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In the present study, a Thermal Combined Cycle (TCC) power plant is optimized 
using the Particle Swarm Optimization (PSO) algorithm. A comprehensive set of 
design parameters is considered in the optimization process, including the air 
compressor pressure ratio, compressor isentropic efficiency, gas turbine outlet 
temperature, fuel mass flow rates entering the combustion chamber and the Heat 
Recovery Steam Generator (HRSG), steam temperature and pressure at the inlet of 
the high-pressure steam turbine, steam mass flow rate, and steam turbine isentropic 
efficiency. The net power output of the plant is fixed at 360 MW as a design 
constraint. To achieve an optimal configuration, a multi-objective exergoeconomic 
optimization approach is employed. This framework simultaneously accounts for 
thermodynamic performance and economic considerations, enabling a more realistic 
and efficient system design. Given that environmental pollution and energy resource 
limitations are major constraints on sustainable development, the proposed 
optimization aims to identify design parameters that reduce fuel consumption while 
enhancing system efficiency. The optimization results indicate a reduction of 
approximately 6.4% in the fuel mass flow rate compared to the base case. This 
reduction, together with an increase in exergetic efficiency, contributes to lowering 
environmental impacts associated with fuel consumption and emissions. 
Furthermore, the results demonstrate that the overall exergy efficiency and product 
cost of the optimized plant improve by 8% and 3%, respectively, relative to the 
reference design. A comparative analysis is also conducted between the results of the 
present study and those reported in two previously published works. The comparison 
reveals that the turbine efficiency obtained in the current research is 0.68% lower 
than that reported in the first study, while it is 5.02% higher than that reported in the 
second study. These differences highlight the effectiveness of the proposed 
optimization framework and confirm its competitiveness with existing approaches. 
Overall, the findings demonstrate that the application of PSO combined with a multi-
objective exergoeconomic analysis provides an effective tool for optimizing the 
performance, cost, and environmental impact of thermal combined cycle power 
plants. 
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1. Introduction 

Exergy analysis is a thermodynamic analysis 
technique based on the second law of 
thermodynamics which provides an alternative and 
illuminating means of assessing and comparing 
processes and systems rationally and meaningfully. In 
particular, exergy analysis yields efficiencies which 
provide a true measure of how nearly actual 
performance approaches the ideal, and identifies more 
clearly than energy analysis the causes and locations 
of thermodynamic losses. Consequently, exergy 
analysis can assist in improving and optimizing 
designs. Increasing application and recognition of the 
usefulness of exergy methods by those in industry, 
government and academia has been observed in recent 
years. Exergy has also become increasingly used 
internationally. [1] 
Kallio and Siroux in a research present a review of 
exergy and exergy-economic approaches to evaluate 
hybrid renewable energy systems in buildings. In the 
first part of the paper, the methodology of the exergy 
and exergo-economic analysis is introduced as well as 
the main performance indicators. The influence of the 
reference environment is analyzed, and results show 
that the selection of the reference environment has a 
high impact on the results of the exergy analysis. In 
the last part of the paper, different literature studies 
based on exergy and exergo-economic analysis 
applied to the photovoltaic-thermal collectors, fuel-
fired micro-cogeneration systems and hybrid 
renewable energy systems are reviewed. It is shown 
that the dynamic exergy analysis is the best way to 
evaluate hybrid renewable energy systems if they are 
operating under a dynamic environment caused by 
climatic conditions and/or energy demand. [2] 
Exergy analysis is another useful tool that can link 
the energy system with its surrounding environment. 
The exergy analysis reveals the actual system 
efficiency that makes it ideal for system tuning. The 
careless utilisation of energy resources would have 
indirect side effects on economics and environment, 
exergy analysis is a useful method to show the impact 
of using energy resources on the environment, reveal 
the efficiency improvement, identify the magnitudes 
of wastes and losses, and calculate the quality of the 
energy resources. [3] 
 Exergy analysis is also one of the premier tool for the 
system analysis, by performing it we can actually 

relate the system with its overall surroundings. Exergy 
analysis yields ideal parameters that would be 
beneficial for the maintenance/tuning of the system. 
This analysis is also used to stop the careless 
utilization of energy resources by putting forward the 
indirect side-effects which it causes on our 
environment. Through monitoring the consumption of 
resources, the overall efficiency of system also 
increases while it would also be useful to calculate the 
total waste a system generates during the overall 
process. There are number of articles/studies found 
that conducted exergy analysis and used the results to 
increase the systems efficiency. [4] 
The exergo-economic analysis is used to create a 
relation between the costs and exergy flows of the 
energy system. The exergo-economics are based on 
the exergy flows, exergetic and non-exergetic 
costs.  [2] 
In another research from Kazemi et al, 11 alternatives 
of natural gas combined cycle power plants based on 
post-combustion, pre-combustion or oxy-fuel 
combustion CO2 capture with monoethanolamine 
(MEA) or activated methyldiethanolamine (a-MDEA) 
and potential ORC implementation were simulated, 
economically optimized and environmentally assessed 
to shed light on these gaps. The results show the 
important role of thermodynamic efficiency in the 
system's environmental performance. The system 
based on post-combustion CO2 capture with a-MDEA 
and ORC showed a superior economic profile as well 
as a better environmental performance in terms 
of climate change and fossil resource depletion. [5] 
Kun Yang et al propose a combined cooling, heating, 
and power (CCHP) system driven by biomass and 
solar energy integrated with an organic Rankine cycle 
(ORC). Its exergy, exergoeconomic, and 
environmental performances are investigated. First, 
the thermodynamic parameters of each material and 
energy flow for the proposed CCHP system are 
simulated using Aspen Plus. Second, the exergy and 
exergoeconomic performances of the system are 
investigated, and an environmental analysis of the 
system is performed. The results show that the unit 
exergy costs (UEC) of domestic hot water, electricity 
generated by an internal combustion engine (ICE) and 
the ORC, and chilled/heated water under 
summer/winter conditions are 2.742/2.742, 
6.713/6.629, 12.930/12.930, and 27.100/12.530 
MW/MW, respectively, with corresponding unit 
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exergoeconomic costs (UEEC) of 41.11/41.11, 
124.40/139.20, 181.80/181.80, and 507.10/302.60 
USD/MWh, respectively. [6] 
The results of another research showed that diesel 
reduced the plant's efficiency by 0.00022 compared to 
using natural gas, which was the least of the other 
alternatives. The environmental analysis revealed that 
diesel produced the least amount of CO2 eq, but 
biodiesel-nanoparticle had a better CO2 footprint due 
to the higher absorption of CO2 in the cultivation 
phase of the raw material for biodiesel. The economic 
analysis for the fuels was carried out over ten years 
and based on the lifetime of the equipment purchased. 
Consequently, the total cost over the ten years for 
diesel was $967332.5161, which was $124475.8381 
less than that for biodiesel-nanoparticle and 
$240935.3341 less than that for fuel oil. Finally, an 
overall comparison was made between the fuels using 
the AHP method. As the environmental criterion was 
the most important decision criterion, biodiesel-
nanoparticle fuel was chosen with a marginal 
difference compared to diesel. [7] 
In other work, a novel combined cooling and power 
(CCP) system is proposed for waste heat recovery of a 
natural gas-biomass dual fuel gas turbine (DFGT) 
based on the organic Rankine cycle (ORC) 
and absorption refrigeration cycle (ARC). 
Comprehensive thermodynamic, exergoeconomic, 
and environmental performance and parametric 
analysis of this system are performed. Results show 
that under the design condition, thermal 
efficiency, exergy efficiency, levelized cost of exergy 
(LCOE), and levelized environmental impact of 
exergy (LEIOE) of the system are 68.88%, 42.10%, 
and 21.16 $/GJ, and 5208.82 mPts/GJ, respectively. 
Among all the components, combustion chamber has 
the highest exergy destruction rate. The parametric 
analysis indicates that the thermal and exergy 
efficiencies rise by increasing the gas turbine inlet 
temperature (GTIT) and ORC turbine inlet pressure or 
by decreasing the preheated air temperature (PAT) 
and exhaust gas outlet temperature at high-
temperature vapor generator. The LCOE and LEIOE 
present similar trends in most cases, which are most 
affected by the PAT and GTIT. [8] 
On the other hand Mathematical Optimization is a 
branch of applied mathematics which is useful in 
many different fields. Here are a few examples: 

• Manufacturing • Production • Inventory control • 
Transportation • Scheduling • Networks • Finance • 
Engineering • Mechanics • Economics • Control 
engineering • Marketing • Policy Modeling 
In the optimization basic optimization problem 
consists of: [9] 
• The objective function, f(x), which is the output 
you’re trying to maximize or minimize.  
• Variables, x1 x2 x3 and so on, which are the inputs – 
things you can control. They are abbreviated xn to 
refer to individuals or x to refer to them as a group. 
 • Constraints, which are equations that place limits on 
how big or small some variables can get. Equality 
constraints are usually noted hn (x) and inequality 
constraints are noted gn (x). 
Genetic Algorithm (GA) is a search-based 
optimization technique based on the principles 
of Genetics and Natural Selection. It is frequently used 
to find optimal or near-optimal solutions to difficult 
problems which otherwise would take a lifetime to 
solve. It is frequently used to solve optimization 
problems, in research, and in machine learning. 
Genetic Algorithms (GAs) are search based 
algorithms based on the concepts of natural selection 
and genetics. GAs are a subset of a much larger branch 
of computation known as Evolutionary Computation. 
GAs were developed by John Holland and his students 
and colleagues at the University of Michigan, most 
notably David E. Goldberg and has since been tried on 
various optimization problems with a high degree of 
success. In GAs, we have a pool or a population of 
possible solutions to the given problem. These 
solutions then undergo recombination and mutation 
(like in natural genetics), producing new children, and 
the process is repeated over various generations. Each 
individual (or candidate solution) is assigned a fitness 
value (based on its objective function value) and the 
fitter individuals are given a higher chance to mate and 
yield more “fitter” individuals. This is in line with the 
Darwinian Theory of “Survival of the Fittest”. [10] 
In recent years, exergoeconomic concepts have been 
used with search algorithms, such as genetic algorithm 
and evolutionary algorithm, to find out realistic 
optimal solution(s) of thermal systems. 
Lorencin et al used a genetic algorithm (GA) approach 
to design of multi-layer perceptron (MLP) for 
combined cycle power plant power output estimation. 
Dataset used in this research is a part of publicly 
available UCI Machine Learning Repository and it 
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consists of 9568 data points (power plant operating 
regimes) that is  divided on training dataset that 
consists of 7500data points and testing dataset 
containing 2068 data points. Presented research was 
performed with aim of increasing regression 
performances of MLP in comparison to ones available 
in the literature by utilizing heuristic algorithm. [11] 
 
2. The PSO concept 
It is necessary to explore approaches that integrate 
intelligence based on natural phenomena (soft 
computing methods), which are at the forefront of 
current research. One solution to this issue is to use the 
particle swarm optimization (PSO) technique. PSO is 
a soft computing optimization method inspired by the 
social behavior of particles, which is inspired by the 
cooperative movement of individuals in a swarm. In 
the context of optimizing photovoltaic systems. PSO 
optimization overcomes oscillations around local 
power points by efficiently locating the global power 
point, even in the case of partial shading. The PSO 
particles adjust their position by moving towards the 
best personal individual and towards the best global 
individual, thereby maximizing the energy efficiency 
of the photovoltaic system. As a result, the PSO 
represents a promising solution for improving 
maximum power point tracking under variable and 
complex weather conditions in solar the solar water 
pumping systems. [12] 
In another article a new methodology were introduced, 
named PSOPARSIMONY, which uses an adapted 
particle swarm optimization (PSO) to search for 
parsimonious and accurate models by means of 
hyperparameter optimization (HO), feature selection 
(FS), and the promotion of the best solutions according 
to two criteria: low complexity and high accuracy. 
This paper also includes a comparison in performance 
with GA-parsimony, our previously published 
methodology based on GA that has been successfully 
applied in a variety of contexts such as steel industrial 
processes, hotel room-booking forecasting, 
mechanical design, hospital energy demand, and solar 
radiation forecasting [13]. 
Optimization algorithms, like the Particle Swarm 
Optimization (PSO), often suffer from premature 
convergence, providing poor convergence quality and 
slow convergence rates. In addition, striking a balance 
between exploration and exploitation adds complexity 
to its implementation. Moreover, while the algorithm's 

simplicity with a few parameters is advantageous for 
ease of use, it poses a significant challenge for 
improvement. This work presents a modified PSO 
variant, the Random Adaptive Backtracking Particle 
Swarm Optimization (RAB-PSO) algorithm. This 
algorithm combines three complementary 
modifications to address the limitations of PSO. Its 
main objective is to improve convergence quality 
while minimizing iteration counts required for 
achieving global minima. [14] 
Hilali et al focuse on the optimization of solar water 
pumping systems (SWPS) by combining the particle 
swarm optimization (PSO) technique on the generator 
photovoltaic (GPV) side and direct torque control 
(DTC) on the pump motor side. The integration of a 
maximum power point tracking system (MPPT-PSO) 
represents a significant advance, enabling maximum 
power to be extracted from the GPV whatever the 
weather conditions. The main objective is to improve 
the energy efficiency of the SWPS system by 
maximizing the electrical power dedicated to the 
pumping system. [12] 
Divasón et al present PSO-PARSIMONY, a new 
methodology to search for parsimonious and highly 
accurate models by means of particle swarm 
optimization. PSO-PARSIMONY uses automatic 
hyperparameter optimization and feature selection to 
search for accurate models with low complexity. To 
evaluate the new proposal, a comparative study with 
multilayer perceptron algorithm was performed with 
public datasets and by applying it to predict two 
important parameters of the force–displacement curve 
in T-stub steel connections: initial stiffness and 
maximum strength. Models optimized with PSO-
PARSIMONY showed an excellent trade-off between 
goodness-of-fit and parsimony. [13] 
Barrios and Gerardo used a hybrid algorithm. This 
algorithm combines three complementary 
modifications to address the limitations of PSO and Its 
main objective is to improve convergence quality 
while minimizing iteration counts required for 
achieving global minimal. [14] 

In the research of Khademi and colleagues, energy, 
exergy and economic analyses is performed for a 
combined cycle power plant (CCPP) with a 
supplementary firing system. The purpose of this 
analyses is to evaluate the economic feasibility of a 
CCPP by applying an optimization techniques based 
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on Evolutionary algorithms. Actually, the 
evolutionary algorithms of Firefly, PSO and NSGA-II 
are applied to minimize the cost function and to 
optimally adjust the operating design variables of a 
CCPP. The input parameters are measured in real case 
study (i.e., Yazd city, Iran) and they are used to model 
and optimize the system performance. In following of 
optimization procedure, a thermo-economic method is 
employed to compare the impact of operating 
parameters from an economic standpoint by 
COMFAR III (Computer Model for Feasibility 
Analysis and Reporting) software. The results showed 
that the optimization results are economically more 
feasible than the base case. In addition, among 
different optimization techniques, Firefly algorithm 
improves the economic justification of CCPP. At the 
end, the results of sensitivity analysis show that by 
decreasing the operation costs, fixed assets and sales 
revenue by 40%, the IRR increases by 6.7%, 42.8% 
and decreases by 41.4%, respectively. Furthermore, 
the lowest sensitivity of IRR is related to operation 
cost, while the highest sensitivity of IRR is 
corresponding to variations of fixed assets.. [15] 
 
Searching procedures by PSO based on the above 
concept can be described as follows: bird flocking 
optimizes certain objective function. Each agent 
knows its best value so far (pbest) and its xy position. 
Moreover, each agent knows the best value so far in 
the group (g best) among pbests. The modified 
velocity of each agent can be calculated using the 
following information.  

 The current positions (x, y)  

 The current velocities (vx, vy)  

 The distance between the current position 
and pbest  

 The distance between the current position 
and g best  

This modification can be represented by the concept of 
velocity. The velocity of each agent can be modified 
by the following equation: 
 
v୧

୲ାଵ

= wv୧
୲ + cଵrandଵ × (pbest୧ − s୧

୲)

+ cଶrandଶ

× (gbest − s୧
୲)                                                          (1) 

Where, 
t+1: denotes the next iteration number 
t   : denotes the current iteration number                                                                               

 v୧
୲   : Velocity of agent i at iteration t   

Pbesti: pbest of agent i (the best previous position 
yielding the best fitness value for the ith particle) 
gbest  : gbest of the group (the best position discovered 
by the whole population) 
w: the static inertia weight chosen in the interval (0, 1) 
c1          : the cognitive acceleration coefficient 
c2        : the social acceleration coefficient 
rand    : random number between 0 and 1  
s୧

୲         : Current position of agent i at iteration t  
A suitable selection of weighting function w in (2) 
provides a balance between global and local 
explorations, thus requiring less iteration on average 
to find a sufficiently optimal solution. The following 
weighting function is usually utilized in:  
w

= w୫ୟ୶

−
w୫ୟ୶ − w୫୧୬

iter୫ୟ୶

× iter                                                                                                                    (2) 
Where,  

wmax : initial weight,  
wmin : final weight,  
itermax : maximum iteration number,  
iter : current iteration number.  
Using the above equation, a certain velocity, which 
gradually gets close to pbest and gbest can be 
calculated. The current position (searching point in the 
solution space) can be modified and the position of a 
particle is updated every time step using the equation:  
 
   s୧

୲ାଵ = s୧
୲ + v୧

୲ାଵ                                                                                                                             
(3) 
The constants c1and c2 represent the weighting of the 
stochastic acceleration terms that pull each particle 
toward the pbest and gbest positions. Lower values 
allow particles to far from the target regions and higher 
values result in the abrupt movement toward, or past, 
target regions. Hence, the acceleration constants c1and 
c2 is often set to be 2.0 according to past experiences.  
The next iteration takes place after all particles have 
been moved. Eventually the swarm as a whole, like a 
flock of birds collectively foraging for food, is likely 
to move close to the best location. The following 
alternative velocity-update equation was developed: 
v୧

୲ାଵ = k (v୧
୲ + cଵrandଵ × (pbest୧ − s୧

୲) +

cଶrandଶ × (gbest − s୧
୲))                                                (4) 

Where k is a constant called the constriction 
coefficient. If c1, c2 and k (or w), are correctly chosen, 
the PSO is guaranteed to be stable without the need for 
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special constraints (e.g., Bounding of velocities and 
positions). [14] 
The Accomplish of optimization consists of five steps 
: [16-17] 
Step 1:  Swarm Initialization 
The optimization process begins by randomly 
initializing positions between a minimum and 
maximum per dimension as per Relation (5). The most 
common benchmarks use the same minimum and 
maximum per dimension. For application problems, 
however, these might differ depending on the 
characteristics being optimized; hence, the general 
formula is provided, which uses subscript j to indicate 
the dimension. 
                                  s୧,୨(t = 0) ∈

U൫s୨
୫୧୬, s୨

୫ୟ୶൯                                                                                                                      

(5) 
Where j ∈  {1,2, … , n − 1, n} and n denotes the 
problem dimensionally. Velocities are similarly 
initialized according to Relation (6). For application 
problems with a different range of feasible values on 
one dimension than on another, different step sizes per 
dimension would make sense; hence, the general form 
is presented, which avoids unnecessarily imposing the 
same range of feasible values of all characteristics to 
be optimized. 
                                  v୧,୨(t = 0) ∈

U൫−v୨
୫ୟ୶, v୨

୫ୟ୶൯                                                                                                                             

(6) 
Each particle’s personal best is initialized to its 
starting position as shown in Equation (7). 

pbestሬሬሬሬሬሬሬሬሬሬሬ⃑
୧(t = 0) = s⃑୧(t =

0)                                                                                              

(7) 
The global best is always the best of all personal bests 
as shown in Equation (8). 

                                  gbestሬሬሬሬሬሬሬሬሬሬ⃑ (t) =

arg min f൫pbest୧(t)൯                                                                                                                 
      (8) 
                 ∀pbest୧(t)   
 Iterative Optimization Routine 
Once the swarm has been initialized, particles 
iteratively: (i) accelerate (i.e. adjust their velocity 
vectors) toward the global best and their own personal 
bests, (ii) update and clamp their velocities, (iii) 
update their positions, and (iv) update their personal 
bests and the global best. This routine is repeated until 
reaching a user-specified termination criterion. For 

convenience, the relevant equations are restated below 
as needed in order of implementation. 
Setp2: Velocity updating: 
                                          

vሬ⃑ ୧
୲ାଵ = wvሬ⃑ ୧

୲ + cଵrandሬሬሬሬሬሬሬሬሬ⃑
ଵ,୧ × ൫pbestሬሬሬሬሬሬሬሬሬሬሬ⃑ ୲

୧
− s⃑୧

୲൯ +

cଶrandሬሬሬሬሬሬሬሬሬ⃑
ଶ,୧ × ൫gbestሬሬሬሬሬሬሬሬሬሬ⃑ ୲ − s୧

୲൯                                              (9) 

 
v୧,୨

୲ାଵ =

sign൫v୧,୨
୲ାଵ൯ max൫หv୧,୨

୲ାଵห, v୨
୫ୟ୶൯                                                                            

      (10) 
  
Step3: Position updating:     
                                       s⃑୧

୲ାଵ = s⃑୧
୲ + vሬ⃑ ୧

୲ାଵ                                                                                           
(11) 
 
Step 4: Memory updating: 
A particle’s personal best is only updated when the 
new position offers a better function value: 
 
         

pbestሬሬሬሬሬሬሬሬሬሬሬ⃑
୧
୲ାଵ ቊ

xሬ⃑ ୧
୲ାଵ if f(s⃑୧

୲ାଵ) < 𝑓൫pbestሬሬሬሬሬሬሬሬሬሬሬ⃑
୧
୲൯

pbestሬሬሬሬሬሬሬሬሬሬሬ⃑
୧
୲  Otherwise

                                                             

(12) 
The global best is always the best of all personal bests: 

                                  gbestሬሬሬሬሬሬሬሬሬሬ⃑ (t + 1) =

arg min f൫pbest୧(t1)൯                                                               
     (13) 
                                                              ∀pbest୧(t) 
Step 5: Termination criteria examination:  
The algorithm repeats Step 2 to Step 4 until certain 
stopping rules are satisfied. Once terminated, the 

algorithm outputs the gbestሬሬሬሬሬሬሬሬሬሬ⃑  and f(gbestሬሬሬሬሬሬሬሬሬሬ⃑ ) as its 
solution. Rather than accelerating due to external 
physical forces, particles adjust toward solutions of 
relative quality. Each position encountered as particle 
swarm is evaluated and compared to existing bests. 
Though the behavior of each individual is simple, the 
collective result is an optimization algorithm capable 
of maximizing or minimizing problems that would be 
difficult to tackle with straightforward mathematical 
analyses, either because the problem is not well 
understood in advance or simply because the problem 
is quite complicated. 
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3. Exergy and the thermoeconomic mathematical 
Model 
Exergy of stream flow 
The specific exergy at control volume with negligible 
kinetic and potential energies are given by: [4] 
 𝑒𝑥 = 𝑒𝑥௉ு + 𝑒𝑥஼ு                                                                                                                             
(14) 
That the specific physical and chemical exergy of a 
stream are calculated as follows: [4] 
 𝑒𝑥௉ு  = (ℎ − 𝑇଴𝑠)௉,் −  (ℎ − 𝑇଴𝑠)௉బ, బ்

                                                                                            

(15) 

 𝑒𝑥஼ு = ∑ 𝑦௜𝑒𝑥௜
஼ு + 𝑅𝑇଴ ∑ 𝑦௜ ln 𝑦௜

௝
௜ୀଵ

௝
௜ୀଵ                                                                                           

(16) 
 Then, the exergy transfer rates at control volume 

inlets and outlets are denoted, respectively, as 𝐸𝑥̇௜ =

𝑚̇௜ 𝑒𝑥௜ and 𝐸𝑥̇௘ = 𝑚̇௘ 𝑒𝑥௘ .   
Work exergy 
Exergy is determined as the maximum work potential, 
the work transfer rate in the control volume, 

𝑊̇௖௩  , equivalent to the exergy transfer rate. 
Heat transfer exergy 
Assuming a uniform temperature distribution at the 
location on the boundary of the control volume, the 

exergy transfer rate, 𝐸𝑥̇ொ,௝  Connected with the heat 

transfer rate,𝑄̇௝ Can be calculated by the following 

formula: 

𝐸𝑥̇ொ,௝ = ൬1 −

బ்

்ೕ
൰ 𝑄̇௝                                                                                                                 

                        (17) 

That the Tj is instantaneous temperature. In this paper, 
heat transfer exergy is negligible because assumed 
each component is well isolated. 
 
 
 
3.1 Exergoeconomic analysis 
The target of this study is to minimize the sum cost of 
producing (produced electricity) and maximize the 
exergetic efficiency for the whole system. In this part, 
according to the economic parameters used and also 
the fixed cost of the equipment, the relationship 
between efficiency and cost in this system has been 
investigated. In fact, it has been investigated how the 
efficiency has changed with the cost reduction.The 
objective functions of exergoeconomic optimization 
are: [18-19]  

The above equations expresses that the cost rate 

associated with the product of the stream 𝐶̇௉ it equals 
the total rate expenditures made to generate the 

product, namely the fuel cost rate 𝐶̇ி and the cost rates 
associated with capital investment and operations and 

maintenance 𝑍̇஼ூ + 𝑍̇ை&ெ. 
The capital investment and operating and maintenance 
term of the right-hand side of the above equation 

 𝑍̇஼ூ + 𝑍̇ை&ெ is calculated using the illustrated 
relations in Ref [19]. 
In order to exergoeconomic analysis of each control 
volume, two targets suggested by [19] were calculated 
exergoeconomic factor and the relative cost 
difference, respectively: [19]  

𝑓௞ =
௓̇ೖ

௓̇ೖା஼̇ವ,ೖ
                                                                                                                             

(20) 

𝑟௞ =
ଵିఌೖ

ఌೖ
+

௓̇ೖ
಴಺ା௓̇ೖ

ೀ&ಾ

௖ಷ,ೖா̇௫ು,ೖ
                                                                                                                          

(21) 
When the value of an exergoeconomic factor for a 
component is high, suggesting that a decrease in the 
investment costs of this component at the expensed of 
its exergetic efficiency. The relative cost difference for 
a component expresses the degree to which each 
subsystem contributes to increasing the final cost of 
the products. The exergoeconomic parameters for each 
of the components of the TCC power plant for the base 
case and optimum operating conditions are 
summarized in Table 2 and 5. The r and f parameters 
are generally used in the classical economic exergy 
calculation, but in this research, they were calculated 
and analyzed through the pso algorithm. Due to the use 
of pso algorithm in this research, several random 
points were investigated and the speed of the 
calculation along with the accuracy has increased. [19] 

 

4. Simulations 
4.1 Details and Assumptions 

Obj.Func.     Minimize 𝐶̇௉೟೚೟
= 𝐶̇ி೟೚೟

 +𝑍̇௧௢௧
஼ூ  + 

𝑍̇௧௢௧
ை&ெ                                                                      (18) 

  
Obj.Func Maximum 𝜀௧௢௧ 
=

 
(ଶ×ௐ̇೙೐೟ಸ೅

)ାௐ̇೙೐೟ೄ೅

ଶ×(௠̇೑ೠ೐೗಴ಳ
ା௠̇೑ೠ೐೗ೄಷ

)×௅ு௏
                                              

(19) 
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The selected case study is DAMAVAND thermal 
combined cycle power plant located in the near of 
Tehran, Iran (see Fig 1). The superheated steam enters 
the two-stage single reheat steam turbine at 520 
°C/90bar and 230 °C/8.5bar, for high and low pressure 
stages, respectively. The condenser pressure is 11 kPa. 
The simulation process and the most important 
parameters are described in this section. In order to 
simulate the existing plant, the following assumptions 
were made:  

1. Ambient pressure (𝑃଴) and temperature (𝑇଴) of the 
reference environment are considered as 0.9 bar and 
290 K, respectively (local climatic conditions). 

2. The chemical composition of the reference 
environment model constitutes (in mole fractions): 

𝑁ଶ: 0.7646,𝑂ଶ:0.1375, 𝐻ଶO: 0.0641,𝐶𝑂ଶ: 0.0337 and 
others: 0.0001. 

3. Pressure drop in the pipes and steam generator is 
assumed equal to that in the reference power plants. 

4. Fuel gas temperature is equal to ambient air 
temperature when entering the combustor. 

5. Standard air composition is used for plant air inlet. 

6. Gas fuel ultimate analysis on volumetric basis is:𝑁ଶ: 
0.05,𝐶𝐻ସ: 0.88,𝐶ଶ𝐻଺: 0.04, 𝐶ଷ𝐻଼:0.02,𝐶𝑂ଶ:0.01. 

7. All processes are steady state and steady flow with 
negligible potential and kinetic energy effects. 

8. Ideal-gas mixture principles apply to the air and the 
combustion products. 

9. The combustion reaction is complete. 

10. Heat loss from the combustion chamber (CC) is 
neglected. 

11. The air side and water side pressure losses in the 
heat recovery steam generator (HRSG) are existed to 
be 3% and 5-10%, respectively, of the inlet pressure. 
Pressure losses due to friction in pipelines are 
neglected. 

12. The exergies of kinetic and potential are neglected. 

13. The exergetic analyses are made on the lower 
heating value (LHV) basis of natural gas. 

The thermodynamic properties of air and steam were 
found using the Engineering Equation Solver (EES) 
software package. 

 

 

Air, Gas Combustion and Steam property  

The specific heat of air and exhaust gas at constant 
pressure are assumed to be a function of temperature, 
given by the polynomial adopted from [20] as follows: 

In the temperature range of 273-1800 K 

𝐶௉ೌ೔ೝ
= 0.99871 + 1.06430 × 10ିସ. 𝑇 + 1.64860 ×

10ି଻. 𝑇ଶ − 7.01176 × 10ିଵ . 𝑇ଷ                (22) 

The specific heat capacity of the combustion gases as 
follows: 

In the temperature range of 273-1800 K 

𝐶௉೒ೌೞ
= 0.97031 + 0.67898 × 10ିସ. 𝑇 + 1.65757 ×

10ି଻. 𝑇ଶ − 6.78633 × 10ିଵଵ. 𝑇ଷ                (23) 

Therefore, enthalpy and entropy of working fluid are 
found using the above polynomials and derived by 
using the ideal gas tables, can be obtained from [21]: 

∆ℎ் = ℎଶଽ଼.ଵହ + ∫ ∆𝑐௉
்

ଶଽ଼.ଵହ
𝑑𝑇                                                                                

                           (24) 

∆𝑠் = 𝑠ଶଽ଼.ଵହ + ∫ ∆𝑐௉
்

ଶଽ଼.ଵହ
𝑑𝑇                                                                                                           

(25) 

Where ℎଶଽ଼.ଵହ And 𝑠ଶଽ଼ .ଵହ Are the enthalpy and 
entropy at a reference temperature, respectively. 
Likewise, the main data for steam system in a TCC 
power station give in the table 1. 

 

4.2 Design Parameters 

The 9 decision variables are to be optimized, which 
have been defined as follows: 

– Inlet fuel in Combustion Chamber ṁfuel; 

– Inlet fuel in HRSG𝑚̇ଶସ,𝑚̇ଶହ; 

– Isentropic efficiency of the compressor  𝜂௦௖௢௠௣
; 
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– Steam temperature entering the high pressure steam 
turbine 𝑇ଵଷ; 

– Steam pressure entering the high pressure steam 
turbine𝑃ଵଷ; 

– Steam mass flow rate entering the high pressure 
steam turbine ṁ13; 

– Exhaust gas temperature exhalant the gas turbine 
𝑇ସ&𝑇ଽ; 

– Compressor pressure ratio  𝑟௣೎೚೘೛.
; 

– Isentropic efficiency of the steam turbine ηST; 

5 Design optimization 

In order to achieve feasible design parameters some 
physical constraints should be considered seriously. 
The decision variables are generated randomly within 
the admissible range mentioned. The list of these 
constraints and their reasons are briefed in Table3. In 
continuing a Particle swarm optimization code is 
developed in Matlab Software Programming .The 
parameter setting of PSO listed Table 4. 

6. Results and discussion 

After modeling and simulating the system, the effects 
of the main parameters on the performance of the 
system were studied. Table 2 summarizes the 
thermoeconomic variables calculated for each 
component of the power plant using main data. Result 
from multi objective optimization is shown in Table 5. 
The table variables include the exergy efficiency ε, 

rate of fuel exergy 𝐸𝑥̇ி , the rate of product exergy 

𝐸𝑥̇௉, the rate of exergy destruction 𝐸𝑥̇஽, exergy 
destruction ratio 𝑦஽ , average costs per unit of fuel 
exergy 𝑐ி , average costs per unit of product exergy 

𝑐௉, cost rate of exery destruction 𝐶̇஽ , investment and 

O&M cost rate 𝑍̇, relative cost difference 𝑟, 
exergoeconomic factor 𝑓 , and data for various 
components of the power plant in base design and 
various optimizations, respectively. It shows the 
particle swarm solution for TCC power plant with 
objective functions indicated in equations (18-19) in 
multi objective optimization. Optimum design 
parameters of the TCC power plant are obtained in a 
situation with an ambient temperature of 16.6 °C 
which could provide 320 MW of electric power. Table 
6 shows a comparison of the operating decision 

variables (design parameters) in the base design and 
the optimum case. The table shows that ṁ௙௨௘௟  

,𝑚̇ଶସ,𝑚̇ଶହ And 𝜂ௌ் The optimal values are 6%, 9%, 9% 
and 6% lower in the base case , respectively. 

The comparative results of the base case and the 
optimum case for multi-objective function are given in 
Table 7. It is observed that the exergetic efficiency is 
increased from about 35.7% to 38.62% in the PSO 
method. In the optimized system the total capital 
investment has increased from 9798.1 to 11119 $/h 
while the total exergy destruction has decreased from 
398.27 to 334.39 MW and the product cost per unit 
exergy is decreased by 3%. The decrease in product 
cost can be attributed to higher savings in exergy 
destruction and exergy loss. This is achieved, 
however, with a 11 % increase in capital investment. 
It should be noted that in multi objective optimization 
and the Partial Swarm Optimization each point can be 
the optimized point. Therefore, selection of the 
optimum solution is depending on constraints and 
criteria of each decision-maker. Hence, each decision-
maker may choose a different point as optimum result 
which better suits with his/her desires. 

According to the results obtained from the research of 
Khademi and Colleagues, the overall efficiency of the 
cycle after the optimization was 42.6% and the 
efficiency of the pump and turbine was 83.7 and 
84.8%, respectively. Also, the internal rate of return on 
investment of this power plant according to the used 
algorithms is 47.45% [15] 

Another research was performed with aim of 
increasing regression performances of MLP in 
comparison to ones available in the literature by 
utilizing heuristic algorithm. The GA described in this 
paper is performed by using mutation and crossover 
procedures. These procedures are utilized for design of 
20 different chromosomes in 50 different generations. 
In this study average hourly electrical power output 
was 420.26-495.76 MW. [11] 

But in the current research, the efficiency of gas 
turbine and pump after the optimization is 84.23 and 
44.77%, respectively, and the overall efficiency of the 
desired cycle is 38.62%, and this shows the relative 
closeness of the efficiency of similar components in 
the cycle of the mentioned researches. This 
information and their comparison can be seen in Table 
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9. In this table, the percentage of changes in 
parameters such as pump efficiency, turbine 
efficiency, and overall power plant efficiency in the 
current study and two similar studies have been 
calculated and analyzed. 

 

7. Environmental impact analysis (especially NOx 
and 𝑪𝑶𝟐) 

In the recent years, new demands for more energy 
production  at lower cost and reduced environmental 
impact are increased. Global climate change, 
including global warming, refers to the warming 
contribution of the earth of increased atmospheric 
concentration of CO2 and other greenhouse gases. 
CO2 emissions account for about 50% of the 
anthropogenic greenhouse effect. The ultimate global 
warming effect can cause dangerous climatic changes 
on Earth. [1] 

Steadily increasing emissions of other atmospheric 
pollutants such as sulfur and nitrogen oxides are also 
very damaging to the environment. Therefore the 
reduction of all emissions from the energy sector is of 
the utmost importance. 

The major factors affecting NOx production in the gas 
turbine combustor is as follows: [22] 

 Firing temperature 

 Oxygen availability 

 Duration of the combustion 

NOx is formed mainly when the temperatures are high, 
such as those found in the flame of a gas turbine 
combustor. The flame temperature depends on the 
excess air ratio. As excess air is a reduced, theoretical 
flame temperature increase. This has the effect of 
reducing the stack loss and increasing the thermal 
efficiency. Although, higher flame temperatures 
reduce the fuel consumption for a given process 
heating duty, there is one significant disadvantage. 
Higher flame temperatures increase the formation of 
oxides of nitrogen, which are environmentally 
harmful. Very low excess air ratios are beneficial from 
the point of view of NOx formation but are very 
detrimental to efficiency and cause the production of 
large amounts of CO and unburned hydrocarbons. 

In the present work, the combustion reaction is 
assumed complete and air mass flow (𝑚̇௔௜௥) is 
permanent. Natural gas enters to combustor with 22 
bars and 25 °C. In the initial case, for a 427.8 air/fuel, 
mass ratio (air/fuel ratio in moles: 29.51), the general 
combustion equation of this system in the base case is 
as follows: 

1× [88 CH4+ 4C2H6+2C3H8+CO2+5N2] 
+620[O2+3.76N2] → 103 CO2+2336 N2+420 O2+196 
H2O                                                (26) 

After optimization, general combustion equation 
changes as follows: 

0.936× [88 CH4+ 4C2H6+2C3H8+CO2+5N2] 
+620[O2+3.76N2] → 96.4 CO2+2335.9 N2+432.75 
O2+183.5 H2O                                 (27)                                        

To compare of Eq. 26 and 27, it shows that COଶ 
emission has decreased about 6.8 %. Likewise, NOx 
formation is decreased because Excess air and 
theoretical flame temperature are changing according 
to Table 8. 

Also, the results show an increase in the total exergy 
efficiency of about 8% and a decrease in the total cost 
product of about 3%. Exergy efficiency is not an 
alternative to energy security but rather a vital 
component in achieving it. The efficient use of exergy 
is very important to keep supply security and to 
decrease the environmental impact. The most 
important factor in exergy efficiency is energy saving. 
Energy saving, which is generally understood as 
consuming less energy; is minimizing fuel 
consumption, here, is about 6.4% lower from the base 
case. [23] 

 

  

8. Conclusions 

In this paper, a TCC power plant was optimally 
designed using a PSO optimizer technique. Exergy 
and exergoeconomic equations for all parts of a system 
were developed. The decision variables were 
compressor pressure ratio, compressor isentropic 
efficiency, gas turbine outlet temperature, inlet fuel in 
the combustion chamber and inlet fuel in HRSG, 
steam temperature entering the high pressure steam 
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turbine, steam pressure entering the high pressure 
steam turbine, steam mass flow rate entering the high 
pressure steam turbine and steam turbine isentropic 
efficiency as well as nine design limitations for 
configuration of the system. In the present 
optimization problem, the total exergetic efficiency 
and total product cost per unit exergy were considered 
as two objective functions. Also, gas turbines and 
steam turbine network are assumed constant with 
420.73 MW value. The results revealed the level of 
accordance between the two objectives in the case 
study. According to the results obtained from 
modeling as shown in the tables, some conclusions are 
as follows: 

— Combustion chamber, Gas turbine, and 
HRSG have the highest values of the sum 

𝐶̇஽+𝑍̇ and are, therefore, the most important 
components from the thermo economic 
viewpoint. 

— By increasing compressor pressure ratio and 
decrease the isentropic efficiencies of 
compressor, gas turbine and steam turbine as 
suggested by the evaluation of the air 
compressor, gas turbine and steam turbine. 

— By increasing the value of 𝑇ଶ And 𝑇଻ as 
suggested by the evaluation of the 
combustion chamber and HRSG. 

—  An 8% increase in total efficiency and a 3% 
decrease in total product cost per unit exergy 
were found that are reasonable. 

—  The summation of exergy destroyed in all 
components of the optimized cycle is lower 
by about 14% in comparison to basic cycle.  

— Decrease of NOx formation and CO2 
emission. 

— Based on the final comparison, the efficiency 
of the turbines in the current research is 
0.68% less than the first research and 5.02% 
more than the second research. 

Hence; it is observed that PSO can be a superior tool 
for optimization of the TCC power plant in the above 
terms. 

 

 

Nomenclatures 

Ċ— Cost flow rate, $/h 

c — Cost per unit exergy, $/GJ 

𝑟௣ — Pressure ratio 

Ėx — Exergy flow rate, MW 

f — Exergoeconomic factor 

ṁ — Mass flow rate, kg/h 

P — Pressure, kPa 

r — Relative cost difference 

T — Temperature, K 

Ẇ— Power, MW 

Ż— Rate of the capital cost 

y — Exergy destruction ratio 

h— Enthalpy 

s— Entropy 

𝑆̇ — Entropy rate 

𝑦— Mole fraction 

 

Greek letters 

𝜂௦ — Isentropic efficiency 

ε — exergetic efficiency 

 

Subscripts 

ARC — absorption refrigeration cycle 

CB — combustion chamber 

CCP — combined cooling and power 

D — Destruction 

DFGT — dual fuel gas turbine  

DTC — direct torque control  

e — exit stream 
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F — Fuel 

FS —  feature selection 

GA — Genetic Algorithm 

GPV — generator photovoltaic 

GT—gas turbine 

GTIT—  gas turbine inlet temperature 

HO — hyperparameter optimization  

i — inlet stream 

ICE — internal combustion engine  

k — component 

L — Loss 

 

LCOE — levelized cost of exergy  

LEIOE — levelized environmental impact of exergy  

MEA — monoethanolamine  

MLP — multi-layer perceptron  

ORC — organic Rankine cycle  

P — Product 

PAT — preheated air temperature  

PSO — particle swarm optimization  

ST— steam turbine 

SWPS — solar water pumping systems  

UEEC — unit exergoeconomic costs  

 

 

 

 

 

 

 

 

 

Table 1: the main data in seam system 

Pressure (bar) 
Temperature 
(K) 

Mass Flow Rate 
(kg/s) 

Stream State 

90.73 793 134.14 steam HP enters the steam turbine 

8.5 503 18 steam LP enters the steam turbine 

0.101 319 152 
Saturate steam 

Quality=0. 879 
Exit Steam turbine 

19.74 320 76.07 Water Entering HRSG 
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Table 2: Base Design Case indexes 

Component ε (%) Eẋ୊ Eẋ୔ Eẋୈ 

 

yୈ
* 

(%) 

c୊ 

($/GJ) 

c୔ 

($/GJ) 

Ċୈ 

($/h) 

Ż 

($/h) 

Ċୈ+Ż 

($/h) 

r 

(%) 

f 

(%) 

Air 
Compressor 

92.63 151.44 140.28 11.16 2.8 19.84 24.09 798 1469.63 2268 22.62 64.82 

Combustion 
chamber 

77.98 394.22 305.6 86.79 21.79 8.56 15.28 2675 82.3 2757 28.23 2.98 

Gas Turbine 85.02 331.04 281.44 49.6 12.45 15.28 19.84 2728 1556.35 4284 27.68 36.32 

HRSG 65.09 121.78 79.26 42.52 10.67 13.73 22.45 2102 1588.69 3691 94.18 43.04 

Steam 
Turbine 

92.66 173.45 160.73 12.72 3.19 16.69 19.84 764 374.09 1138 11.79 32.86 

Condenser 83.16 29.21 24.29 4.92 1.23 0.15 17.92 2.73 7.24 10 73.98 72.63 

Pump 43.84 0.95 0.42 0.53 0.13 19.84 22.82 38 22.82 61 204.81 37.45 

overall plant 35.7 1178.5 420.73 398.27 100 8.56 30.46 12279 9798.1 22078 255.66 44.38 

∗ yୈ For compressor, combustion chamber, gas turbine and HRSG is equal to add yୈ’S two compressors, combustion 
chamber, gas turbine and HRSG. 

 Table 3: the Design Parameters and Their Range of Allowable Variation 

Design Parameters Unit From To 

Inlet fuel in Combustion Chamber kg/s 8 11 

Supplementary Firing kg/s 0 2 

Isentropic Efficiency of compressor % 75 90 

Pressure Ratio of compressor _ 9 16 

Change value of  Exhaust temperature of gas turbine Kelvin 817 821 

Change value of  Steam turbine inlet temperature of HP steams Kelvin 793 808 

Change value of  Steam turbine inlet pressure of HP steams Bar 85.5 94.5 

Change value of Steam turbine inlet mass flow rate of HP steams kg/s 134 149 

Isentropic Efficiency of steam turbine % 75 92 
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             Table 4: simulation setup for PSO algorithm 

Parameter Value 

Population size 400 

Maximum no. of iteration 200 

Initial of  inertia weigh (wmax )  0.9 

Final of inertia weight (wmin) 0.4 

Cognitive learning rate (c1) 2 

Social learning rate ( c2 ) 2 

Table 5: PSO Optimization indexes 

Component ε (%) Eẋ୊ Eẋ୔ Eẋୈ 
 

yୈ (%) 

c୊ 

($/GJ) 

c୔ 

($/GJ) 

Ċୈ 

($/h) 

Ż 

($/h) 

Ċୈ+Ż 

($/h) 

r 

(%) 

f 

(%) 

Air 
Compressor 

93.12 171.49 159.68 11.81 4.41 19.15 24.51 1017 2082.24 3099 29.09 67.18 

Combustion 
chamber 

88.98 356.82 315.67 39.34 11.76 8.56 14.71 1212 115.56 1328 12.39 8.71 

Gas Turbine 84.23 355.39 299.33 56.06 16.76 14.71 19.15 2968 1458.72 4427 27.94 32.96 

HRSG 64.41 125.84 81.06 44.79 13.39 13.07 21.6 2107 1705.32 3812 99.97 44.73 

Steam 
Turbine 

89.7 179.18 160.73 18.45 5.52 15.71 19.15 1044 364.32 1408 15.49 25.88 

Condenser 81.44 29.82 24.29 5.53 1.66 0.15 17.68 3.07 7.20 10 77.12 70.45 

Pump 44.77 0.95 0.43 0.52 0.16 19.15 20.33 36 23.04 59 202.4 39.04 

overall plant 38.62 1089.3 420.73 334.39 100 8.56 29.51 10308 11119.0 21427 244.64 51.89 

 

Table 6: Comparison exergoeconomic decisions variables of the system for optimum and base case 

Decisions Variables Unit Base case PSO opts. Difference 

Inlet fuel in Combustion Chamber kg/s 9 8.45 -0.06 

Supplementary Firing kg/s 0.64 0.58 -0.09 

Isentropic Efficiency of compressor % 86 85.5 -0.01 
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Table 7 Comparison of Exergy Efficiency and Product Cost per unit exergy ($/GJ) in base case design an optimum 
solutionined at an optimum solution in this paper 

 

 

Table 8: Comparison of Excess air and Flame temperature at an optimum solution in this paper 

Variable Base design case PSO Opt. Difference (%) 

Excess air (%) 209 230 +10 

Flame temperature (K) 1397 1385 -1 

 

 

 

Pressure Ratio of compressor _ 11.8 14.66 0.24 

Exhaust temperature of gas turbine Kelvin 819 819 0.00 

Steam turbine inlet temperature of HP steams  Kelvin 793 802 0.01 

Steam turbine inlet pressure of HP steams Bar 90 92.15 0.02 

Steam turbine inlet mass flow rate of HP steams kg/s 134 139.59 0.04 

Isentropic Efficiency of steam turbine % 88 82.7 -0.06 

Component 
 

Exergy Efficiency Product Cost per unit exergy ($/GJ) 

Base design case PSO Opt. Difference Base design case PSO Opt. Difference 

Air Compressor 92.63 93.12 0.01 24.09 24.51 0.02 

Combustion 
chamber 

77.98 88.98 0.14 
15.28 14.71 -0.04 

Gas Turbine 85.02 84.23 -0.01 19.84 19.15 -0.03 

HRSG 65.09 64.41 -0.01 22.45 21.6 -0.04 

Steam Turbine 92.66 89.7 -0.03 19.84 19.15 -0.03 

Condenser 83.16 81.44 -0.02 17.92 17.68 -0.01 

Pump 43.84 44.77 0.02 22.82 20.33 -0.11 

Overall plant 35.7 38.62 0.08 30.46 29.51 -0.03 
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Table 9: Comparison of common parameters between two studies and the current study 

The percentage of 
changes between   

research (B) and the 
current research (%) 

The percentage of 
changes between   

research (A) and the 
current research (%) 

Current 
study 

Lorencin and 
colleagues   

(B) 

Khademi and 
colleagues 

(A) 

Parameter 

8.14 13.07 
420.73 420.26-495.76 484 

Maximum production power 
(MW) 

84.56 87.25 44.77 80 - 85 83.7 Efficiency of the pump (%) 

-5.02 0.68 84.23 80 84.8 Efficiency of the turbine (%) 

------ 10.31 38.62 ------ 42.6 Overall efficiency (%) 

 

Figure. 1: The schematic of the TCC power plant system investigated [24] 
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