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Abstract 

Transformers are critical components in power systems. Faults within these devices can lead to substantial repair costs and 

prolonged service interruptions. Dissolved Gas Analysis (DGA) of transformer oil is widely used for monitoring transformer 

health. This research leverages data-driven algorithms, employing the Duval-Pentagon (DP) method and hyperparameter 

optimization, to enhance fault diagnosis accuracy in power transformers. After preprocessing the DGA dataset, it was split 

into training and testing sets in an 80:20 ratio. Subsequently, several data-driven algorithms, including Support Vector 

Machines Algorithm (SVMA), Decision Tree Algorithm (DTA), Logistic Regression Algorithm (LRA), and Naive Bayes 

Algorithm (NBA), were employed on the dataset. A significant challenge was the inherent limitations of DGA accuracy under 

varying operational conditions and the presence of outliers in the dataset. A robust technique was implemented alongside a 

random search for hyperparameter optimization to address this challenge to improve model resilience and diagnostic accuracy. 

Evaluation metrics such as accuracy, F1-measure, recall, precision, and Matthews Correlation Coefficient (MCC) were used 

to assess impact of hyperparameter optimization. The findings demonstrate that hyperparameter optimization consistently 

enhances the performance of data-driven algorithms. Among the algorithms proposed in this research, DTA with 

hyperparameter optimization achieved the highest accuracy with an accuracy rate of 93.37% in transformer fault diagnosis. 

The algorithms were implemented based on Python. 
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1. Introduction 

Power transformers are critical assets in the 

energy distribution and transmission infrastructure 

due to their high cost and indispensable role in the 

production-to-consumption chain. Given their 

importance, meticulous and ongoing monitoring is 

essential. It has long been established that abnormal 

conditions, such as short circuits, can lead to gas 

generation within oil-filled electrical equipment, 

especially transformers. When short circuits occur, 

the combination of oil and cellulosic insulation 

experiences thermal and electrical stress, resulting in 

the sublimation and decomposition of gases. 

Dissolved Gas Analysis (DGA) remains the most 

prevalent technique for assessing the health of 

power transformer [1, 2]. 

Dissolved Gas Analysis provides the analytical 

basis for a diverse range of interpretation 

approaches, including Roger’s ratio methods, the 

IEC 60599 standard, and Dorneneburg’s method [3-

6]. Among these methods, graphical techniques such 

as the Duval-Triangle (DT) and Duval-Pentagon 

(DP) serve as complementary tools in this analytical 

process. The DT technique is widely used; 

nevertheless, studies have shown that the DP 

technique is more effective for resolving specific 

types of issues and exhibits superior accuracy in 

fault detection within power transformers [7, 8]. 

In recent years, artificial intelligence (AI) 

techniques have gained prominence for diagnosing 

and detecting faults in transformers. Machine 

learning (ML) and deep learning (DL) approaches 
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have been explored extensively. In [9], the authors 

introduced a transformer fault diagnosis approach 

that combines backpropagation neural networks and 

SVM, achieving a diagnosis accuracy of 92% based 

on DGA data. This enhanced accuracy contributes 

to the reliable, safe, and sustainable operation of 

power grids. A wide-ranging works review 

exploring the application of AI techniques for 

dissolved gas analysis -based fault detection and the 

resolution of complex challenges in early 

transformer fault detection is investigated in [10]. 

This assessment encompasses neural networks, 

clustering, and support vector machines. 

In [11], an advancement involves an advanced 

diagnostic prediction technique that combines deep 

neural networks with synthetic minority 

oversampling methods. This approach demonstrates 

significant advantages over traditional classification 

methods when dealing with imbalanced datasets. 

[12] has explored ML algorithms such as decision 

trees (DT), SVMs, and k-nearest neighbors to 

leverage AI-driven data augmentation strategies for 

enhancing fault diagnosis performance in power 

transformers. This approach has shown promise in 

enhancing fault diagnosis performance, especially 

for minority class faults within power transformers. 

In [13], the common vector approach is 

described as an effective classifier for scenarios with 

limited data. The feature vector needed for CVA 

training and testing phases is constructed with both 

raw DGA data and derived characteristics. The 

proposed method’s performance is evaluated on 

DGA datasets provided by the Turkish Electricity 

Transmission Company and comparation with 

conventional approaches in terms of organization 

accuracy and training/testing duration. In [14], a 

deep belief network using DGA method is studied 

for diagnosing faults and states in power 

transformers using customized input features. This 

research focuses on six fault classifications based on 

nine characteristics extracted from the gases 

dissolved in the insulating oil of power transformers. 

The deep belief network was assessed by samples 

collected from power transformers. In [15], a fuzzy 

logic approach is developed to evaluate the 

condition of power transformers using three DGA 

methods: the key gas method, IEC three-gas ratio 

method, and Duval triangle method. The fuzzy logic 

approach assesses the percentage of the failure index 

and determines internal faults. The performance of 

the fuzzy logic approach was evaluated on DGA 

results from two transformers and was practically 

confirmed by an un-tanked power transformer 

exhibiting arcing at the core in both cases. In [16], a 

convolutional neural network model is provided that 

is capable of identifying various transformer fault 

types even in the presence of varying levels of noise 

in measurement data. To simulate real-world 

conditions, noise was artificially introduced into all 

dissolved gas analysis samples at levels ranging up 

to 20%.  

Despite numerous applications of AI 

algorithms for fault detection in power transformers, 

hyperparameter tuning has predominantly relied on 

traditional trial-and-error methods. Moreover, the 

previous research often utilized feature scaling 

techniques like min-max scaling or z-score 

normalization, which exhibit limited resilience to 

outliers within DGA datasets. To overcome these 

limitations, this study introduces a data-driven 

algorithm where hyperparameters are optimized 

using random search technique, with the goal of 

improving the accuracy of transformer fault 

prediction under DGA data. Furthermore, robust 

scaling is implemented to enhance the algorithm’s 

robustness to the presence of outliers in the DGA 

dataset. The remainder of this paper is structured as 

follows. Section 2 discusses Dissolved Gas Analysis 

(DGA) in transformer oil, and Duval Pentagon 

technique. In Section 3, the DGA dataset and the 

proposed algorithms are introduced. Section 4 

presents the experimental results and provides a 

detailed analysis. Finally, Section 5 concludes the 

research. 

2. Dissolved gas analysis in power transformer oil 

Dissolved Gas Analysis is a robust and widely 

utilized diagnostic technique for detecting faults in 

oil-filled transformers. Due to thermal and electrical 

stresses, the oil in power transformers may degrade, 

resulting in the release of the gases, involving 

hydrogen, carbon dioxide, ethane, carbon monoxide, 

ethylene, methane, and acetylene [17]. Numerous 

approaches are employed to analyze dissolved gases 

and interpret faults in power transformers, such as 

the Rogers Ratio, Doernenburg Ratio, Duval 

Triangle (DT), IEC Standard Code, and Duval 

Pentagon (DP) [4-6]. In this paper, the DP technique 

is applied, which identifies seven fault types: D1, 

D2, PD, S, T1, T2, and T3, as depicted in Table 1. 

Furthermore, the number of instants associated by 

the fault is presented in this table.  

The calculations for the DP technique involve 

determining the percentage of each gas 

concentration (in ppm) relative to the total gas 

concentration. The percentage concentration of the 

total sum was also utilized, where each sample 𝑋 =
[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ] is scaled as follows: 

𝑋 =
𝑋

∑ 𝑥𝑖
5
𝑖=1

× 100% 
(1) 

where 𝑥1, 𝑥2, 𝑥3, 𝑥4, and 𝑥5 represent the gases 

such as hydrogen, methane, ethane, ethylene, and 

acetylene, respectively. 
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Table.1. 
Transformer Fault Detection Using the Duval Pentagon 

Technique 

Sample Short 

Name 
Type of Fault No. 

233 D1 Low-energy electrical 

discharges 

1 

237 D2 High-energy electrical 

discharges 

2 

241 PD Corona-type partial discharge 3 
227 S Stray gassing of mineral oil 4 

239 T1 Thermal faults at temperature 

range < 300◦C 

5 

241 T2 Thermal faults at temperature 

range between 300 ◦C and 700 
◦C 

6 

240 T3 Thermal faults at temperature 

range > 700 ◦C 

7 

3. Materials and Methodologies 

The following subsections comprehensively 

delve into the relevant background DGA data and 

the research methodology employed in this study. 

A) Dissolved Gas Analysis Dataset  

In this study, a dissolved gas analysis dataset 

comprising 1658 samples is employed to identify 

and diagnose several faults in oil-immersed 

transformers. The dataset includes five input 

features representing gases: ethane, methane, 

hydrogen, ethylene, and acetylene, as well as seven 

target fault classes: PD, S, D1, T1, D2, T2, and T3 

[2]. The distribution of instants for each transformer 

fault is detailed in Table 1, with its pie chart and bar 

plot representations visualized in Figure 1. 

In the following sections survey the 

preprocessing steps of the DGA dataset, feature 

scaling, and the division of the dataset into training 

and testing sets in this study. 

Following the initial assessment of the DGA 

dataset, procedures for handling missing values and 

outliers are addressed. Subsequently, normalization 

is applied to the dataset. To accelerate the 

convergence of the training model and reduce the 

impact of varying feature scales, it is essential to 

apply data scaling to the extracted features, leading 

to minimized dimensional disparities among them. 

Although the most previous studies have utilized 

conventional normalization techniques such as 

standard scaling or min-max scaling, this research 

adopts the robust scaling technique due to the 

presence of outliers. This approach is intended to 

improve the performance of the proposed 

algorithms. The formula for robust scaling is 

presented in Equation 2. 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)

𝐼𝑄𝑅
× 100% (2) 

here, 𝑥 , and 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 denote the original data 

and the scaled data, respectively. Moreover, IQR 

refers the Interquartile Range, which is the 

difference between the first quartile and the third 

quartile [18]. 

The DGA dataset is then divided into training 

and testing sets in an 80:20 split, assigning 1326 

samples to the training set and using the remaining 

samples for testing. This setup is applied to assess 

the performance of the data-driven algorithms 

outlined in paper. The DGA dataset was split by 

leveraging the Scikit-learn framework in Python. 

The sample distribution for each fault category in 

the training and testing sets is as follows: In the 

training set, the counts are 193 for T3, 192 for S, 182 

for PD, 193 for D1, 186 for T1, 191 for D2, and 189 

for T2. For the testing set, there are 45 samples for 

S, 48 for PD, 47 for D1, 48 for T1, 48 for D2, 48 for 

T2, and 48 for T3.  

The flowchart outlining data-driven algorithms 

for fault prediction of power transformers is 

depicted in Figure 2. 

B) Data-Driven Algorithms 

Following data preprocessing, normalization 

using robust scaling and random splitting into 

training and test sets, various ML methods are 

applied to the DGA data. This study compares and 

assesses data-driven algorithms, including the 

 

 
Fig. 1. Distribution of Faults in Transformer Oil 

 
Fig. 2. Flowchart of the Data-Driven Algorithms Process 
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Decision Tree Algorithm (DTA), Support Vector 

Machine Algorithm (SVMA), Logistic Regression 

Algorithm (LRA), and Naïve Bayes Algorithm 

(NBA), for detecting faults in oil transformers. The 

five data-driven algorithms employed in this study 

are listed below: 

SVMA:Support Vector Machine Algorithm 

(SVMA) is one of the well-known ML methods in 

the supervised learning domain, is applicable to both 

classification and regression tasks. SVMA is 

particularly effective in scenarios involving small 

sample sizes, nonlinearity, and high-dimensional 

data. In [19], SVMA was applied to classify power 

transformer faults and to choose the most 

appropriate gas from traditional DGA methods. 

SVMA has been successfully in solving fault 

classification problems by identifying an optimum 

separating hyperplane that maximizes the margin 

between distinct data classes. The performance of 

SVMA is contingent upon the training dataset and 

the selection of Kernel functions. The 

hyperparameters optimized for the SVMA included 

regularization parameter, class weight, kernel 

coefficient, and kernel type. 

DTA:Decision tree algorithms (DTA) is a 

widely employed data mining method utilized for 

constructing classification systems for developing 

predictive methods targeting specific variables. This 

method segments a population into tree-like 

branches, forming an inverted tree structure 

consisting of a root node, internal nodes, and leaf 

nodes. As a non-parametric technique, it can 

proficiently handle large and complex datasets 

without the need for imposing a rigid parametric 

framework. When sample sizes are sufficiently 

large, the data can be partitioned into training and 

validation sets. The training set is utilized to build 

the DT model, while the validation set is applied to 

determine the optimal tree size, ensuring the final 

method’s optimality [20]. The optimized 

hyperparameters for the DTA included criterion 

(Gini or Entropy), minimum number of samples per 

leaf, maximum features, and splitter type. 

LRA:The logistic regression algorithm (LRA) 

is extensively utilized in many applications to 

enhance ML techniques, particularly in situations 

involving discrete and historical data, such as DGA. 

Given that LRA is designed for classifying data into 

distinct categories, it proves to be an optimum 

technique for DGA applications. Overfitting can 

become a challenge in supervised learning models, 

specifically when there are many input features. To 

address this, regularized logistic regression methods 

are generally used, as they mitigate the overfitting 

problem by employing a cost function optimized 

through logistic regression. Regularization not only 

prevents overfitting produced by either a limited 

training dataset or a high number of features, but it 

also supports in proper attribute choice by filtering 

out irrelevant attributes [21]. The optimized 

hyperparameters for the LRA comprised the 

regularization strength, the class weight, solver 

method, regularization type, and maximum 

iterations. 

NBA:Naïve Bayes Algorithm (NBA) is a 

statistical ML technique based on Bayes’ Theorem, 

which assumes that features are mutually 

independent in the classification process. 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴). 𝑃(𝐴)

𝑃(𝐵)
 (3) 

In Equation (3), 𝑃(𝐴|𝐵) indicates the 

conditional probability of A given B, while 𝑃(𝐵|𝐴) 

signifies the conditional probability of B given A. 

𝑃(𝐴) and 𝑃(𝐵) are the prior probabilities of 𝐴 and 

𝐵, respectively [22]. The optimized 

hyperparameters for the NBA contained smoothing 

parameter, the class priors, and the distribution type. 

C) Hyperparameter Optimization 

Hyperparameter tuning is a crucial step in 

enhancing and optimizing the performance of data-

driven algorithms. In this subsection, two stages are 

considered: 

₋ In the first stage, the traditional fault prediction 

for power transformers oil is presented without 

employing a hyperparameter tuning strategy. 

Therefore, the default parameters of each data-

driven algorithms are applied to assess their 

performance. 

₋ In the second stage, the proposed algorithms 

utilize random search and cross-validation 

techniques to optimize and fine-tune the 

hyperparameters. Hyperparameter tuning is a 

significant research challenge in ML 

algorithms, as it straight effects the 

performance of algorithms. Appropriate tuning 

or optimization of hyperparameters is expected 

to lead to enhanced the algorithms performance. 

Random search is predominantly efficient when 

the hyperparameter space is large and 

computationally expensive to explore 

comprehensively. 

D) Evaluation Criteria 

Implementation of the proposed data-driven 

algorithms was performed by leveraging Python 

code to assess their performance across several 

criteria, including precision, recall, accuracy,  

F1-measure, and Matthews Correlation Coefficient 

(MCC), as formally defined in Equations (4) 

through (8): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 × 100 (4) 
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𝑅𝑒𝑐𝑎𝑙𝑙 (%) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
× 100 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (%)
= 2 × 1/((1 ⁄ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
+ (1 ⁄ 𝑅𝑒𝑐𝑎𝑙𝑙) ) × 100 

𝑀𝐶𝐶 (%) = (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)/√((𝑇𝑃
+ 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁
+ 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)) × 100 

 

where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 signify true 

positive, true negative, false positive, and false  

negative, respectively. Furthermore, an in-depth 

assessment of the data-driven algorithms was 

performed through the utilization of Area Under 

Curve (AUC), Receiver Operating Characteristic 

(ROC) curve, and confusion matrix to provide a 

comprehensive analysis of their efficiency [2, 11, 

23]. 

4. Results and discussion 

Following the preprocessing steps of the DGA 

dataset, including feature scaling and the splitting of 

the dataset into training and testing sets, the 

proposed algorithms were applied in two phases. In 

this section, the performance of the four proposed 

algorithms is assessed by hyperparameter 

optimization techniques, based on the criteria 

introduced in the previous subsection. 

Firstly, the four proposed algorithms including 

Decision Tree Algorithm (DTA), Support Vector 

Classification Algorithm (SVCA), Logistic 

Regression Algorithm (LRA), and Naive Bayes 

Algorithm (NBA), were compared using traditional 

technique. Metrics such as accuracy, F1-measure, 

precision, Matthews Correlation Coefficient 

(MCC), and recall were employed. The results are 

presented in Table 2 and compared in Figure 3. As 

observed, the DT algorithm performs the best 

among the proposed algorithms, achieving an 

accuracy of 92.77%, an F1-measure of 92.79%, 

precision of 92.91%, recall of 92.77%, and MCC of 

91.54%. 

In the subsequent phase, the hyperparameter 

optimization technique was applied using Random 

Search for the proposed algorithms to enhance fault 

detection in power transformers. The performance 

of the four proposed algorithms was assessed with 

the same criteria, as shown in Table 3, and compared 

in Figure 4. The results indicate that all proposed 

algorithms with Random Search outperformed those 

using traditional methods. Among them, the DTA 

algorithm showed the best performance, with an 

accuracy of 93.37%, an F1-measure of 93.41%, 

precision of 93.77%, recall of 93.37%, and MCC of 

92.28%. 

The hyperparameters optimized during this 

process included specific parameters for each 

algorithm. For the DTA, parameters such as 

criterion (Gini or Entropy), splitter type (best or 

random), minimum samples per leaf (1, 2, 5, 10, or 

20), and maximum features (auto, sqrt, or log2) were 

adjusted. In the case of the SVMA, key parameters 

optimized included the regularization parameter (C), 

kernel coefficient (gamma), and kernel type (linear, 

rbf, or poly). For the LRA, the optimized parameters 

encompassed regularization strength (C), solver 

method (newton-cg, lbfgs, or liblinear), and 

maximum iterations (100, 200, or 300). Lastly, for 

the NBA, variance smoothing was optimized using 

a logspace approach. This systematic optimization 

process allowed for a comprehensive exploration of 

parameter combinations through cross-validation, 

significantly contributing to improved diagnostic  

Table.2. 
 Evaluation of Data-Driven Algorithms' Performance 

Criteria Algorithms 

MCC 

(%) 

F1-

measure 

(%) 

Recall 

(%) 

Precision 

(%) 

Accuracy 

(%) 

50.65 54.97 57.23 58.84 57.23 NBA 

74.46 79.09 77.71 82.49 77.71 LRA 
88.87 90.68 90.36 91.89 90.36 SVCA 

91.54 92.79 92.77 92.91 92.77 DTA 

Table.3. 
Evaluation of Data-Driven Algorithms' Performance using 

hyperparameter optimization approach 

Criteria Algorithms 

MCC 

(%) 

F1-measure 

(%) 

Recall 

(%) 

Precisio

n (%) 

Accuracy 

(%) 

51.41 55.22 57.83 59.04 57.83 NBA 

77.42 81.07 80.42 83.35 80.42 LRA 

90.67 92.20 91.87 93.49 91.87 SVCA 
92.28 93.41 93.37 93.77 93.37 DTA 

 

 
Fig. 3. Performance Comparison of Data-Driven Algorithms 

Applied to Dissolved Gas Analysis Data 
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Fig. 4. Performance Comparison of Data-Driven Algorithms 

on Dissolved Gas Analysis Data Using a Hyperparameter 

Optimization Approach 

accuracy across all algorithms. The findings 

underscore the importance of hyperparameter tuning 

in enhancing model performance and ensuring 

reliable fault diagnosis in power transformers. For a 

more detailed evaluation of the proposed algorithms 

in classifying faults in oil-immersed power 

transformers, both with and without hyperparameter 

optimization techniques, ROC curves were utilized. 

Figures 5 and 6 present the ROC curves for the data-

driven methods using traditional, and 

hyperparameter optimization techniques, 

respectively. It is evident that the DT algorithm 

consistently performs the best among the proposed 

algorithms in both techniques. 

Additionally, for a more comprehensive 

comparison, the line plots of MCC and AUC are 

shown in Figures 7 and 8, respectively, highlighting 

the superiority of the DTA algorithm over other 

data-driven algorithms in this study. 

To further examine the performance of the 

DTA algorithm, confusion matrices with traditional 

and hyperparameter optimization techniques are 

depicted in Figures 9 and 10, respectively, 

confirming the DT algorithm’s effectiveness. 

5. Conclusion  

In this paper, several data-driven algorithms 

for fault diagnosis in transformers are examined 

employing Dissolved Gas Analysis (DGA) 

technique. To evaluate the results using classifier 

metrics, both traditional and hyperparameter 

optimization techniques were applied to all 

proposed algorithms, including Decision Tree 

Algorithm (DTA), Support Vector Machine 

Algorithm (SVMA), Logistic Regression Algorithm 

(LRA), and Naive Bayes Algorithm (NBA). The 

first stage, employing traditional technique on the 

proposed algorithms, demonstrated that the DTA 

achieved the highest performance. In the second 

stage, the application of hyperparameter 

optimization through random search further 

improved the performance of the algorithms, with 

notable enhancements in metrics such as F1-

measure, precision, recall, Matthews Correlation 

Coefficient (MCC), Area Under Curve (AUC), and 

Receiver Operating Characteristic (ROC) curve. By 

leveraging hyperparameter optimization technique, 

the DT algorithm achieved the best performance 

among the proposed algorithms, with an accuracy of 

93.37% for fault detection in power transformers. 

Future research could explore the use of deep 

learning algorithms combined with alternative 

hyperparameter optimization techniques to further 

enhance fault diagnosis in oil-immersed 

transformers. 

 

 
Fig. 5. Receiver Operating Characteristic Comparison of 

Data-Driven Algorithms 

 

Fig. 6. Receiver Operating Characteristic Comparison of 

Data-Driven Algorithms with Hyperparameter Optimization 

 
Fig. 7. Comparison of Matthews Correlation Coefficient for 

Data-Driven Algorithms 
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Fig. 8. Comparison of Area Under Curve for Data-Driven 

Algorithms  

 
Fig. 9. Confusion Matrix for Decision Tree Algorithm  

 

Fig. 10. Confusion Matrix for Decision Tree Algorithm with 

Hyperparameter Optimization 
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