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constraint. To achieve an optimal configuration, a multi-objective exergoeconomic
optimization approach is employed. This framework simultaneously accounts for
thermodynamic performance and economic considerations, enabling a more realistic
and efficient system design. Given that environmental pollution and energy resource
limitations are major constraints on sustainable development, the proposed
optimization aims to identify design parameters that reduce fuel consumption while
enhancing system efficiency. The optimization results indicate a reduction of
approximately 6.4% in the fuel mass flow rate compared to the base case. This
reduction, together with an increase in exergetic efficiency, contributes to lowering
environmental impacts associated with fuel consumption and emissions.
Furthermore, the results demonstrate that the overall exergy efficiency and product
cost of the optimized plant improve by 8% and 3%, respectively, relative to the
reference design. A comparative analysis is also conducted between the results of the
present study and those reported in two previously published works. The comparison
reveals that the turbine efficiency obtained in the current research is 0.68% lower
than that reported in the first study, while it is 5.02% higher than that reported in the
second study. These differences highlight the effectiveness of the proposed
optimization framework and confirm its competitiveness with existing approaches.
Overall, the findings demonstrate that the application of PSO combined with a multi-
objective exergoeconomic analysis provides an effective tool for optimizing the
performance, cost, and environmental impact of thermal combined cycle power
plants.
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1. Introduction

Exergy analysisis a thermodynamic analysis
technique  based on the secondlaw  of
thermodynamics which provides an alternative and
illuminating means of assessing and comparing
processes and systems rationally and meaningfully. In
particular, exergy analysis yields efficiencies which
provide a true measure of how nearly actual
performance approaches the ideal, and identifies more
clearly than energy analysis the causes and locations
of thermodynamic losses. Consequently, exergy
analysis can assist in improving and optimizing
designs. Increasing application and recognition of the
usefulness of exergy methods by those in industry,
government and academia has been observed in recent
years. Exergy has also become increasingly used
internationally. [1]

Kallio and Siroux in a research present a review of
exergy and exergy-economic approaches to evaluate
hybrid renewable energy systems in buildings. In the
first part of the paper, the methodology of the exergy
and exergo-economic analysis is introduced as well as
the main performance indicators. The influence of the
reference environment is analyzed, and results show
that the selection of the reference environment has a
high impact on the results of the exergy analysis. In
the last part of the paper, different literature studies
based on exergy and exergo-economic analysis
applied to the photovoltaic-thermal collectors, fuel-
fired micro-cogeneration systems and hybrid
renewable energy systems are reviewed. It is shown
that the dynamic exergy analysis is the best way to
evaluate hybrid renewable energy systems if they are
operating under a dynamic environment caused by
climatic conditions and/or energy demand. [2]

Exergy analysis is another useful tool that can link
the energy system with its surrounding environment.
The exergy analysis reveals the actual system
efficiency that makes it ideal for system tuning. The
careless utilisation of energy resources would have
indirect side effects on economics and environment,
exergy analysis is a useful method to show the impact
of using energy resources on the environment, reveal
the efficiency improvement, identify the magnitudes
of wastes and losses, and calculate the quality of the
energy resources. [3]

Exergy analysis is also one of the premier tool for the
system analysis, by performing it we can actually
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relate the system with its overall surroundings. Exergy
analysis yields ideal parameters that would be
beneficial for the maintenance/tuning of the system.
This analysis is also used to stop the careless
utilization of energy resources by putting forward the
indirect side-effects which it
environment. Through monitoring the consumption of
resources, the overall efficiency of system also
increases while it would also be useful to calculate the
total waste a system generates during the overall
process. There are number of articles/studies found
that conducted exergy analysis and used the results to
increase the systems efficiency. [4]

The exergo-economic analysis is used to create a
relation between the costs and exergy flows of the
energy system. The exergo-economics are based on
the exergy flows, exergetic and non-exergetic
costs. [2]

In another research from Kazemi et al, 11 alternatives
of natural gas combined cycle power plants based on
post-combustion,  pre-combustion or  oxy-fuel
combustion CO; capture with monoethanolamine
(MEA) or activated methyldiethanolamine (a-MDEA)
and potential ORC implementation were simulated,
economically optimized and environmentally assessed
to shed light on these gaps. The results show the
important role of thermodynamic efficiency in the
system's environmental performance. The system
based on post-combustion CO; capture with a-MDEA
and ORC showed a superior economic profile as well
as a better environmental performance in terms
of climate change and fossil resource depletion. [5]
Kun Yang et al propose a combined cooling, heating,
and power (CCHP) system driven by biomass and
solar energy integrated with an organic Rankine cycle
(ORC). Its exergy, exergoeconomic, and
environmental performances are investigated. First,
the thermodynamic parameters of each material and
energy flow for the proposed CCHP system are
simulated using Aspen Plus. Second, the exergy and
exergoeconomic performances of the system are
investigated, and an environmental analysis of the
system is performed. The results show that the unit
exergy costs (UEC) of domestic hot water, electricity
generated by an internal combustion engine (ICE) and

causes on our

the ORC, and chilled/heated water under
summer/winter conditions are 2.742/2.742,
6.713/6.629, 12.930/12.930, and 27.100/12.530

MW/MW, respectively, with corresponding unit
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exergoeconomic costs (UEEC) of 41.11/41.11,
124.40/139.20, 181.80/181.80, and 507.10/302.60
USD/MWh, respectively. [6]

The results of another research showed that diesel
reduced the plant's efficiency by 0.00022 compared to
using natural gas, which was the least of the other
alternatives. The environmental analysis revealed that
diesel produced the least amount of CO;eq, but
biodiesel-nanoparticle had a better CO, footprint due
to the higher absorption of CO,in the cultivation
phase of the raw material for biodiesel. The economic
analysis for the fuels was carried out over ten years
and based on the lifetime of the equipment purchased.
Consequently, the total cost over the ten years for
diesel was $967332.5161, which was $124475.8381
less than that for biodiesel-nanoparticle and
$240935.3341 less than that for fuel oil. Finally, an
overall comparison was made between the fuels using
the AHP method. As the environmental criterion was
the most important decision criterion, biodiesel-
nanoparticle fuel was chosen with a marginal
difference compared to diesel. [7]

In other work, a novel combined cooling and power
(CCP) system is proposed for waste heat recovery of a
natural gas-biomass dual fuel gas turbine (DFGT)
based on the organic Rankine cycle (ORC)
and absorption refrigeration cycle (ARCQ).
Comprehensive thermodynamic, exergoeconomic,
and environmental performance and parametric
analysis of this system are performed. Results show
that under the design  condition, thermal
efficiency, exergy efficiency, levelized cost of exergy
(LCOE), and levelized environmental impact of
exergy (LEIOE) of the system are 68.88%, 42.10%,
and 21.16 $/GJ, and 5208.82 mPts/GJ, respectively.
Among all the components, combustion chamber has
the highest exergy destruction rate. The parametric
analysis indicates that the thermal and exergy
efficiencies rise by increasing the gas turbine inlet
temperature (GTIT) and ORC turbine inlet pressure or
by decreasing the preheated air temperature (PAT)
and exhaust gasoutlet temperature at high-
temperature vapor generator. The LCOE and LEIOE
present similar trends in most cases, which are most
affected by the PAT and GTIT. [8]

On the other hand Mathematical Optimization is a
branch of applied mathematics which is useful in
many different fields. Here are a few examples:
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* Manufacturing ¢ Production ¢ Inventory control °
Transportation * Scheduling * Networks ¢ Finance °
Engineering ¢ Mechanics ¢ Economics * Control
engineering * Marketing ¢ Policy Modeling

In the optimization basic optimization problem
consists of: [9]

* The objective function, f(x), which is the output
you’re trying to maximize or minimize.

* Variables, x1 x2 x3 and so on, which are the inputs —
things you can control. They are abbreviated xn to
refer to individuals or x to refer to them as a group.

* Constraints, which are equations that place limits on
how big or small some variables can get. Equality
constraints are usually noted hn (x) and inequality
constraints are noted gn (X).

Genetic  Algorithm (GA) is a search-based
optimization technique based on the principles
of Genetics and Natural Selection. It is frequently used
to find optimal or near-optimal solutions to difficult
problems which otherwise would take a lifetime to
solve. It is frequently used to solve optimization
problems, in research, and in machine learning.
Genetic  Algorithms (GAs) are search based
algorithms based on the concepts of natural selection
and genetics. GAs are a subset of a much larger branch
of computation known as Evolutionary Computation.
GAs were developed by John Holland and his students
and colleagues at the University of Michigan, most
notably David E. Goldberg and has since been tried on
various optimization problems with a high degree of
success. In GAs, we have a pool or a population of
possible solutions to the given problem. These
solutions then undergo recombination and mutation
(like in natural genetics), producing new children, and
the process is repeated over various generations. Each
individual (or candidate solution) is assigned a fitness
value (based on its objective function value) and the
fitter individuals are given a higher chance to mate and
yield more “fitter” individuals. This is in line with the
Darwinian Theory of “Survival of the Fittest”. [10]

In recent years, exergoeconomic concepts have been
used with search algorithms, such as genetic algorithm
and evolutionary algorithm, to find out realistic
optimal solution(s) of thermal systems.

Lorencin et al used a genetic algorithm (GA) approach
to design of multi-layer perceptron (MLP) for
combined cycle power plant power output estimation.
Dataset used in this research is a part of publicly
available UCI Machine Learning Repository and it
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consists of 9568 data points (power plant operating
regimes) that is divided on training dataset that
consists of 7500data points and testing dataset
containing 2068 data points. Presented research was
performed with aim of increasing regression
performances of MLP in comparison to ones available
in the literature by utilizing heuristic algorithm. [11]

2. The PSO concept

It is necessary to explore approaches that integrate
intelligence based on natural phenomena (soft
computing methods), which are at the forefront of
current research. One solution to this issue is to use the
particle swarm optimization (PSO) technique. PSO is
a soft computing optimization method inspired by the
social behavior of particles, which is inspired by the
cooperative movement of individuals in a swarm. In
the context of optimizing photovoltaic systems. PSO
optimization overcomes oscillations around local
power points by efficiently locating the global power
point, even in the case of partial shading. The PSO
particles adjust their position by moving towards the
best personal individual and towards the best global
individual, thereby maximizing the energy efficiency
of the photovoltaic system. As a result, the PSO
represents a promising solution for improving
maximum power point tracking under variable and
complex weather conditions in solar the solar water
pumping systems. [12]

In another article a new methodology were introduced,
named PSOPARSIMONY, which uses an adapted
particle swarm optimization (PSO) to search for
parsimonious and accurate models by means of
hyperparameter optimization (HO), feature selection
(FS), and the promotion of the best solutions according
to two criteria: low complexity and high accuracy.
This paper also includes a comparison in performance
with GA-parsimony, our previously published
methodology based on GA that has been successfully
applied in a variety of contexts such as steel industrial
processes,  hotel = room-booking  forecasting,
mechanical design, hospital energy demand, and solar
radiation forecasting [13].

Optimization algorithms, like the Particle Swarm
Optimization (PSO), often suffer from premature
convergence, providing poor convergence quality and
slow convergence rates. In addition, striking a balance
between exploration and exploitation adds complexity
to its implementation. Moreover, while the algorithm's
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simplicity with a few parameters is advantageous for
ease of use, it poses a significant challenge for
improvement. This work presents a modified PSO
variant, the Random Adaptive Backtracking Particle
Swarm Optimization (RAB-PSO) algorithm. This
algorithm combines three complementary
modifications to address the limitations of PSO. Its
main objective is to improve convergence quality
while minimizing iteration counts required for
achieving global minima. [14]

Hilali et al focuse on the optimization of solar water
pumping systems (SWPS) by combining the particle
swarm optimization (PSO) technique on the generator
photovoltaic (GPV) side and direct torque control
(DTC) on the pump motor side. The integration of a
maximum power point tracking system (MPPT-PSO)
represents a significant advance, enabling maximum
power to be extracted from the GPV whatever the
weather conditions. The main objective is to improve
the energy efficiency of the SWPS system by
maximizing the electrical power dedicated to the
pumping system. [12]

Divason et al present PSO-PARSIMONY, a new
methodology to search for parsimonious and highly
accurate models by means of particle swarm
optimization. PSO-PARSIMONY uses automatic
hyperparameter optimization and feature selection to
search for accurate models with low complexity. To
evaluate the new proposal, a comparative study with
multilayer perceptron algorithm was performed with
public datasets and by applying it to predict two
important parameters of the force—displacement curve
in T-stub steel connections: initial stiffness and
maximum strength. Models optimized with PSO-
PARSIMONY showed an excellent trade-off between
goodness-of-fit and parsimony. [13]

Barrios and Gerardo used a hybrid algorithm. This
algorithm combines three complementary
modifications to address the limitations of PSO and Its
main objective is to improve convergence quality
while minimizing iteration counts required for
achieving global minimal. [14]

In the research of Khademi and colleagues, energy,
exergy and economic analyses is performed for a
combined cycle power plant (CCPP) with a
supplementary firing system. The purpose of this
analyses is to evaluate the economic feasibility of a
CCPP by applying an optimization techniques based
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on  Evolutionary  algorithms.  Actually, the
evolutionary algorithms of Firefly, PSO and NSGA-II
are applied to minimize the cost function and to
optimally adjust the operating design variables of a
CCPP. The input parameters are measured in real case
study (i.e., Yazd city, Iran) and they are used to model
and optimize the system performance. In following of
optimization procedure, a thermo-economic method is
employed to compare the impact of operating
parameters from an economic standpoint by
COMFAR III (Computer Model for Feasibility
Analysis and Reporting) software. The results showed
that the optimization results are economically more
feasible than the base case. In addition, among
different optimization techniques, Firefly algorithm
improves the economic justification of CCPP. At the
end, the results of sensitivity analysis show that by
decreasing the operation costs, fixed assets and sales
revenue by 40%, the IRR increases by 6.7%, 42.8%
and decreases by 41.4%, respectively. Furthermore,
the lowest sensitivity of IRR is related to operation
cost, while the highest sensitivity of IRR is
corresponding to variations of fixed assets.. [15]

Searching procedures by PSO based on the above
concept can be described as follows: bird flocking
optimizes certain objective function. Each agent
knows its best value so far (pbest) and its xy position.
Moreover, each agent knows the best value so far in
the group (g best) among pbests. The modified
velocity of each agent can be calculated using the
following information.

e  The current positions (X, y)

e The current velocities (VX, vy)

e The distance between the current position

and pbest
e The distance between the current position
and g best

This modification can be represented by the concept of
velocity. The velocity of each agent can be modified
by the following equation:
vttt
= wv! + c;rand; x (pbest; — sf)
+ cyrand,
x (gbest — sf) €))
Where,
t+1: denotes the next iteration number
t :denotes the current iteration number
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vl : Velocity of agent i at iteration t

Pbest;: pbest of agent i (the best previous position
yielding the best fitness value for the ith particle)
gbest : gbest of the group (the best position discovered
by the whole population)

w: the static inertia weight chosen in the interval (0, 1)
ci : the cognitive acceleration coefficient

3 : the social acceleration coefficient

rand : random number between 0 and 1

st : Current position of agent i at iteration t

A suitable selection of weighting function w in (2)
provides a balance between global and local
explorations, thus requiring less iteration on average
to find a sufficiently optimal solution. The following

weighting function is usually utilized in:
w

= Wmax
Wmax ~ Wmin

itermax
X iter
Where,
Wmax : initial weight,
Wmin : final weight,
it€rmax : maximum iteration number,
iter : current iteration number.
Using the above equation, a certain velocity, which
gradually gets close to pbest and gbest can be
calculated. The current position (searching point in the
solution space) can be modified and the position of a
particle is updated every time step using the equation:

=sf+vitt

s
3)
The constants cjand c; represent the weighting of the
stochastic acceleration terms that pull each particle
toward the pbest and gbest positions. Lower values
allow particles to far from the target regions and higher
values result in the abrupt movement toward, or past,
target regions. Hence, the acceleration constants c¢jand
¢, is often set to be 2.0 according to past experiences.
The next iteration takes place after all particles have
been moved. Eventually the swarm as a whole, like a
flock of birds collectively foraging for food, is likely
to move close to the best location. The following
alternative velocity-update equation was developed:
vitt = k (vl + c;rand; X (pbest; — s!) +

c,rand, X (gbest —sb)) “)
Where k is a constant called the constriction
coefficient. If ci, c2 and k (or w), are correctly chosen,
the PSO is guaranteed to be stable without the need for

t+1
i

)
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special constraints (e.g., Bounding of velocities and
positions). [14]
The Accomplish of optimization consists of five steps
:[16-17]
Step 1: Swarm Initialization
The optimization process begins by randomly
initializing positions between a minimum and
maximum per dimension as per Relation (5). The most
common benchmarks use the same minimum and
maximum per dimension. For application problems,
however, these might differ depending on the
characteristics being optimized; hence, the general
formula is provided, which uses subscript j to indicate
the dimension.

sij(t=0) €
U(Sjmin’ S]_max)
(5)
Where j€ {1,2,..,n—1,n} and n denotes the
problem dimensionally. Velocities are similarly
initialized according to Relation (6). For application
problems with a different range of feasible values on
one dimension than on another, different step sizes per
dimension would make sense; hence, the general form
is presented, which avoids unnecessarily imposing the
same range of feasible values of all characteristics to
be optimized.

vij(t=0) €
U(_V]_max’ ijax)
(6)
Each particle’s personal best is initialized to its
starting position as shown in Equation (7).

pbest;(t = 0) = §;(t =
0)
@)

The global best is always the best of all personal bests
as shown in Equation (8).

gbest(t) =
arg min f(pbest;(t))

(®)
Vpbest; (t)

Iterative Optimization Routine
Once the swarm has been initialized, particles
iteratively: (i) accelerate (i.e. adjust their velocity
vectors) toward the global best and their own personal
bests, (ii) update and clamp their velocities, (iii)
update their positions, and (iv) update their personal
bests and the global best. This routine is repeated until
reaching a user-specified termination criterion. For
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convenience, the relevant equations are restated below
as needed in order of implementation.
Setp2: Velocity updating:

Vi*! = w¥f + cyrand,; X (pbest®, —§f) +

corand,; x (gbest® — sf) ©)
=
sign(vij ") max(|vij™|, vj"*)

(10)

Step3: Position updating:
sttt =gt 4 yit!

()

Step 4: Memory updating:
A particle’s personal best is only updated when the
new position offers a better function value:

Shesitt {i IFFGE) < f(pbest))
pbest! Otherwise
(12)
The global best is always the best of all personal bests:
gbest(t+ 1) =
arg min f(pbest; (t1))
(13)
Vpbest;(t)
Step 5: Termination criteria examination:
The algorithm repeats Step 2 to Step 4 until certain

stopping rules are satisfied. Once terminated, the

algorithm outputs the M and f(M) as its
solution. Rather than accelerating due to external
physical forces, particles adjust toward solutions of
relative quality. Each position encountered as particle
swarm is evaluated and compared to existing bests.
Though the behavior of each individual is simple, the
collective result is an optimization algorithm capable
of maximizing or minimizing problems that would be
difficult to tackle with straightforward mathematical
analyses, either because the problem is not well
understood in advance or simply because the problem
is quite complicated.
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3. Exergy and the thermoeconomic mathematical
Model

Exergy of stream flow

The specific exergy at control volume with negligible
kinetic and potential energies are given by: [4]

ex = exP? + ex®H

(14)

That the specific physical and chemical exergy of a
stream are calculated as follows: [4]

exP = (h - Tos)pr — (h— TOS)PO,TO

(15)

ext = {:1 viex{™ + RT, Z{;l yiIny;

(16)

Then, the exergy transfer rates at control volume
inlets and outlets are denoted, respectively, as Ex; =
m; ex; and Ex, = m, ex,.

Work exergy

Exergy is determined as the maximum work potential,

the work transfer rate in the control volume,

W,, , equivalent to the exergy transfer rate.

Heat transfer exergy

Assuming a uniform temperature distribution at the
location on the boundary of the control volume, the

exergy transfer rate, E'xQ, ; Connected with the heat
transfer rate,Q ; Can be calculated by the following
formula:

Exg; = (1 -
7
a7

That the 7j is instantaneous temperature. In this paper,
heat transfer exergy is negligible because assumed
each component is well isolated.

3.1 Exergoeconomic analysis

The target of this study is to minimize the sum cost of
producing (produced electricity) and maximize the
exergetic efficiency for the whole system. In this part,
according to the economic parameters used and also
the fixed cost of the equipment, the relationship
between efficiency and cost in this system has been
investigated. In fact, it has been investigated how the
efficiency has changed with the cost reduction.The
objective functions of exergoeconomic optimization
are: [18-19]
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) L iy .o

Obj.Func. Minimize Cp,,, = Cp,,, tZtor +

708M (18)

Obj.Func Maximum Erot
(ZXWnetGT)+WnetST

zx(mfuelCB"'mquLSF)XLHV

19)

The above equations expresses that the cost rate
associated with the product of the stream Cp it equals
the total rate expenditures made to generate the
product, namely the fuel cost rate C and the cost rates
associated with capital investment and operations and
maintenance Z¢ + Z0%M

The capital investment and operating and maintenance
term of the right-hand side of the above equation
ZC + 798%™ s calculated using the
relations in Ref [19].

In order to exergoeconomic analysis of each control
volume, two targets suggested by [19] were calculated
exergoeconomic factor and the relative cost
difference, respectively: [19]

fie = 5%
k Zk+CD,k

(20)

illustrated

1mgy | 220

Tk =

(21)

When the value of an exergoeconomic factor for a
component is high, suggesting that a decrease in the
investment costs of this component at the expensed of
its exergetic efficiency. The relative cost difference for
a component expresses the degree to which each
subsystem contributes to increasing the final cost of
the products. The exergoeconomic parameters for each
of the components of the TCC power plant for the base
case and optimum operating conditions are
summarized in Table 2 and 5. The r and f parameters
are generally used in the classical economic exergy
calculation, but in this research, they were calculated
and analyzed through the pso algorithm. Due to the use
of pso algorithm in this research, several random
points were investigated and the speed of the
calculation along with the accuracy has increased. [19]

ek CriEXp K

4. Simulations
4.1 Details and Assumptions
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The selected case study is DAMAVAND thermal
combined cycle power plant located in the near of
Tehran, Iran (see Fig 1). The superheated steam enters
the two-stage single reheat steam turbine at 520
°C/90bar and 230 °C/8.5bar, for high and low pressure
stages, respectively. The condenser pressure is 11 kPa.
The simulation process and the most important
parameters are described in this section. In order to
simulate the existing plant, the following assumptions
were made:

1. Ambient pressure (Py) and temperature (T,) of the
reference environment are considered as 0.9 bar and
290 K, respectively (local climatic conditions).

2. The chemical composition of the reference
environment model constitutes (in mole fractions):

N,: 0.7646,0,:0.1375, H,0O: 0.0641,C0,: 0.0337 and
others: 0.0001.

3. Pressure drop in the pipes and steam generator is
assumed equal to that in the reference power plants.

4. Fuel gas temperature is equal to ambient air
temperature when entering the combustor.

5. Standard air composition is used for plant air inlet.

6. Gas fuel ultimate analysis on volumetric basis is:N,:
0.05,CH,: 0.88,C,Hg: 0.04, C3Hg:0.02,£0,:0.01.

7. All processes are steady state and steady flow with
negligible potential and kinetic energy effects.

8. Ideal-gas mixture principles apply to the air and the
combustion products.

9. The combustion reaction is complete.

10. Heat loss from the combustion chamber (CC) is
neglected.

11. The air side and water side pressure losses in the
heat recovery steam generator (HRSG) are existed to
be 3% and 5-10%, respectively, of the inlet pressure.
Pressure losses due to friction in pipelines are
neglected.

12. The exergies of kinetic and potential are neglected.

13. The exergetic analyses are made on the lower
heating value (LHV) basis of natural gas.
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The thermodynamic properties of air and steam were
found using the Engineering Equation Solver (EES)
software package.

Air, Gas Combustion and Steam property

The specific heat of air and exhaust gas at constant
pressure are assumed to be a function of temperature,
given by the polynomial adopted from [20] as follows:

In the temperature range of 273-1800 K

Cp,, = 0.99871 + 1.06430 x 107%.T + 1.64860 x
1077.T2 — 7.01176 x 10™* .T3 (22)

The specific heat capacity of the combustion gases as
follows:

In the temperature range of 273-1800 K

Cpgas =0.97031 + 0.67898 x 10™*.T + 1.65757 X
1077.T? — 6.78633 x 10711, T3 (23)

Therefore, enthalpy and entropy of working fluid are
found using the above polynomials and derived by
using the ideal gas tables, can be obtained from [21]:

T
AhT = h298.15 + f298.15 ACP dT
(24)

T
AST = 5298.15 + f298.15 ACP dT
(25)

Where h,9g15 And S,9g 15 Are the enthalpy and
entropy at a reference temperature, respectively.
Likewise, the main data for steam system in a TCC
power station give in the table 1.

4.2 Design Parameters

The 9 decision variables are to be optimized, which
have been defined as follows:

— Inlet fuel in Combustion Chamber myei;
— Inlet fuel in HRSGm, 4,15

— Isentropic efficiency of the compressor N5 comp’
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— Steam temperature entering the high pressure steam
turbine T;3;

— Steam pressure entering the high pressure steam
turbineP; 3;

— Steam mass flow rate entering the high pressure
steam turbine m;s3;

— Exhaust gas temperature exhalant the gas turbine
T, &Ty;

— Compressor pressure ratio 7,

— Isentropic efficiency of the steam turbine nsr;
5 Design optimization

In order to achieve feasible design parameters some
physical constraints should be considered seriously.
The decision variables are generated randomly within
the admissible range mentioned. The list of these
constraints and their reasons are briefed in Table3. In
continuing a Particle swarm optimization code is
developed in Matlab Software Programming .The
parameter setting of PSO listed Table 4.

6. Results and discussion

After modeling and simulating the system, the effects
of the main parameters on the performance of the
system were studied. Table 2 summarizes the
thermoeconomic variables calculated for each
component of the power plant using main data. Result
from multi objective optimization is shown in Table 5.
The table variables include the exergy efficiency e,
rate of fuel exergy Exg, the rate of product exergy
Exp, the rate of exergy destruction Exp, exergy
destruction ratio yp, average costs per unit of fuel
exergy cp , average costs per unit of product exergy
cp, cost rate of exery destruction Cp, , investment and
O&M cost rate Z, relative cost differencer,
exergoeconomic factor f , and data for various
components of the power plant in base design and
various optimizations, respectively. It shows the
particle swarm solution for TCC power plant with
objective functions indicated in equations (18-19) in
multi objective optimization. Optimum design
parameters of the TCC power plant are obtained in a
situation with an ambient temperature of 16.6 °C
which could provide 320 MW of electric power. Table
6 shows a comparison of the operating decision
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variables (design parameters) in the base design and
the optimum case. The table shows that g,
,MM4,M,5 And gy The optimal values are 6%, 9%, 9%
and 6% lower in the base case , respectively.

The comparative results of the base case and the
optimum case for multi-objective function are given in
Table 7. It is observed that the exergetic efficiency is
increased from about 35.7% to 38.62% in the PSO
method. In the optimized system the total capital
investment has increased from 9798.1 to 11119 $/h
while the total exergy destruction has decreased from
398.27 to 334.39 MW and the product cost per unit
exergy is decreased by 3%. The decrease in product
cost can be attributed to higher savings in exergy
destruction and exergy loss. This is achieved,
however, with a 11 % increase in capital investment.
It should be noted that in multi objective optimization
and the Partial Swarm Optimization each point can be
the optimized point. Therefore, selection of the
optimum solution is depending on constraints and
criteria of each decision-maker. Hence, each decision-
maker may choose a different point as optimum result
which better suits with his/her desires.

According to the results obtained from the research of
Khademi and Colleagues, the overall efficiency of the
cycle after the optimization was 42.6% and the
efficiency of the pump and turbine was 83.7 and
84.8%, respectively. Also, the internal rate of return on
investment of this power plant according to the used
algorithms is 47.45% [15]

Another research was performed with aim of
increasing regression performances of MLP in
comparison to ones available in the literature by
utilizing heuristic algorithm. The GA described in this
paper is performed by using mutation and crossover
procedures. These procedures are utilized for design of
20 different chromosomes in 50 different generations.
In this study average hourly electrical power output
was 420.26-495.76 MW. [11]

But in the current research, the efficiency of gas
turbine and pump after the optimization is 84.23 and
44.77%, respectively, and the overall efficiency of the
desired cycle is 38.62%, and this shows the relative
closeness of the efficiency of similar components in
the cycle of the mentioned researches. This
information and their comparison can be seen in Table
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9. In this table, the percentage of changes in
parameters such as pump efficiency, turbine
efficiency, and overall power plant efficiency in the
current study and two similar studies have been
calculated and analyzed.

7. Environmental impact analysis (especially NOx
and C0,)

In the recent years, new demands for more energy
production at lower cost and reduced environmental
impact are increased. Global climate change,
including global warming, refers to the warming
contribution of the earth of increased atmospheric
concentration of CO2 and other greenhouse gases.
CO2 emissions account for about 50% of the
anthropogenic greenhouse effect. The ultimate global
warming effect can cause dangerous climatic changes
on Earth. [1]

Steadily increasing emissions of other atmospheric
pollutants such as sulfur and nitrogen oxides are also
very damaging to the environment. Therefore the
reduction of all emissions from the energy sector is of
the utmost importance.

The major factors affecting NOx production in the gas
turbine combustor is as follows: [22]

v Firing temperature
v' Oxygen availability
v" Duration of the combustion

NOx is formed mainly when the temperatures are high,
such as those found in the flame of a gas turbine
combustor. The flame temperature depends on the
excess air ratio. As excess air is a reduced, theoretical
flame temperature increase. This has the effect of
reducing the stack loss and increasing the thermal
efficiency. Although, higher flame temperatures
reduce the fuel consumption for a given process
heating duty, there is one significant disadvantage.
Higher flame temperatures increase the formation of
oxides of nitrogen, which are environmentally
harmful. Very low excess air ratios are beneficial from
the point of view of NOx formation but are very
detrimental to efficiency and cause the production of
large amounts of CO and unburned hydrocarbons.
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In the present work, the combustion reaction is
assumed complete and air mass flow (1mg;,) is
permanent. Natural gas enters to combustor with 22
bars and 25 °C. In the initial case, for a 427.8 air/fuel,
mass ratio (air/fuel ratio in moles: 29.51), the general
combustion equation of this system in the base case is
as follows:

1x [88 CHat+ 4C,He+2C3Hg+CO2+5N:3]
+620[02+3.76N2] — 103 CO21+2336 N +420 O2+196
H0 (26)

After optimization, general combustion equation
changes as follows:

0.936x [88 CHst+  4C,Hg+2C3Hg+CO2+5N;]
+620[02+3.76N;] — 96.4 CO»+2335.9 Ny+432.75
0,+183.5 H,0O 27

To compare of Eq. 26 and 27, it shows that CO,
emission has decreased about 6.8 %. Likewise, NOx
formation is decreased because Excess air and
theoretical flame temperature are changing according
to Table 8.

Also, the results show an increase in the total exergy
efficiency of about 8% and a decrease in the total cost
product of about 3%. Exergy efficiency is not an
alternative to energy security but rather a vital
component in achieving it. The efficient use of exergy
is very important to keep supply security and to
decrease the environmental impact. The most
important factor in exergy efficiency is energy saving.
Energy saving, which is generally understood as
consuming less energy; is minimizing fuel
consumption, here, is about 6.4% lower from the base
case. [23]

8. Conclusions

In this paper, a TCC power plant was optimally
designed using a PSO optimizer technique. Exergy
and exergoeconomic equations for all parts of a system
were developed. The decision variables were
compressor pressure ratio, compressor isentropic
efficiency, gas turbine outlet temperature, inlet fuel in
the combustion chamber and inlet fuel in HRSG,
steam temperature entering the high pressure steam
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turbine, steam pressure entering the high pressure
steam turbine, steam mass flow rate entering the high
pressure steam turbine and steam turbine isentropic
efficiency as well as nine design limitations for
configuration of the system. In the present
optimization problem, the total exergetic efficiency
and total product cost per unit exergy were considered
as two objective functions. Also, gas turbines and
steam turbine network are assumed constant with
420.73 MW value. The results revealed the level of
accordance between the two objectives in the case
study. According to the results obtained from
modeling as shown in the tables, some conclusions are
as follows:

— Combustion chamber, Gas turbine, and
HRSG have the highest values of the sum
Cp+Z and are, therefore, the most important
components from the thermo economic
viewpoint.

— By increasing compressor pressure ratio and
decrease the isentropic efficiencies of
compressor, gas turbine and steam turbine as
suggested by the evaluation of the air
compressor, gas turbine and steam turbine.

— By increasing the value of T, And T, as
suggested by the evaluation of the
combustion chamber and HRSG.

— An 8% increase in total efficiency and a 3%
decrease in total product cost per unit exergy
were found that are reasonable.

— The summation of exergy destroyed in all
components of the optimized cycle is lower
by about 14% in comparison to basic cycle.

— Decrease of NOx formation and CO;
emission.

— Based on the final comparison, the efficiency
of the turbines in the current research is
0.68% less than the first research and 5.02%
more than the second research.

Hence; it is observed that PSO can be a superior tool
for optimization of the TCC power plant in the above
terms.
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Nomenclatures

C— Cost flow rate, $/h

¢ — Cost per unit exergy, $/GJ
1, — Pressure ratio

Ex — Exergy flow rate, MW
f— Exergoeconomic factor
r — Mass flow rate, kg/h

P — Pressure, kPa

r — Relative cost difference
T — Temperature, K

W— Power, MW

Z— Rate of the capital cost
y — Exergy destruction ratio
h— Enthalpy

s— Entropy

S — Entropy rate

y— Mole fraction
Greek letters
ns — Isentropic efficiency

& — exergetic efficiency

Subscripts

ARC — absorption refrigeration cycle

CB — combustion chamber

CCP — combined cooling and power

D — Destruction
DFGT — dual fuel gas turbine
DTC — direct torque control

e — exit stream
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F — Fuel

FS — feature selection

GA — Genetic Algorithm

GPV — generator photovoltaic
GT—gas turbine

GTIT— gas turbine inlet temperature
HO — hyperparameter optimization
i— inlet stream

ICE — internal combustion engine

k — component

L — Loss

LCOE — levelized cost of exergy

LEIOE — levelized environmental impact of exergy

MEA — monoethanolamine

Table 1: the main data in seam system

MLP — multi-layer perceptron

ORC — organic Rankine cycle

P — Product

PAT — preheated air temperature

PSO — particle swarm optimization
ST— steam turbine

SWPS — solar water pumping systems

UEEC — unit exergoeconomic costs

State Stream
HP enters the steam turbine steam
LP enters the steam turbine steam

Saturate steam

Exit Steam turbine

Quality=0. 879

Entering HRSG Water

Mass Flow Rate Temperature

(kg/s) )

134.14 793 90.73
18 503 8.5
152 319 0.101
76.07 320 19.74

Pressure (bar)
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Table 2: Base Design Case indexes
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Component

Air
Compressor

Combustion
chamber

Gas Turbine
HRSG

Steam
Turbine

Condenser
Pump

overall plant

€ (%)

92.63

77.98

85.02

65.09

92.66

83.16
43.84

35.7

EXF

151.44

394.22

331.04

121.78
173.45

29.21
0.95

1178.5

EXP

140.28

305.6

281.44

79.26
160.73

24.29
0.42

420.73

EXD

11.16

86.79

49.6

42.52
12.72

4.92
0.53

398.27

Yp
(%)

2.8

21.79

12.45

10.67

3.19

1.23
0.13

100

Cp

($/GJ)

19.84

8.56

15.28

13.73

16.69

0.15
19.84

8.56

Cp

($/GJ)

24.09

15.28

19.84

22.45

19.84

17.92
22.82

30.46

ey 7

($/h)  (§/h)

798 1469.

2675 823

63

2728 1556.35

2102 1588.
764 374.0
2.73 7.24

38 22.82
12279  9798.

69

9

1

Cp+Z

($/h)

2268

2757

4284

3691
1138

10

61

r

(%0)

22.62

28.23

27.68

94.18

11.79

73.98

204.81

22078  255.66

(%)

64.82

2.98

36.32

43.04

32.86

72.63
37.45

44.38

* yp For compressor, combustion chamber, gas turbine and HRSG is equal to add yp’S two compressors, combustion

chamber, gas turbine and HRSG.

Table 3: the Design Parameters and Their Range of Allowable Variation

Design Parameters

Supplementary Firing

Pressure Ratio of compressor

Inlet fuel in Combustion Chamber

Isentropic Efficiency of compressor

Isentropic Efficiency of steam turbine

Change value of Exhaust temperature of gas turbine

Change value of Steam turbine inlet pressure of HP steams

Change value of Steam turbine inlet temperature of HP steams

Change value of Steam turbine inlet mass flow rate of HP steams

Unit
kg/s
kg/s

%
Kelvin
Kelvin
Bar
kg/s

%

From

75

817

793

85.5

134

75

To

11

90

16

821

808

94.5

149

92

91
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Table 4: simulation setup for PSO algorithm

Vol.1, No.2,2024, 79-96

Parameter Value
Population size 400
Maximum no. of iteration 200
Initial of inertia weigh (Wmax ) 0.9
Final of inertia weight (Wmin) 0.4
Cognitive learning rate (c1) 2
Social learning rate ( c2) 2
Table 5: PSO Optimization indexes
. . . Cp Cp Cp yA CptZ r f
Component € (%) Exg Exp Exp
yp (%) (8/GJ) ($/GJ)) ($/h) ($/h) ($/h) (%) (%)
é:)rmpressor 93.12 17149  159.68 11.81 4.41 19.15 24.51 1017 2082.24 3099 29.09 67.18
S}i’;n};‘frﬁon 88.98 35682 31567 3934 1176 856 1471 1212 11556 1328 1239 871
Gas Turbine  84.23  355.39  299.33 56.06 16.76 14.71 19.15 2968 1458.72 4427 27.94 32.96
HRSG 6441 12584 81.06 44.79 13.39 13.07 21.6 2107 1705.32 3812 99.97 44.73
Steam
Turbine 89.7 179.18  160.73 18.45 5.52 15.71 19.15 1044 364.32 1408 15.49 25.88
Condenser 81.44 29.82 24.29 5.53 1.66 0.15 17.68 3.07 7.20 10 77.12 70.45
Pump 4477 095 0.43 0.52 0.16 19.15 20.33 36 23.04 59 202.4 39.04
overall plant 38.62 1089.3  420.73 33439 100 8.56 29.51 10308  11119.0 21427 244.64  51.89
Table 6: Comparison exergoeconomic decisions variables of the system for optimum and base case
Decisions Variables Unit Base case PSO opts.  Difference
Inlet fuel in Combustion Chamber kg/s 9 8.45 -0.06
Supplementary Firing kg/s 0.64 0.58 -0.09
Isentropic Efficiency of compressor % 86 85.5 -0.01
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Pressure Ratio of compressor -~ 11.8 14.66 0.24
Exhaust temperature of gas turbine Kelvin 819 819 0.00
Steam turbine inlet temperature of HP steams Kelvin 793 802 0.01
Steam turbine inlet pressure of HP steams Bar 90 92.15 0.02
Steam turbine inlet mass flow rate of HP steams kg/s 134 139.59 0.04
Isentropic Efficiency of steam turbine % 88 82.7 -0.06

Table 7 Comparison of Exergy Efficiency and Product Cost per unit exergy ($/GJ) in base case design an optimum
solutionined at an optimum solution in this paper

Exergy Efficiency Product Cost per unit exergy ($/GJ)
Component

Base design case  PSO Opt.  Difference Base design case PSO Opt.  Difference
Air Compressor  92.63 93.12 0.01 24.09 24.51 0.02
Combustion 77 98 28.98 0.14 15.28 14.71 -0.04
chamber
Gas Turbine 85.02 84.23 -0.01 19.84 19.15 -0.03
HRSG 65.09 64.41 -0.01 22.45 21.6 -0.04
Steam Turbine 92.66 89.7 -0.03 19.84 19.15 -0.03
Condenser 83.16 81.44 -0.02 17.92 17.68 -0.01
Pump 43.84 44.77 0.02 22.82 20.33 -0.11
Overall plant 35.7 38.62 0.08 30.46 29.51 -0.03

Table 8: Comparison of Excess air and Flame temperature at an optimum solution in this paper

Variable Base design case PSO Opt. Difference (%)
Excess air (%) 209 230 +10
Flame temperature (K) 1397 1385 -1
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Table 9: Comparison of common parameters between two studies and the current study

Khademi and Lorencin and
Parameter colleagues colleagues Current
study
(A) (B)
Maximum production power 484 420.26-495.76 420.73
(MW) . . .
Efficiency of the pump (%) 83.7 80 - 85 44.77
Efficiency of the turbine (%) 84.8 80 84.23
Overall efficiency (%) 426 0 - 38.62

The percentage of

changes between
research (A) and the
current research (%)

13.07

87.25
0.68

10.31

The percentage of

changes between
research (B) and the
current research (%)

8.14

84.56

-5.02

Figure. 1: The schematic of the TCC power plant system investigated [24]
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