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Abstract – The detection of obstructive sleep apnea (OSA) has turned out to be a hot study topic 

because of the excessive danger of this illness. In this paper, some effective and low-cost 

computational signal processing techniques are studied and their effects are compared with current 

achievements in OSA diagnosis. Two-tree complex wavelet transform (DT-CWT) is used to extract 

the feature coefficients. Multi-cluster feature selection (MCFS) algorithm has been used to select 

features. The remaining functions are implemented to a hybrid "okay-approach, RLS" RBF 

network. The obtained results show that the detection accuracy of the method presented in this 

article is about 96%, while the complexity of this method is much less than SVM-based techniques.  
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1. Introduction 
 

There is a close relationship between the pulse rate and 

the breathing pattern. Therefore, electrocardiogram (ECG) 

signals can be used to locate respiratory problems. 

Obstructive sleep apnea (OSA) is one of the common and 

dangerous breathing disorders that appear during moments 

of sleep, which can be detected using signal processing 

methods from ECG signals [1]. Using the ECG signals in 

OSA detection is only one way to try this task and the 

apnea may be detected by using the respiration and other 

types of alerts. However, in this paper, the simplest method 

is considered to OSA detection by using the single-lead 

ECG. Several various methods of diagnosing OSA have 

been proposed so far. Most of these techniques include 

feature extraction, feature selection and classification [2-12]. 

Khandokeret al. have proposed using the wavelet remodel 

for ECG function extraction [3]. furthermore, Rachimet al., 

Zarei et al., Avcı and Akbaş et al., and lots of different 

researchers have proposed the discrete wavelet transform 

(DWT)-based totally ECG decomposition for the OSA 

detection [4-9]. Moreover, the Tunable Q-factor wavelet 

transformation and twin-tree complex wavelet 

transformation (DT-CWT) have been proposed to extract 

the transform coefficients from the ECG signals [13-14]. 

After collecting the remodeling capabilities, the usual route 

is to extract the statistical features from those coefficients. 

In this research, DT-CWT method is used to extract features. 

To reduce the computational complexity of the proposed 

method, the characteristic reduction is vital. Zarei et al.have 

used the sequential ahead characteristic choice approach, 

while the principal factor analysis had been advised in Avcı 

and Akbaş et al and Rachim et al.[5,8-9]. In this paper, the 

multi-cluster function choice (MCFS) method for the 

characteristic reduction as lots as feasible for the quality 

consequences is proposed. 

The final a part of the OSA detection method is the 

category. Many researchers have proposed the usage vector 

machines (SVMs) for classifying among the apnea and 

regular ECG signal. The proposed classifier in this article is 

the Hybrid Radial basis characteristic (RBF) community 

with the “okay-manner-recursive least-squares (RLS)” 

mastering set of rules. The selection of this community is to 

evaluate its results with that of the SVM networks within 

the OSA detection. These networks have been compared 

earlier than in other responsibilities, and it has been shown 

that the hybrid RBF network is advanced to the SVM 

community. 

 

 

2. The ECG Signal 

 

In this section, preliminary processing of ECG signal for 

OSA diagnosis is considered. First, the database used in this 

article is introduced, then the pre-processing and signal 
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preparation techniques are described.
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information on 70 people during sleep.

records are for training with 13 healthy subjects (normal 
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apnea. For the test set, we have 35 records with 12 healthy 

cases and 23 cases with apnea.

of each part is also mentioned in this text file. Based on this, 

the results are presented in Table 1, assuming section 

section (minute by minute).
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hybrid method. There is no limit to the size 

of the output layer, except that, typically, the size of the 

Evaluation of proposed methods for OSA detection is 

usually based on the accuracy and complexity of the signal 

processing techniques used in each part of the task. As 
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