

j j j

D UD

j j j j

j

j

n

j m j j

j

Max U Y U Y

s tVX r r

WZ VX r j n

U Y U Y W

n

r v R r r

Z r j n

WZ j

r

V U

j

W

n

 







 

By solving model (16) for each DMU, the 

maximum efficiency with feasible fixed 

cost allocation for the evaluated unit is 

obtained. It is assumed that the optimal 

solution is derived using model (16); then, 

the relative efficiency after cost allocation 

for unit P is given by equation (17): 

* 1 2 1 2       (17)   D UD

P P Pe U Y U Y  

  

Additionally, the fixed cost allocation 

scheme can be determined using equation 

(18): 

* * *

1 2

*

1*

1 *

1

*

2*

2 *

1

    1, ,

    , 1, ,                    (18)

  , 1, ,

,





   

  

  

p p p

j j j

p

jp

j p

m

p

jp

j p

m

R R R j n

r
R j n

v

r
R j n

v

 

Thus, by solving model (16), which is a 

linear programming model, one can easily 

calculate the relative efficiency and 

optimal stage allocation for the network 

presented in Figure (2). Next, some 

properties of the proposed model will be 

discussed. 

Lemma 1: The optimal value of the 

objective function in model (16) is always 

less than or equal to one. 

Proof: By summing the p-th index of the 
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second and third constraints in model (16), 

the following inequality is obtained: 

1 1

1

2 2

2 0

D

p p p p

UD

p p p

WZ VX r U Y

U Y WZ r





   

    
 

After simplifying and rearranging some 

terms, the following inequality results: 

1 2 1 2

1 2

D UD

p p p p pU Y U Y VX r r        

The right-hand side of the above inequality 

is the first constraint of model (16), which 

is equal to one. Hence, the inequality can 

be rewritten as follows: 

1 2 1 2 1D UD

p pU Y U Y       

This means that the objective function and 

the optimal value of the model are always 

less than or equal to one, and the lemma is 

proven. 

Theorem 1: The optimal value of the 

objective function in model (16) is always 

equal to one. 

Proof: First, the dual of the linear 

programming model (16) is written as 

follows: 

1

1 1 1

1

1

1

1 1

min

. 0

0

1

1

0

0,

0



  







 



  

  







 

   

   

   



  







 

p

n

j j p

j

n n n

j j j j j j

j j j

n
D D

j j p

j

n
UD UD

j j p

j

n

j

j

n n

j j

j j

p

j

p

e

s t X X

Z Z Z

Y Y

Y Y

j p



 

  







 

  

 

  
 

  0,

0

0, 0, 0, 1,...,

   

 

   

j

j j j

j p

R

j n

 



  

 

Given the definition of 𝑅 ≥ 0 and the 

constraint −𝛾𝑅 ≥ 0, it follows that 𝛾 ≤ 0. 

From the eighth constraint above, where 

0 ≥ 𝛾 ≥ 𝜆𝑗 (𝑓𝑜𝑟 𝑗 ≠ 𝑝), it results that   

𝜆𝑗 = 0 (𝑓𝑜𝑟 𝑗 ≠ 𝑝). From the constraint, it 

follows that 𝜆𝑝 = 1, and from the 

constraint, it is concluded that the optimal 

value of model (16) is always equal to one, 

thus proving the theorem. ∎ 

Definition 2: After fixed cost allocation, a 

DMU is considered efficient if its 

efficiency is equal to one. 

Theorem 2: In model (16), a DMU will be 

efficient if and only if each of its sub-

stages is efficient. 

Proof: The sufficiency condition is 

evident based on the definition of DMU 

efficiency and the efficiency of ub-stages. 

Now, the necessity condition is examined, 

meaning that if DMUs are efficient, their 

sub-stages are also efficient. 

Given that, it is assumed that is efficient; 

hence, 

1

1 2 1

1

2

2

1 1 2

(

1

1 )

D UD

P P

p m P m

j j j

P

U Y U Y

VX

e we

v R R

w e

v

 

 

  


 

   

 

Note that , ,j jew e   1 20 1 0 1  

By contradiction, assume there exists an 

index such that. Without loss of generality, 

assume 𝑡 = 1, so: 1 21, 1j je e   

Multiplying both sides of the inequalities 

by the weights and will result in: 

Thus, the equation will not hold, leading to 

a contradiction.  

Next, it will be shown that all DMUs and 

their sub-stages can simultaneously be 

efficient under a common set of weights. 

Therefore, an efficient common set of 



Emami, et al./ IJDEA Vol.12, No.4, (2024), 43-57 

 

52 

weights with cost allocation can be 

proposed for DMUs. 

Theorem 3: There exists at least one 

optimal allocation from model (16) such 

that the unit under consideration will be 

efficient. 

Proof: According to Theorem 1, the 

optimal value of the objective function in 

the model is always equal to one, so the 

total efficiency is always one. Hence, after 

allocation, the total efficiency is always 

equal to one, and according to Theorem 2, 

all its sub-components are also efficient.  

The allocation using a common set of 

weights will be as in (19): 

 19 

11 21 11 21

1 1

1 1

1 1 11 21

12 22 12 22

2 2

2 2

2 1 12 22

1 2 1 2

1 1 2

1

1 1

,
( )

,
( )

...,
( )

. 1, 1,..., , 1,...,









   
 

  
    
 

  
   
 

   


  



D UD

m

D UD

m

n D n UD n n
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n m n n

p p

j
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U Y U Y

V X v R R

U Y U Y
Max

V X v R R

U Y U Y

V X v R R

W Z
s t j n p n

V X v R

 

 

 


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1 2 2
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..

,




 
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

 



  






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p D p UD p

j j
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p

n
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p

p p

j

j

j

U Y U Y
j n p n

W Z v R

j n p n
W Z

V W U p n

R R R R R j n


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Model (19) is converted into model (20) 

using the GP method: 

(20) 

1

1 1

1 2 2

1 2

1
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..1 .
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j
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p

j n p n
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V W U p

R R R R R n

n
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j

 
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 







 






   





 









 

In DEA models, the target for 𝐷𝑀𝑈𝑗  is set 

to one, and 𝜙𝑗
− and 𝜙𝑗

+represent the 

negative and positive deviations from the 

target, respectively. Adding 𝜙𝑗
+ and 

subtracting 𝜙𝑗
−from the denominator of 

the constraints aims to minimize the sum 

of gaps with the benchmark. Model (20) is 

converted into model (21) as follows: 

 21 
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1 2
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1 1

1 2 2
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Since the constraints involve the product 

of variables and, model (21) is a nonlinear 

programming model. To address this issue, 

variable transformations (for each) are 

used, and model (21) is rewritten as model 

(22): 
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The fixed cost allocation scheme can be 

determined as follows: 
* * *

1 2

*

1*

1 *

1

*

2*

2 *

1

           1, ,

    , 1, , ( 23)

  ,   1, ,

,j j j

j

j j

m

j

j j

m

R R R j n

r
R j n

v

r
R j n

v





   

  

  

  

Thus, by solving model (22), which is a 

linear programming model, the relative 

efficiency and optimal allocation of stages 

for the network shown in Figure (2) can be 

easily calculated. 

 

4. Practical Example 

To evaluate the effect of the model for 

efficiency assessment and fixed cost 

allocation, 37 bank branches have been 

studied. Selection of Decision-Making 

Units for the Practical Example A total of 

37 branches from commercial banks in 

Iran, located in one geographical area of 

Tehran, were selected. The system of these 

branches operates as a network with two 

inputs, two intermediate outputs, and three 

final outputs—two desirable and one 

undesirable output. The personnel score 

and interest paid are considered inputs for 

the two-stage network depicted in Figure 

(1). The intermediate components between 

the first and second stages include four 

types of deposits and other resources. 

Interest received and fees collected are the 

final desirable outputs, while overdue 

loans are considered the undesirable 

output. 

Calculation of Efficiency and Fixed Cost 

Allocation 

As mentioned earlier, the efficiency of 37 

bank branches will be assessed. Thus, the 

total number of DMUs is 37. The overall 

efficiency is analyzed using data from the 

37 bank branches. The overall efficiency, 

calculated using model (9), and the fixed 

cost allocation values, calculated using 

model (22), are shown in Table (1). 

 

5. Conclusion  

In many managerial applications, 

decision-makers of large organizations 

often face the significant issue of how to 

allocate or charge a shared cost across a set 

of entities. Fixed cost allocation has 

become one of the most important 

applications of the DEA method. 

However, only a few existing approaches 

address the fixed cost allocation problem 

in a network environment. This paper 

allocates a fixed cost to all DMUs with a 

network structure that includes 

undesirable outputs. To this end, we 

evaluate the relative efficiency of network 

processes while considering the allocated 

costs. 

This paper can be generalized in several 

directions. Since different types of two-

stage network structures exist, similar 

methods can be applied to allocate fixed 

costs to various network structures, 

including those with undesirable inputs 

and outputs. Additionally, these methods 

can be employed to allocate fixed costs for 

parallel production systems. 

 



Emami, et al./ IJDEA Vol.12, No.4, (2024), 43-57 

 

54 

 

Table (1): Efficiency and Fixed Cost Allocation Values for the First Stage and Intermediate Outputs 

of the Bank Branches in Iran 

 

 
 

 

  

DMUs eT R1 R2 

DMU1 0.40764 539.4811715 1038.242678 

DMU2 0.57804 0 0 

DMU3 1 0 492.58159 

DMU4 0.88177 418.4100418 81.0460251 

DMU5 0.492 300.3891213 345.6192469 

DMU6 0.55129 0 462.9874477 

DMU7 0.38314 503.9539749 1292.799163 

DMU8 0.47429 638.9497908 359.58159 

DMU9 0.33173 787.9665272 4282.221757 

DMU10 0.46407 1565.200837 3056.054393 

DMU11 0.52936 244.7196653 3909.430962 

DMU12 0.53374 0 50.53974895 

DMU13 0.67534 1199.129707 9986.644351 

DMU14 1 0 619.4100418 

DMU15 0.43745 571.125523 6548.025105 

DMU16 0.30063 392.6527197 4755.384937 

DMU17 1 655.8870293 9050.677824 

DMU18 0.5625 445.707113 8553.577406 

DMU19 0.27489 476.0041841 1021.414226 

DMU20 0.30485 648.0669456 3277.263598 

DMU21 0.46083 290.2887029 1183.364017 

DMU22 0.43796 449.0794979 3342.803347 

DMU23 0.293 393.9037657 1823.761506 

DMU24 0.24584 837.7573222 1021.732218 

DMU25 0.32792 482.4393305 1349.096234 

DMU26 0.72772 157.2970711 442.3263598 

DMU27 0.83324 523.916318 0 

DMU28 0.50475 334.4811715 5202.075314 

DMU29 0.40172 103.8368201 762.5523013 

DMU30 0.98136 0 411.7824268 

DMU31 0.36962 469.5732218 1224.58159 

DMU32 0.42698 0 368.7698745 

DMU33 0.3267 678.1129707 1828.878661 

DMU34 0.60554 418.4100418 1455.677824 

DMU35 0.39326 31.12133891 1741.497908 

DMU36 0.44906 0 4098.757322 

DMU37 0.85616 0 0 
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