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Abstract 

This paper presents the design and control of a quadruped robot. One of the primary challenges in 

building quadruped robots is the need for high torque density actuators and an efficient control 

algorithm. To address these challenges, this work focuses on optimizing the transmission torque ratio of 

the 4-bar linkage used in the robot's legs, using a genetic algorithm. The optimization is achieved by 

deriving the kinematic equations of the robot’s legs and introducing a novel objective function tailored 

to the robot’s application. To evaluate the impact of the optimization, the full dynamics of the robot are 

derived and validated through variations in total mechanical energy. A kinematics-based controller, 

suitable for real-time applications, is proposed, and its performance is tested in various scenarios to 

assess its effectiveness. The controller is applied to robots with two different linkage lengths, one 

optimized for maximum and the other for minimum torque requirements. The results show that the 

optimization reduces the required torque by nearly 42% when comparing the maximum to the minimum 

case. 

Keywords: Quadruped robots, Genetic algorithm, Model-independent controller, Four-bar linkage, 

Mechanism optimization.

1- Introduction 

Legged robots, with their unique abilities, 

can traverse uneven terrain more easily 

compared to wheeled robots. Due to the 

configuration of these robots, their 

locomotion can adapt to the environment [1, 

2], allowing them to handle tasks in 

unknown or unpredictable conditions. 

Researchers have also explored combining 

wheeled and quadruped robots to leverage 

the advantages of both systems [3]. 

Among legged robots, quadrupeds are a 

major area of research because their design 

offers greater stability compared to bipedal 

robots. The design of quadruped robots is 

often inspired by nature, with researchers 

trying to mimic the locomotion of animals 

like dogs [4], cats [5], turtles [6], and 

cheetahs [7]. These robots can be deployed 

in environments that reduce the risk of 

human injury while improving overall 

performance. Some of their applications 

include inspection, search and rescue, 

delivery, monitoring, and more. 

Quadruped robots can be classified into 

different categories based on their actuators, 
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topology, configuration, and more [8]. 

Depending on the robot’s application, the 

type of actuators may vary. The most 

common actuators used in such robots are 

electrical, pneumatic, and hydraulic. 

Hydraulic actuators are typically used for 

tasks that involve carrying heavy loads. 

Robots like BigDog, LS3, and WildCat are 

examples of those utilizing hydraulic 

actuators [9, 10, 11]. Electrical actuators, 

which are gaining popularity in recent 

research, have been increasingly adopted. 

For instance, MIT's new electrical actuator 

design for impedance control in quadruped 

robots has led many researchers to switch to 

electrical actuators. Mini Cheetah is a well-

known example of a lightweight quadruped 

robot using these actuators [12,13]. Another 

prominent robot is ANYmal from ETH 

Zurich, which is recognized for its ability to 

operate in unknown environments and is 

often used for industrial inspection. Lastly, 

pneumatic actuators are less commonly 

used due to their lower control accuracy. 

However, some researchers favor them for 

their lightweight properties [14]. 

One of the critical components of a 

quadruped robot that has a tremendous 

influence on the robot's locomotion stability 

and adaptability is robots’ legs [15]. There 

are various types of leg designs that can 

categorize quadruped robots into different 

groups. Some examples include rigid legs, 

articulated legs, parallel mechanisms, and 

spring-loaded legs, among others [16-18]. 

Some researchers are exploring flexible 

materials to enhance robot degrees of 

freedom and ensure safer interaction. One 

innovative approach involves using 

honeycomb-structured flexible materials for 

robot legs, combined with pneumatic 

actuators. This design effectively reduces 

the robot's total weight while maintaining 

functional integrity [19]. Additionally, leg 

structures incorporating tensegrity 

mechanisms have been explored in research 

[20]. The study primarily focused on 

enhancing the payload capacity of the 

tensegrity mechanism to make it viable for 

use in quadruped robots. 

Quadruped robots can also generate 

different gaits through various 

combinations of leg movements, which 

contribute to both stability and locomotion 

speed. Common gaits include walking, 

trotting, pacing, and more [21]. Recently a 

study investigated the relationship between 

different gaits and stability by employing 

mathematical models rooted in spiral theory 

[22]. Similarly, the main body of the robot 

(torso) can be divided into two categories: 

rigid and flexible [23, 24]. In flexible torsos, 

the robot can achieve higher speeds, but 

designing an efficient control algorithm for 

such torsos is more challenging compared to 

rigid ones. 

Prior to motion control, path planning has 

been a critical area of investigation in 

robotics research. For instance, two staged 

optimization approach was explored in a 

study to enhance the robot's performance in 

densely clustered environments [25]. The 

control algorithms for quadruped robots can 

be divided into model-independent and 

model-based methods. Generally speaking, 

each leg of the robot has three degrees of 

freedom: two for pitching and one for 

rolling [26]. Some model-independent 

methods use concepts like Central Pattern 

Generators (CPGs) to generate periodic 

motions [27, 28]. These types of oscillators 

require fewer feedback inputs compared to 

model-based controllers. For more robust 

control, researchers use model-based 

controllers. Due to the complex dynamics of 

the system, a simplified kinematic model 

that approximates the robot’s behavior is 

often employed in the control algorithm. 
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The spring-loaded inverted pendulum 

(SLIP) model is commonly used as it 

approximates the behavior of such systems 

well [29]. This simplified model can be 

applied in methods like Model Predictive 

Control (MPC) to design control signals 

based on the predicted future response of 

the system [30, 31]. In contrast, some 

approaches rely on more accurate dynamic 

modeling, such as Whole Body Dynamics 

[26]. Also, a virtual method has been 

presented that models the ground reaction as 

a virtual spring. The task of the controller is 

to control the reaction virtual forces via 

actuators through the Jacobian matrix [33]. 

An accurate design plays a significant role 

in the stability, agility, and performance of 

quadruped robots [26], and therefore must 

be carefully considered. In this article, we 

focus on the design of quadruped robots 

equipped with electrical actuators and a 

four-bar linkage mechanism. To achieve 

optimal performance in force transmission, 

a heuristic optimization approach has been 

applied to the link lengths. Subsequently, 

the kinematic and kinetic equations of the 

robot have been derived to design a PD 

controller based on the dynamic model. 

Finally, the results of the controller, both 

with and without optimization, have been 

compared to evaluate the effectiveness of 

the design. This article employs a genetic 

algorithm to optimize the lengths of a 

quadruped robot's links based on a proposed 

cost function and constraints. The 

optimization reduces the required torque for 

forward motion, enabling the use of 

lightweight actuators in the robot's main 

torso, improving performance and reducing 

costs. Additionally, a model-independent 

controller is presented for real-time 

applications. The article systematically 

derives and explains the robot's kinematics 

and dynamics, emphasizing efficiency in 

design and control. 

In the first section, the 4-bar linkages of the 

robot's leg are optimized through the 

kinematic equations and transmission ratio. 

In the next section, the entire kinematics of 

the leg is expressed, and the robot's desired 

path, considering the kinematic equations, 

is developed using polynomial equations. 

Subsequently, the dynamics of the robot are 

modeled and verified. After this section, the 

control algorithm is presented based on two 

phases of the robot's dynamics. The results 

section demonstrates the control 

performance of the proposed algorithm and 

compares the results of the length 

optimization. Finally, the findings are 

summarized, and future work is suggested. 

2- Four bar linkage 

The robot's conceptual design of robot is 

illustrated in Fig. 1. Each leg of the robot 

consists of two joints for pitching (the hip 

and knee joints) and one joint for rolling 

(the thigh joint), resulting in three degrees 

of freedom (DOF) to control the robot's 

movement. To reduce the inertia of the 

robot's leg, no actuators are placed directly 

on the leg itself. Instead, all motors are 

located on the torso of the robot, 

necessitating a transmission mechanism for 

the knee joints. Two common methods for 

transmitting knee torque are timing belts 

and four-bar linkages [34, 35]. The concept 

of the robot's leg for pitching is depicted in 

Fig. 2. 

 
Fig. 1 The conceptual design of quadruped robot. 
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The four-bar linkage shown in Fig. 2 

functions like a gear with a unique gear 

ratio. Consequently, the lengths of the four-

bar links are optimized to achieve maximum 

torque at the output. 

 

Fig. 2 Robot’s leg considering 4 bar mechanism and 

showing the simplified version as a 2 link. 

The dynamics of the robot's leg is divided 

into two parts. In the swing phase, the 

actuators function to step forward without 

any contact with the ground. In contrast, 

during the stance phase, the robot remains 

in contact with the ground. The main 

objective of the optimization is to reduce the 

torque density of the actuators. This can be 

achieved by selecting appropriate link 

lengths to enhance force transmission 

efficiency. Therefore, the four-bar linkage 

mechanism needs to be analyzed. 

Figure 3 illustrates the four-bar linkage used 

in the robot's leg. 

 
Fig. 3 The 4-bar mechanism of leg. 

Since the four-bar linkage is a one-degree-

of-freedom (DOF) system, only the angle 𝜃1
′  

is considered as the input angle generated 

from the desired angle in the robot's leg, 

which is given by 𝜃1 + 𝜃2 − 𝜋. Based on 

the angles of the other links can be 

expressed as follows: 

𝜃2
′ = 𝛽 − 𝛾 + 𝜃 (1) 

𝜃3
′ = 𝜋 − (𝜆 + 𝛾 − 𝜃) (2) 

In Eqs. (1) and (2), the 𝜆 and 𝛾 equals to: 

𝛾 = sin−1(
𝑙1
𝑙
sin(𝜃1

′ − 𝜃)) (3) 

𝜆 = sin−1(
𝑙2
𝑙3
sin 𝛽) 

(4) 

which 𝛽 is calculated as below: 

𝛽

= cos−1(
𝑙2
2 + 𝑙1

2 + 𝑠2 − 2𝑙1𝑠 cos(𝜃1
′ − 𝜃) − 𝑙3

2

2𝑙2√𝑙1
2 + 𝑠2 − 2𝑙1𝑠 cos(𝜃1

′ − 𝜃)
) 

(5) 

In a conventional four-bar mechanism, the 

angle  𝜃 and the distance 𝑠 between the first 

and last joint (as shown in Fig. 3) are fixed. 

However, due to the rotation of the robot's 

actuator, these values can change, as 

illustrated in Fig. 2. 

The angle 𝜃 is given by: 

𝜃 = 𝑡𝑎𝑛−1(
𝑐𝑦 − 𝑙ℎ 𝑠𝑖𝑛 𝜃1

𝑐𝑥 − 𝑙ℎ 𝑐𝑜𝑠 𝜃1
) (6) 

which 𝑐𝑥 and 𝑐𝑦 are the distance between 

robot’s actuators according to Fig. 2. The 

distance 𝑠 is calculated as: 

𝑠 = √(𝑐𝑦 − 𝑙ℎ 𝑠𝑖𝑛 𝜃1)
2
+ (𝑐𝑥 − 𝑙ℎ 𝑐𝑜𝑠 𝜃1)

2 (7) 

As all of the angles in the four-bar linkage 

are defined, the transmission angle, which 

relates the output to the input torque, can be 

formulated. The force diagram of the four-

bar linkage is shown in Fig. 4. 
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Fig. 4 The force diagram of four bar linkage. 

As shown in Fig. 4, the output torque to the 

input torque is given by: 

𝑀𝑜𝑢𝑡
𝑀𝑖𝑛

=
𝑙1 sin 𝑎

𝑙3 sin 𝑏
 (8) 

The angles between the linkages are 

denoted by 𝑎 and 𝑏, as depicted in Fig. 4. 

Since the robot's leg has low inertia during 

the stance phase, we can consider it a 

stationary phase, making Eq. (8) criteria 

applicable in this context. 

The main objective of the optimization is to 

determine the lengths that maximize the 

transmission ratio. This can be achieved by 

selecting appropriate lengths. To find the 

optimal lengths, a genetic algorithm is 

employed, as it is well-suited for handling 

the numerous constraints present in the 

mechanism through principles of natural 

selection. The chosen cost function is 

defined as follows: 

𝑐𝑜𝑠𝑡

=∑∑|
𝑙1 sin 𝑎

𝑙3 sin 𝑏
|

𝜃1𝜃2

+∑∑𝑓(𝜃1, 𝜃2, 𝑙1, 𝑙2, 𝑙3)

𝜃1𝜃2

 

(9) 

The first part of Eq. (9) calculates the 

absolute value of the transmission ratio for 

different input angles, while the second part 

checks the feasibility of these angles and 

lengths within the four-bar mechanism. 

This is defined as follows: 

𝑓(𝜃1, 𝜃2, 𝑙1, 𝑙2, 𝑙3) = {
5,        𝑔 == 0

−50,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

which function g is derived from 

Freudenstein's Equation [36] and is 

expressed as follows: 

𝑔 = cos(𝜃1
′ − 𝜃3

′) −
𝑙1
2 + 𝑙3

2 + 𝑠2 − 𝑙2
2

2𝑙1𝑙3

+
𝑠

𝑙3
cos(𝜃1

′ − 𝜃)

−
𝑠

𝑙1
cos(𝜃3

′ − 𝜃) 

(11) 

In Eq. (10), if the configuration is valid, the 

combination yields a positive value that 

contributes to increasing the cost. 

Conversely, if the possibility condition is 

violated, the response is penalized with a 

negative cost. 

 
Fig. 5 The cost function of optimizing lengths over 

the iteration. 

To maximize the cost function, the 

offspring population (60 percent of the 

parent population) is generated through 

single, double, and uniform crossovers. 

Additionally, the mutant population (90 

percent of the total population) is created by 

applying a normal probability function to 

the parents. The roulette wheel selection 

method is employed for choosing parents, 

and the termination condition is based on 

reaching the maximum number of 

iterations. Also, there are 150 chromosomes 

in the population, and each chromosome 
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𝑀𝑜𝑢𝑡 

𝐹𝑐𝑜𝑢𝑝𝑙𝑒𝑟  
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contains 3 genes, which represent the 

lengths of the four-bar mechanism. Before 

conducting the optimization, the intervals 

for angles 𝜃1 and 𝜃2 were selected to ensure 

that the robot could operate within a desired 

workspace for a specific geometry, as it is 

not designed to reach arbitrary angles. The 

range for 𝜃1 was discretized into 10 steps 

spanning from −110 deg to −140deg, while  

𝜃2 was defined across 10 steps ranging from 

20deg to 70deg. There is one extreme case 

that can lead to a high value of the 

transmission ratio, which occurs when links 

2 and 3 are aligned. The genetic algorithm 

tends to reach this configuration in each run; 

however, due to the singularity associated 

with this alignment, it is considered a 

violation and is thus avoided. The resulting 

lengths of the links are 𝑙1 = 0.1822 𝑚, 𝑙2 =

0.1977 𝑚 and 𝑙3 = 0.1822 𝑚 respectively. 

Fig. 5 illustrates the convergence plot over 

the iterations. 

To compare these results with other values, 

the minimum of the cost function is derived 

by inverting the first part of the formula. 

Table 1 presents three cases of the robot's 

leg, two of which are generated from the 

genetic algorithm, while one represents a 

feasible solution for the robot's 

configuration. 

Table 1: The results of GA optimization on robot’s 

links. 

Response 𝑙1(cm) 𝑙2(cm) 𝑙3(cm) 𝑙ℎ(cm) 𝑙𝑒(cm) 

Ordinary 

response 
6 15 6 15 15 

Maximum 

ratio 
18.22 19.77 18.22 15 15 

Minimum 

Ratio 
12.88 8.83 12.88 15 15 

 

In the next section, the kinematic model of 

the robot's leg is developed, and the desired 

trajectory for the robot's leg is presented. 

3- Kinematic analysis 

In the previous section, the kinematic 

equations of the four-bar linkage were 

developed. To determine the desired angles 

of the links, the inverse and forward 

kinematics of the two-bar linkage (as shown 

on the right side of Fig. 2) must be 

formulated. The Denavit-Hartenberg (DH) 

parameters for the series section are shown 

in Table 2. 

Table 2: The DH parameters of series links. 𝑖 

denotes link’s number. 

𝑑𝑖 𝜃𝑖 𝑎𝑖 𝛼𝑖 

0 𝜃1 𝑙ℎ 0 

0 𝜃2 𝑙𝑒 0 

 

The position of the leg's end effector for 

rolling in the 𝑥0𝑦0𝑧0 coordinate system is 

given below: 

𝑃𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = {
𝑙ℎ cos 𝜃1 + 𝑙𝑒 cos(𝜃1 + 𝜃2)

𝑙ℎ sin 𝜃1 + 𝑙𝑒 sin(𝜃1 + 𝜃2)
0

} (12) 

The velocity of end effector, according to 

Eq. (12) is given by: 

{
�̇�𝑥
�̇�𝑦
} = [𝐴] {

�̇�1
�̇�2
} (13) 

which matrix 𝐴 can be represented by: 

[𝐴]

= [
−𝑙ℎ sin 𝜃1 − 𝑙𝑒 sin(𝜃1 + 𝜃2) −𝑙𝑒 sin(𝜃1 + 𝜃2)
𝑙ℎ cos 𝜃1 + 𝑙𝑒 cos(𝜃1 + 𝜃2) 𝑙𝑒 cos(𝜃1 + 𝜃2)

] 

(14) 

By inverting Eq. (14), the joint angular 
velocities of the robot can be calculated for 
a given desired trajectory. 

{
�̇�1
�̇�2
} = [𝐴]−1 {

�̇�𝑥
�̇�𝑦
} (15) 

The desired angles of the two links can be 

obtained by integrating the desired angular 

velocities in Eq. (15). 
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Now, the desired trajectory of the robot’s 

leg can be developed. Generally, the robot’s 

movement consists of two phases. Here, the 

desired trajectory for the swing phase is 

developed. Polynomial functions are used 

to define the desired trajectory based on the 

problem's conditions [37]. While other 

methods, such as trigonometric and Bezier 

functions, can also represent the desired 

trajectory, polynomial functions are chosen 

because they meet the specific requirements 

for velocity and position constraints. 

In order to reduce the order of the 

polynomials, the swing phase trajectory is 

divided into two parts: the acceleration 

phase and the deceleration phase [37]. The 

conditions for these two phases follow the 

same concept, which requires that the initial 

and final positions, velocities, and 

accelerations must be continuous. As an 

example, the conditions for the x-direction 

in the acceleration phase can be written as 

follows [37]: 

 

𝑥𝑆𝑊,0 = −𝐿/2 

𝑑𝑥𝑆𝑊,0
𝑑𝑡

=
𝑑𝑥𝑆𝑇,𝑓

𝑑𝑡
 

𝑑2𝑥𝑆𝑊,0
𝑑𝑡2

=
𝑑2𝑥𝑆𝑇,𝑓

𝑑𝑡2
 

𝑥𝑆𝑊,0.5𝑇𝑆𝑊 = 0 

𝑑𝑥𝑆𝑊,0,5𝑇𝑆𝑊
𝑑𝑡

= 𝛼
𝑑𝑥𝑆𝑇,𝑓

𝑑𝑡
 

𝑑2𝑥𝑆𝑊,0,5𝑇𝑆𝑊
𝑑𝑡2

= 0 

(16) 

The subscripts 𝑆𝑊 and 𝑆𝑇 refer to the swing 

and stance phases, respectively. The value 

following the motion phase indicates the 

time, where 0 represents the initial time of 

the phase, and 𝑓 represents the final time. 

The parameter α represents the acceleration 

during the acceleration phase and 𝐿 declares 

the step length. Given the six specified 

conditions (continuity of position, velocity, 

and acceleration), the polynomial has an 

order of 5. During the robot's stance phase, 

the controller's primary task is to propel the 

robot forward. Following the stance phase, 

the robot transitions into the swing phase. 

Utilizing (16) conditions as an example for 

the acceleration path of the leg endpoint in 

the x-direction (the deceleration phase and 

y-direction can be similarly derived), the 

robot’s virtual path in the stance phase 

defines the desired swing phase trajectory. 

By fixing the torso and assuming inverse leg 

movement, terms such as 
𝑑𝑥𝑆𝑇,𝑓

𝑑𝑡
,
𝑑2𝑥𝑆𝑇,𝑓

𝑑𝑡2
 can 

be computed. 

The desired polynomials, based on the leg's 

conditions, can be expressed as follows: 

 

𝑥𝑆𝑊(𝑡) = 𝑏5𝑡
5 + 𝑏4𝑡

4 + 𝑏3𝑡
3 + 𝑏2𝑡

2 + 𝑏1𝑡

+ 𝑏0 
(17) 

𝑦𝑆𝑊(𝑡) = 𝑎5𝑡
5 + 𝑎4𝑡

4 + 𝑎3𝑡
3 + 𝑎2𝑡

2

+ 𝑎1𝑡 + 𝑎0 
(18) 

 

Based on the mentioned conditions, the 

constant terms in Eqs. (17) and 18) can be 

computed. These constants depend on the 

virtual path of the stance phase, which is 

determined through the control algorithm in 

real-time operation. In Fig. 6, the desired 

trajectory is depicted for a maximum height 

of 8 cm, an initial position (𝐿/2) of 10 cm 

in the x-direction, and a swing time of 0.7 

seconds. This trajectory ensures smooth 

transitions during the swing phase while 

adhering to the specified conditions in Eq. 

(16). 
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Fig. 6 The swing phase desired trajectory based on 

the polynomials function. 

The derivative of the polynomial function in 

Eqs. (17) and (18) with respect to time gives 

the desired velocity trajectory, which can 

then be used in the kinematic equations 

(Equation (15)) to determine the desired 

joint angles for the robot's leg. Once the 

desired angles for the two main links are 

found, the desired angle for the 4-bar 

mechanism can also be evaluated according 

to past section. Fig. 7 illustrates the robot's 

desired joint angles derived from the given 

trajectory, showing how the robot’s leg 

moves according to the predefined motion 

path. 

 

 
Fig. 7 The angle of links according to desired 

trajectory during the motion. 

In Fig. 7, the link lengths correspond to the 

ordinary case presented in Table 1. In the 

following section, the dynamics of the robot 

will be enhanced to simulate the robot's 

response to the actuator forces. 

4-Dynamics equation  

Several gaits are inspired by nature, each 

differing in the number of phases and 

combinations of leg movements [38]. In this 

project, the trotting gait has been selected to 

move the robot. The sequence of leg 

movements is shown in Table 3. The 

trotting gait can reach speeds where inertia 

must be considered in the dynamic 

equations. 

Table 3: Leg movement in trotting phase. Each cycle 

contains two phases. 

leg 1 2 1 2 1 2 1 2 

Left front         

Left rear         

Right front         

Right rear         

 

To calculate the robot's dynamics, the 

Lagrange method is applied. Based on the 

robot’s gait, the dynamics are divided into 

four parts within each cycle. In the first part, 

two diagonal legs are in the swing phase, 

while the other two diagonal legs are in the 

stance phase. Once the swing legs make 

contact with the ground, the legs switch, and 

the same pattern is repeated for the other 

diagonal legs. Thus, each cycle consists of a 

swing-stance phase for the diagonal legs 

(four legs) and an impact phase for the 

swing legs (two legs). The stance phase 

introduces constraints on the robot’s legs, as 

they can be treated like joints, assuming 

sufficient friction. Consequently, the 

Lagrange equation can be expressed as 

follows [39]: 
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[
𝜕

𝜕�̇�
(
𝜕𝐿

𝜕�̇�
)]

⏟      
[𝑀]

{�̈�}

= {𝑄} − [
𝜕

𝜕𝑞
(
𝜕𝐿

𝜕�̇�
)]

⏟      
𝑁

{�̇�} + {
𝜕

𝜕𝑡
(
𝜕𝐿

𝜕�̇�
)} − {

𝜕𝐿

𝜕𝑞
}

⏟                      
{𝐵}

+ [𝑎]𝑇{𝜆} 

(19) 

In Eq. (19), 𝐿 represents the Lagrangian, 

which is the difference between the kinetic 

energy 𝑇 and potential energy 𝑉 (𝐿 = 𝑇 −

𝑉). 𝑄 denotes the virtual forces, while 𝑞 and 

�̇� are the generalized coordinates and 

velocities, respectively. 𝜆 represents the 

Lagrange multipliers. The matrix 𝑎 arises 

from the constraints and can be written as 

follows: 

[𝑎]{�̇�} + {𝑏} = {0} (20) 

To simulate the robot's response, the 

augmented Lagrange method is used, which 

can be expressed as follows: 

[
[𝑀]𝑚×𝑚 −[𝑎]𝑟×𝑚

𝑇

[𝑎]𝑟×𝑚 [0]𝑟×𝑟
] {
�̈�
𝜆
}
(𝑚+𝑟)×1

= {
𝑄 − 𝐵

−�̇��̇� − �̇�
} 

(21) 

In Eq. (21), 𝑚 represents the number of 

generalized coordinates, while 𝑟 denotes the 

number of constraints. 

To verify the correctness of derived 

equations, the time derivative of the total 

mechanical energy is examined. In the 

absence of virtual forces, if the derivative of 

the total mechanical energy equals zero, it 

can be concluded that the equations are 

correct. The time derivative of mechanical 

energy is expressed as follows: 

𝑑𝐸

𝑑𝑡
= 𝑄𝑇�̇� + 𝜆𝑇𝑎�̇� −

𝜕𝐿

𝜕𝑡
 (22) 

where 𝐸 represents the total mechanical 

energy, which is the sum of kinetic and 

potential energy (𝑇 + 𝑉). Due to the high 

number of constraints in the system, there 

may be intervals where the constraint 

equations are not fully satisfied. Therefore, 

to ensure the validity of the derived 

equations, the following condition is 

checked: 

𝑑𝐸

𝑑𝑡
− 𝜆𝑇𝑎�̇� == 0 (23) 

Each leg contains 3 degrees of freedom 

(DOF), which can be represented by 5 

generalized coordinates and 2 constraints. 

The constraints mentioned here arise from 

the 4-bar linkage. For example, the right 

front leg has the generalized coordinates 

{𝜃1, 𝜃2, 𝜃2
′ , 𝜃3

′ , 𝛼1}. Therefore, the robot's 

legs collectively have a total of 15 

generalized coordinates, represented as 

follows: 

𝑞𝑗 = {𝜃2𝑗−1, 𝜃2𝑗, 𝜃3𝑗−1
′ , 𝜃3𝑗

′ , 𝛼𝑗},

𝑗 = 1,2,3,4 
(24) 

which 𝑗 represents the leg number.  

If any leg is in the stance phase, additional 

constraints are applied to it: the velocity of 

the end effector in the ground plane, due to 

friction, is equal to zero. 

The torso of the robot contains 6 degrees of 

freedom (DOF) in space, represented as 

{𝑋, 𝑌, 𝑍, 𝜂, 𝜓, 𝜁}. The {𝑋, 𝑌, 𝑍} coordinates 

are expressed in the global coordinate 

system, while {𝜂, 𝜓, 𝜁} represent body-fixed 

rotations. The first rotation, 𝜓, is around the 

vertical (gravity) axis, 𝜁 is around the 

transverse direction, and the last rotation, 𝜂, 

is around the longitudinal axis. The angular 

and linear velocity of the main body can be 

expressed as follows: 
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�⃗� 𝑏𝑜𝑑𝑦 = �̇�𝐼 + �̇�𝐽 + �̇��⃗⃗�  (25) 

�⃗⃗� 𝑏𝑜𝑑𝑦 = �̇�𝑗1̂ + 𝜁̇�̂�2 + �̇�𝑖̂

= (�̇� + �̇� sin 𝜁)𝑖̂

+ (�̇� cos 𝜁 cos 𝜂

+ 𝜁̇ sin 𝜂)𝑗̂ + (𝜁̇ cos 𝜂

− �̇� cos 𝜁 sin 𝜂)�̂�2 

(26) 

In Eqs. (25) and (26), the linear velocity is 

expressed in the global coordinate system, 

while the angular velocity is expressed in 

the body-fixed coordinate system. The 

calculation of the velocity of the center of 

gravity of other parts is straightforward and 

can be related to each other using rotation 

matrices. During the impact phase, the 

stance phase changes instantaneously. Due 

to the short duration of the impact, the 

configuration of the robot can be assumed 

to be fixed, but the velocity of its parts can 

change. To calculate the changes in 

velocity, the integral of the Lagrange 

equation is used, as follows: 

[
[𝑀] −[𝑎]𝑇

[𝑎] [0]
] {
{�̇�}|𝑡=𝑡1+Δ𝑡

{�̂�}
}

= {
[𝑀]{�̇�}|𝑡=𝑡1

{0}
} 

(27) 

Table 4 shows the entire cycle of dynamics 

and the intervals during which the stance 

phase constraints are applied. 

Table 4: The interval for applying the zero-velocity 

constraint to each leg during simulation is shown in 

the table. The numbers in the table correspond to the 

legs, ordered from right front, right rear, left front, to 

left rear. 

Swing & 

stance 
impact 

Swing & 

stance 
impact 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

                

 

By simulating the robot's dynamics and 

verifying the validity of the responses, we 

can conclude that the dynamic modeling is 

accurate. Fig. 8 illustrates the satisfaction of 

constraints, while Fig. 9 depicts the time 

derivative of the total mechanical energy, 

taking the constraints into account. These 

figures confirm the correctness of the 

modeling. Furthermore, the mean and 

variance of the total mechanical energy, 

considering the constraint, are calculated as 

−4.19 × 10−13 and 8.54 × 10−24, 

respectively. Additionally, when evaluating 

all constraints together, the mean and 

variance are −8.30 × 10−5 and 7.99 ×

10−6, respectively. 

 
Fig. 8 Average constraint satisfaction in the absence 

of actuators torques. 

 
Fig. 9 Variation of total mechanical energy 

considering constraints in the absence of actuators 

torques. 

In the following section, the control 

algorithm for the robot's motion is 

explained. 
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5- Control algorithm 

In each phase of the motion cycle, two legs 

are in the stance phase while the other two 

legs are in the swing phase. In the kinematic 

section, the desired motion and angles for 

the swing legs are derived. To achieve the 

desired angles, a PD controller is applied to 

the actuators. The implemented controller is 

model-independent, allowing it to be fast 

enough for real-time applications. 

𝑢𝜃2𝑖−1(𝑡) = 𝐾𝑝,𝜃2𝑖−1(𝜃2𝑖−1,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃2𝑖−1)

+ 𝐾𝑣,𝜃2𝑖−1(�̇�2𝑖−1,𝑑𝑒𝑠𝑖𝑟𝑒𝑑

− �̇�2𝑖−1) 

(28) 

𝑢𝜃′3𝑖(𝑡) = 𝐾𝑝,𝜃′3𝑖(𝜃′3𝑖,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃′3𝑖)

+ 𝐾𝑣,𝜃′3𝑖(�̇�′3𝑖,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − �̇�′3𝑖) 

(29) 

In Eqs. (28) and (29), 𝑖 ranges from 1 to 4, 

which defines the robot’s legs (in each 

phase, two legs use this control law). The 

subscript 𝑖 indicates the placement of the 

actuator and its direct effect on the angle. 𝐾𝑝 

and 𝐾𝑣 are the proportional and derivative 

gains, respectively, and the desired variable 

can be calculated according to the desired 

motion and inverse kinematics. 

The pitch actuator employs a PD controller, 

with the desired angle during the swing 

phase consistently set to zero for its direct 

variables {𝛼1, 𝛼2, 𝛼3, 𝛼4}. 

 

𝑢𝛼𝑖(𝑡) = 𝐾𝑝,𝛼𝑖(𝛼𝑖,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝛼𝑖)

+ 𝐾𝑣,𝛼𝑖(�̇�𝑖,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − �̇�𝑖) 

(30) 

The block diagram of the swing phase 

controller is illustrated in Fig. 10. 

The stance phase controller plays a crucial 

role in the robot's motion. During this phase, 

the two legs in contact with the ground 

utilize it to generate the desired forces 

necessary for achieving appropriate 

movement. Zero velocity constraints on the 

end effector are applied to determine the 

desired angles that produce these forces. In 

each phase, there are zero velocity 

constraints for the stance phase legs (in 

addition to the constraints imposed by the 

four-bar mechanism). These constraints can 

be expressed in the form of [𝑎]{�̇�} = {0}. 

By assuming that [𝑎]{�̇�} equals vector {𝑟} 

and employing Jacobian matrices, the 

desired angles for the stance phase can be 

calculated. For instance, the equation below 

defines the desired stance phase angles 

when the right front and left rear legs are in 

the stance phase. 

{
  
 

  
 
�̇�1
�̇�2
�̇�7
�̇�8
�̇�1
�̇�4}
  
 

  
 

= −[𝐶]+[𝐷]

{
 
 

 
 
�̇�
�̇�
�̇�
�̇�

𝜁̇}
 
 

 
 

 (31) 

The + sign in Eq. (31) denotes the pseudo-

inverse operation, which, in the case of 

square matrices, is equivalent to the inverse 

function. The matrices [𝐶] and [𝐷] are 

defined as follows: 

[𝐶]

= [
𝜕{𝑟}

𝜕�̇�1

𝜕{𝑟}

𝜕�̇�2

𝜕{𝑟}

𝜕�̇�7

𝜕{𝑟}

𝜕�̇�8

𝜕{𝑟}

𝜕�̇�1

𝜕{𝑟}

𝜕�̇�2
] 

(32) 

[𝐷] = [
𝜕{𝑟}

𝜕�̇�

𝜕{𝑟}

𝜕�̇�

𝜕{𝑟}

𝜕�̇�

𝜕{𝑟}

𝜕�̇�

𝜕{𝑟}

𝜕𝜁̇
] (33) 

In Eq. (31), �̇� is set to zero to assume that 

the robot remains stable during movement. 

In practical applications, the angle 𝜂 is 

maintained at a constant value by selecting 

an appropriate desired movement in the 

plane. Several criteria, such as the Zero 

Moment Point (ZMP) and the Foot Rotation 

Indicator (FRI), can be utilized for this 

purpose [40]. After determining the desired 

angle from the equation above, a PD 

controller will be applied to the two pitch  
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angles of the robot, as described in the 

following equation. 

𝑢𝜃2𝑖−1(𝑡) = 𝐾𝑝,𝜃2𝑖−1(𝜃2𝑖−1,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃2𝑖−1)

+ 𝐾𝑣,𝜃2𝑖−1(�̇�2𝑖−1,𝑑𝑒𝑠𝑖𝑟𝑒𝑑

− �̇�2𝑖−1) 

(34) 

𝑢𝜃2𝑖(𝑡) = 𝐾𝑝,𝜃2𝑖(𝜃2𝑖,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃2𝑖)

+ 𝐾𝑣,𝜃2𝑖−1(�̇�2𝑖,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − �̇�2𝑖) 

(35) 

In comparison to the swing phase, the 

structure of the controller remains the same; 

however, the desired angles are derived 

from Eq. (31) instead of Eq. (15). 

Additionally, to maintain the height of the 

torso, an outer-loop proportional (P)  

 

controller has been incorporated. This 

addition addresses the issue of the robot 

potentially moving downward during 

forward stepping due to numerical errors. 

�̇�𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝐾𝑦(𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑦(𝑡)) (36) 

The control loop diagram is shown in Fig. 

11. 

6- Results 

In this section, two cases of trajectory 

control have been investigated. In the first 

case, the robot's heading is maintained 

constant while it moves in both the 

transverse and longitudinal directions. 

Fig. 12 displays the 𝑋, 𝑌, and 𝑍 coordinates 

relative to time for a desired velocity of 

𝑞𝑑 

𝑞(𝑡) 

 

PD 

Controller  

Eqs. (26-27) 

�̇�𝑑  
Desired 

trajectory 

 (15) and (16) {�̇�𝑆𝑊(𝑡), �̇�𝑆𝑊(𝑡)} 

න⬚ 

�̇�𝑑 Inverse 

kinematic 

 (13) 

 

𝑢(𝑡) 
plant 

 

�̇�(𝑡) 

Fig. 10 Block diagram of swing phase controller for pitching. 

𝑑 𝑑𝑡Τ  

{�̇�1,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , �̇�2,𝑑𝑒𝑠𝑖𝑟𝑒𝑑}  

 
{𝜃7,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , 𝜃8,𝑑𝑒𝑠𝑖𝑟𝑒𝑑}  

 

{𝜃1,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , 𝜃2,𝑑𝑒𝑠𝑖𝑟𝑒𝑑}  

 �̇�𝑑  

plant 

 

�̇�𝑑  
𝑦𝑑  

−𝑦(𝑡) 

𝑘𝑦 

Constraints 

 (29) 

PD 

Controller 

(32) and 

(33) 

 

{𝜃1, 𝜃2} {𝜃7, 𝜃8} 

 

{�̇�7,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , �̇�8,𝑑𝑒𝑠𝑖𝑟𝑒𝑑}  

 

𝑢(𝑡) 

Fig. 11 Block diagram of stance phase controller. 
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�̇� = 0.32𝑚/𝑠 and �̇� = 0.05𝑚/𝑠. It is 

evident that the robot successfully tracks the 

desired trajectory throughout the motion. 

Fig. 13 illustrates the desired and simulated 

angles of the robot's links for the right front 

leg. The desired angles are derived from two 

distinct sets of rules, which correspond to 

the stance and swing phases. 

The actuator inputs, as illustrated in Fig. 14 

are specifically shown for the right front leg. 

 

 

 

 

 

 

Fig. 14 Control output of right front leg in case of constant heading. 

 

 

Fig. 15 illustrates the robot's position in the 

plane. 

Fig. 12 Linear coordinates of torso relative to time in case of constant heading scenario. 

Fig. 13 Desired and simulated angle in case of constant heading for right front leg. 
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Fig. 15 Planar movement of robot in case of constant 

heading. 

In the aforementioned scenario, the robot's 

heading is maintained at a constant angle. 

Fig. 16 illustrates the variation of the 

heading angle throughout the motion. 

 
Fig. 16 Heading of the robot during constant heading 

scenario. 

In the second scenario, the robot's heading 

angle is varied to facilitate movement 

within the plane. By adjusting the heading, 

the robot's desired transverse coordinate 

changes, as described by the following 

equation: 

�̇� = −�̇� tan𝜓 (37) 

Fig. 17 illustrates the robot's movement 

within the plane, maintaining a desired 

coordinate of �̇� = 0.32𝑚/𝑠 with a heading 

rate of �̇� = −7𝑑𝑒𝑔/𝑠 until 4.4 seconds, 

after which the heading rate changes to �̇� =

7𝑑𝑒𝑔/𝑠 for the remainder of the simulation. 

 
Fig. 17 Planar movement of robot in case of variable 

heading. 

 

Fig. 18 depicts the corresponding variation 

of the robot's heading angle. 

The torso coordinates of the robot as a 

function of time are presented in Fig. 19. 

Moreover, Fig. 20 illustrates the desired and 

actual angles of the robot’s front right leg, 

while Fig. 21 presents the corresponding 

controller output. 

Fig. 22 illustrates the frames of the robot’s 

movement with a variable heading. 

 
Fig. 18 Heading angle of robot in case of variable 

heading control. 

To plan a desired trajectory that the robot 

can follow, the concept of the Zero Moment 

Point (ZMP) is employed. According to this 

principle, the robot's stability is maintained 

(�̇� = 0) as long as the ZMP lies within the 

boundary defined by the line connecting the 

contact points. Generally, the ZMP is the 

point at which the resultant planar moment 



55 
M. Salehi et al./ Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 16 (2024) 0041~0060 

 

 

due to the reaction forces is zero. 

Considering the dynamics of the robot, this 

point can be calculated using the following 

equations: {
 
 

 
 𝑧𝑧𝑚𝑝 =

�̇�𝑂,𝑋 + 𝑌𝑧𝑚𝑝�̇�𝑌 + 𝑧𝐶.𝐺𝑚𝑔

�̇�𝑌 +𝑚𝑔

𝑥𝑧𝑚𝑝 =
−�̇�𝑂,𝑍 − 𝑌𝑧𝑚𝑝�̇�𝑋 + 𝑥𝐶.𝐺𝑚𝑔

�̇�𝑌 +𝑚𝑔

 

 

(38) 

where 𝐻 is angular momentum and 𝑃 is 

linear momentum of robot. 

 
 

 
Fig. 19 Linear coordinates of torso relative to time in case of variable heading. 

 

 

 

Fig. 21 Actuator input for right front leg in case of variable heading. 

 

 

 

 

Fig. 20 Desired and simulated angle of right front leg in case of variable heading. 
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By calculating the Zero Moment Point 

(ZMP) in relation to the center of gravity 

(CoG), a desired trajectory can be 

formulated that ensures dynamic stability. 

Fig. 23 illustrates the ZMP alongside the 

CoG in scenarios involving variable 

heading. 

The high frequency variations observed in 

Fig. 23 are attributed to the robot's impact, 

where the Zero Moment Point (ZMP) 

criteria apply. These brief intervals are 

considered negligible. 

The results presented thus far have been 

simulated based on the standard responses 

outlined in Table 1. To illustrate the impact 

of optimization on actuator torques, two 

simulations were conducted for the robot's 

forward movement, utilizing identical 

proportional and derivative gains. The sole 

variation lies in the lengths of the four-bar 

mechanism, as specified in Table 1. 

 
Fig.  23 Zero moment point and center of gravity 

(which lies within the supporting line) comparison. 

Fig. 24 compares the actuator torque of the 

right front rolling actuator for two different 

link configurations: one representing the 

maximum ratio from the table and the other 

the minimum ratio. 

As illustrated in Fig. 24, the optimization 

algorithm enables the robot to require less 

force, particularly during the stance phase, 

due to the higher transmission ratio. The 

Fig. 22 Movement frame of robot in case of variable heading. 
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root mean squared (RMS) values for the two 

actuators with the maximum ratio are 

1.8454 and 1.76, whereas the corresponding 

values for the minimum ratio are 4.3543 and 

4.1043. This clearly demonstrates the 

greater efficiency achieved with the lengths 

corresponding to the maximum ratio. 

  

 

 
 

 

To validate Eq. (8), the four-bar mechanism 

has been excluded, and the knee actuator 

torque is transformed to the knee joint as 

described by Eq. (8). In the equation below, 

the dynamic term is neglected, assuming the 

robot operates in a semi-static manner. 

Under this assumption, the only influential 

factors are the input torques and ground 

forces. 

𝑢𝜃2𝑖−1 −𝜆𝑦{𝑙ℎ cos𝜃2𝑖−1+ 𝑙𝑒 cos(𝜃2𝑖−1+𝜃2𝑖)}

−𝜆𝑥{𝑙ℎ sin𝜃2𝑖−1
+ 𝑙𝑒 sin(𝜃2𝑖−1+𝜃2𝑖)}

≈
𝑙1 sin 𝑎

𝑙3 sin 𝑏
𝑢𝜃3𝑖′ 

(39) 

The terms 𝑢𝜃2𝑖−1 and 𝑢𝜃3𝑖′ represent the 

actuator torques, where 𝑖 denotes the robot's 

leg. This equation is valid only for legs in 

contact with the ground. The ground forces, 

𝜆𝑥 and 𝜆𝑦, are calculated during the robot's 

simulation. Fig. 25 demonstrates the 

accuracy of Eq. (39), verifying that Eq. (8) 

effectively captures the transformed torque. 

This result confirms that the robot moves in 

a semi-static manner during the stance 

phase. 

 

Fig.  25 Semi-static manner of robot leg in stance 

phase and the impact of transferring knee torque. 

The PD gains used throughout the article are 

selected based on empirical tuning, and 

their corresponding values are provided in 

Table 5. 

7- Conclusion 

In this study, a PD controller based on the 

robot’s kinematics has been proposed for a 

quadruped robot. To reduce leg inertia, all 

actuators are positioned near the hip joint, 

and an optimized four-bar mechanism is 

employed to transmit torque to the knee 

joint. 

 

Fig. 24 Actuator torques comparison for two different links length according to Table 1:  
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Table 5: PD selected values in the simulation. 

Phase gain value 

Swing 

Phase 

𝐾𝑝,𝜃2𝑖−1 (Equation (28)) 40 

𝐾𝑣,𝜃2𝑖−1  (Equation (28)) 0.9 

𝐾𝑝,𝜃′3𝑖  (Equation (29)) 8 

𝐾𝑣,𝜃′3𝑖  (Equation (29)) 0.2 

𝐾𝑝,𝛼𝑖 (Equation (30)) 5 

𝐾𝑣,𝛼𝑖(Equation (30)) 0.4 

Stance 

Phase 

𝐾𝑝,𝜃2𝑖−1 (Equation (34)) 640 

𝐾𝑣,𝜃2𝑖−1  (Equation (34)) 8 

𝐾𝑝,𝜃2𝑖 (Equation (35)) 110 

𝐾𝑣,𝜃2𝑖−1  (Equation (35)) 3 

𝐾𝑦 (Equation (36)) 1.2 

𝐾𝑝,𝛼𝑖 (Equation (30)) 700 

𝐾𝑣,𝛼𝑖(Equation (30)) 50 

 

The optimization's effectiveness is 

demonstrated throughout the paper by 

minimizing and maximizing the objective 

function. Additionally, the robot's 

kinematic and dynamic equations are 

derived to simulate its response in various 

scenarios, including fixed and variable 

heading. The controller is designed for real-

time implementation, and the optimization 

enhances the reaction forces while overall 

reducing the robot's weight. For future 

work, it is recommended to explore multi-

objective algorithms to optimize the robot’s 

link lengths during both the swing and 

stance phases simultaneously. Moreover, 

real-time trajectory planning could be 

integrated to maintain stability in the 

presence of uncertainties. 
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