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Abstract  
In this work, a plasmonic organic solar cell consisting of 

the organic material P3HT:PCBM, PEDOT:PSS, nematic 

liquid crystal 5CB, ITO, and metal nanowires was 

simulated in the wavelength range of 300 to 1200 nm. The 

substrate and nanowires are made of chrome, copper, and 

aluminum metals. The refractive indices of the metals 

were determined from the Drude–Lorentz equation. The 

values of the geometrical parameters corresponding to the 

high absorption were calculated. The impact of the layer 

thicknesses and incident light angle on the short-circuit 

current density is investigated. The results indicate that the 

nanowires significantly increase the absorption of the solar 

cell. Results indicate that the system made of chrome 

material has a broadband absorption rate of over 90%. 

Among all the proposed structures, the chrome-based solar 

cell has a maximum short-circuit current density of 

approximately 25 𝑚𝐴 𝑐𝑚2⁄ . However, this value 

significantly decreases for incident angles above 40 

degrees. 
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Light absorption and short-circuit current density in plasmonic organic solar cells… 

1. INTRODUCTION  

One type of solar cells (SCs) is organic solar cells (OSCs), characterized by 

their flexibility, low cost, and lightness. The output current from OSCs depends 

on the thickness and type of the organic material. Generally, in this category of 

SCs, the mobility of charge carriers is low. For this reason, the layer of the active 

material (organic) is relatively thin [1-3]. 

 

 

Over the past decade, numerous studies have been conducted on increasing light 

absorption and improving the power-conversion efficiency (PCE) of OSCs. One 

of these methods is the use of nanostructures made of noble (silver, gold) and 

nonnoble (copper, aluminum, and chrome) metals because of their plasmonic 

properties [4-6]. The surface plasmon (SP) resonance (SPR) phenomenon occurs 

on the surface of these nanostructures and increases light trapping [7, 8]. The types 

of nanostructures used in SCs are nanoparticles (NPs), nanorods (NRs), nanowires 

(NWs), and nanodiscs (NDs). The geometric parameters of these structures can 

be controlled; thus, they provide a practical means of increasing the absorption in 

SCs [7, 9, 10]. Within this context, Baek et al. studied the plasmonic effects of Ag 

nanoparticles on OSCs [11]. They observed that by adding Ag-NPs, due to the 

effect of plasmonic scattering, light absorption in the structure increased, and thus 

the quantum efficiency increased significantly. Ng et al. studied the effect of gold 

NPs on the electrooptical properties of P3HT:PC70BM layer and SC performance 

[12]. The effects of Au-NPs on the device optical response were modeled using 

the FDTD simulation. They observed that the PCE of Au-NPs devices increased 

remarkably from 7.5% to 8%, 8.1%, and 8.2% for devices with gold NPs, NDs, 

and nanocubes, respectively. Wang et al. investigated increasing light absorption 

in the photoactive layer of polymer SCs without raising the thickness of the active 

layer [13]. They showed that AuCux-2S nanocrystals enhance the light absorption 

via local SPR to trap light in the photoactive layer. Xie et al. reported a SP-based 

structure that improves light absorption in OSCs. They used Ag nanowires in their 

structure, which can increase light absorption by trapping light in the PEDOT:PSS 

layer and induce SPs in the P3HT:PCBM absorber layer [14]. These SPs increase 

the electromagnetic energy around the wires, which improves light absorption. 

Elrashidi and Elleithy introduced a high-performance OSC based on grating 

nanostructures in hole and electron transport layers. The grating structure was 

optimized using the FDTD method. Optical and electrical models were 

implemented to determine the OSC’s performance. They observed that the high 

absorption in the visible-light region was because the nanogratings [15]. 
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Surface plasmons are sensitive to their surroundings. Their behavior can be 

manipulated by a nematic liquid crystal (NLC) [16]. NLCs exhibit birefringence, 

and an electric field can be used to control their optical properties [17]. Another 

characteristic of NLCs is their ability to enhance the mobility of charge carriers 

in liquid-crystal devices [18]. Jeong et al. studied the using NLCs of 5CB and 

C18H19N in OSCs. They found that NLCs increase the absorption in the active 

layer [19]. They also observed that electron and hole mobilities were enhanced, 

yielding a PCE of 3.72%, as compared to 2.14% for devices without NLCs. Sun 

et al. obtained a maximum PCE of 9.3% under AM1.5 solar radiation with a filling 

factor of 77% by utilizing the NLC characteristics of benzodithiophene 

terthiophene rhodamine [20]. 

We recently investigated a plasmonic filter [21] and a thin-film plasmonic solar 

cell (POSC) composed of NLCs ( E7 & E44) [22]. In the present work, we analyze 

the optical properties of the POSC in the range of 300 -1200 nm. The optical 

properties were obtained through the finite element method (FEM). 
 

2.  STRUCTURE, MATERIALS AND MODELING 

A. Structure 

    
 

The proposed POSC is illustrated in Fig. 1 and consists of several components: 

the organic material P3HT:PCBM as the active layer, PEDOT:PSS as the hole 

transport layer, ITO as the anode, the nematic liquid crystal 5CB, and two metallic 

layers for the substrate (cathode) and plasmonic nanowires. The metallic 

components are made of chromium (Cr), copper (Cu), and aluminum (Al). The 

unit cell geometry is defined by the following parameters: P is the unit cell length; 

S, A, L, D, and I represent the thicknesses of the substrate, active layer, liquid 

Fig.  1. (a) Three- and (b) two-dimensional schematic diagram of the proposed POSC. 

(a) (b) 
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crystal layer, hole transport layer, and ITO layer, respectively; w and h denote the 

width and height of the triangular nanowires; and x is the distance between two 

nanowires. 

 

B. 2.2 Materials 

1)  Metals 

There are several models such as Drude–Lorentz (DL) and Bernard–Berman 

models to express the dielectric function of metals, which are generally based on 

experimental data. In the DL model, the dielectric function is given by [21, 24, 

25]: 
2 2

0

2 2 2

0

( ) 1
p i p

DL

j j j

f f

i i

 
 

   
  

     
                                                             (1) 

where 
p and 

j are the plasma and resonance frequencies, 
jf  and 

j  are 

the strength of the oscillators and damping coefficient, respectively. The complex 

dielectric coefficient is expressed as 2( ) ( )n ik    [24, 26]. In Fig. 3a, the 

refractive indices (𝑛 ) and extinction coefficients ( 𝑘) of Cr, Cu and Al are plotted. 

 
2) P3HT: PCBM 

One of the materials used in organic bulk-heterojunction SCs as an active 

material is P3HT:PCBM [27-32]. P3HT and PCBM are employed as electron 

donor and electron acceptor materials. P3HT:PCBM composition yields an OSC 

efficiency of around 3% to 5%. These two materials are the most common active 

layers in OSCs [1, 33, 34].  

 

3) Liquid Crystals 

Liquid crystals (LCs) possess characteristics of both liquids and solids; they 

flow like liquids while maintaining a crystalline molecular structure. These 

materials exhibit order and mobility across macroscopic, supramolecular, and 

molecular scales [35]. The dielectric coefficient of the NLCs can be written as 

follows [36-38]: 
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Fig. 2. Schematic of LC molecule.  
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where   (  ) is the angle between 𝑧(𝑥)  and optical axes (see Fig. 2). 

Additionally, on and en denote  ordinary and extraordinary refractive indices. For 

the 5CB NLC (see Fig. 3c), the wavelength (𝜆) dependence of on and en  is given 

by [39]: 
2 41.50849 0.00774 0.00040on                                           (3) 

2 41.65535 0.01355 0.00153en                       (4) 

 
4) PEDOT:PSS 

PEDOT:PSS is usually used as an anodic electrode buffer layer in OSCs. This 

material acts as a hole transfer layer. In general, the performance of PEDOT:PSS 

is usually greater than that of ITO and leads to efficient hole extraction [40]. 

Additionally, the coating a thin layer of PEDOT:PSS can smooth the rough 

surface of ITO [41, 42].  
 

5) ITO 
The anode layer is typically made of ITO or FTO, and must be transparent 

because it is located behind the active layer [43]. With a band gap of 3.7 eV, ITO 

largely permits the transmission of photons. Commercial ITO transmits over 80% 

of visible light. 
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C. Modeling 

One of the numerical methods for solving the wave equation is the FEM. The 

solution of the FEM is based on dividing large problem into smaller parts called 

finite elements [44]. The finite element equations are assembled into a 

comprehensive system to generate the overall representation of the initial 

problem. The 𝑥-direction is set with periodic boundary conditions, while perfectly 

matched layer are implemented in the 𝑦-direction [45-48]. 

 
Maxwell's wave equation is as follows [49, 50]: 

2

0

0

1
( ) ( ) 0r

r

E k i E



 

                                                                           (5) 

where E (electric field),  0k (free-space wavenumber) and   (frequency), r

(permittivity), r  (permeability) and   (conductivity). 

The total absorbed power in the SC with a volume of V is calculated from the 

following equation [51-54]: 

21
( ) ( , , ) Im[ ( )]

2 V
A E x y dV                          (6) 

One of the important parameters is the solar energy conversion efficiency. The 

scJ (short-circuit current density) due to the light absorption is calculated by the 

following integral [53, 55-57]: 

max

min

( ) ( )sc

e
J A S d

c




                                                                                       (7) 

where ( )S  is the AM 1.5 solar spectrum, A(λ) is the photon absorption, , 𝑒 

and 𝑐 are the reduced Plank constant, electron charge, and vacuum speed light. 
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Fig. 3. 𝑛 and 𝑘    of the (a) metals [24], (b) P3HT: PCBM, PEDOT:PSS (c) 5CB NLC. 

3.  RESULTS AND DISCUSSION 

The light incident on the SC is AM1.5, with wavelengths ranging from 300 to 

1200 nm. Electromagnetic waves radiate uniformly along the z-axis in this 

structure, with periodic boundary conditions applied on both sides. Additionally, 

we first consider the angle of sunlight to be zero (perpendicular radiation to the 

structure) and P=450 nm. Four scenarios for POSC metal parts are examined: both 

the substrate and nanowires are made of (i) Cr, (ii) Al, (iii) Cu, and (iv) the 

substrate and nanowires are made of Al and Cr, respectively. Significant 

absorption is an essential characteristic of efficient SCs. Since the 
scJ  depends on 

the total absorption of the structure, we calculated the total absorption of the 

structure (here called absorption). After extensive calculations, we determined the 

values of the geometry parameters corresponding to the high absorption, which 

are listed in table 1. 

Fig. 4a compares the total absorption of light in the analyzed structures. The Cr 

and Al-Cr-based POSCs have higher absorption, with an average of more than 

90%. In the range of visible light (400 to 700 nm), the Al-Cr structure has a greater 

(a) (b) 

(c) 
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absorption than the Cr-based structure. The Al-based and Cu-based POSCs have 

absorption intensities lower than 80% in 400-700 nm and 650-950 nm, 

respectively. Overall, we can conclude that the Cr and Al-Cr structures are more 

effective than the Cu and Al-based structures. The high and broadband absorption 

of these structures is attributed to the presence of metal nanowires, as illustrated 

in Fig. 4b. This figure compares the absorption of Cr-based and Al-Cr-based 

POSCs with that of structure without nanowires and the data from Ref. [56]. This 

figure shows that; i) the absorption at wavelengths greater than 600 nm decreases 

significantly without the presence of nanowires. ii) Although our proposed 

structure has lower absorption at wavelengths less than 600 nm than the optimized 

structure of Ref. [56], it has higher absorption at longer wavelengths than the solar 

cell in this reference. 

 

 

 
 

TABLE I 

 THE GEOMETRIC SETTING CORRESPONDS TO THE HIGH ABSORPTION OF CR-, AL-, 

CU-, AND AL-CR-BASED POSC. 

Parameters 

(nm) 
Cr Al Cu Al-Cr 

A 30 25 80 25 

W 110 100 130 120 

h 45 25 15 45 

L 80 50 90 60 

D 30 50 45 30 

I 

S 

20 

120 

20 

150 

20 

150 

20 

150 
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Fig. 4. The total absorption of POSCs with different metal parts: (a) Cr, Cu, Al (substrate 

and nanowires), and Al (substrate)-Cr (nanowires). (b) Cr (substrate and 

nanowires) and Al (substrate)-Cr (nanowires); Comparison with the case without 

nanowires and the Ref. [56] data. 

 
As mentioned in the introduction, SPR can increase light absorption. Fig. 5 

shows the distribution of the electric field norm for the Al-Cr structure at a 

wavelength of 320 and 650 nm. The absorption increased because the SPR 

excitations at the interface of the metal and organic layers.  

 

 
Fig. 5. Electric field (in V/m) norm distribution at: a) 320nm   b) 650nm  . 

(b) (a) 

(a) (b) 
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scJ  is one of the main important characteristics of SCs. In Fig. 6, the SCJ  of the 

Cr-based POSC is plotted versus A, W, and h. This figure shows that SCJ  

increases with these parameters, reaches a maximum, and decreases again. The 

change in absorption with geometrical parameters is the reason for this behavior. 

The maximum value of SCJ  is approximately 24.5 𝑚𝐴/𝑐𝑚2 and occurs when 

𝐴 = 30.0 𝑛𝑚, 𝑊 =  110.0 𝑛𝑚, and ℎ = 45.0 𝑛𝑚. 

In Fig. 7, the variation in SCJ with the angle of the light entering the structure is 

presented. At angles from 0 to 40 degrees, SCJ  has a small change but decreases 

meaningfully for angles greater than 40𝑜. Additionally, the SCJ of Cr and Al-Cr 

POSC is larger than that of Al and Cu-based POSC because of their high 

absorption. 

 
Fig. 6. 𝐽𝑆𝐶 versus (a) 𝐴 with 𝑤 =  110.0 𝑛𝑚 and ℎ = 45.0 𝑛𝑚, (b) 𝑤 with 𝐴 =

30.0 𝑛𝑚 and ℎ = 45.0 𝑛𝑚, and (c) ℎ with 𝐴 = 30.0 𝑛𝑚 and 𝑤 = 110.0 𝑛𝑚. 

(a) (b) 

(c) 
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Fig. 7.  

scJ versus incident light radiation angle (ɵ) for the Cr, Cu, Al, and Al-Cr 

POSCs. 

4.  SUMMARY AND CONCLUSION 

 

POSCs, the third generation of SCs, are gaining attention from 

researchers and industry due to their flexibility and low cost. Utilizing the 

plasmonic properties of metals can enhance absorption in the active layer 

of SCs. In the proposed structure, we explored various metals, including 

Cu, Al, and Cr. The highest absorption was achieved with Cr and Al-Cr 

configurations. Our findings show that nanowires significantly improve 

POSC absorption. Since aluminum is commonly used as a substrate and 

cathode in SCs, an Al-Cr structure is preferable. A key parameter for SCs 

is the 
scJ  , which varies with geometrical parameters and the angle of 

incident light. Cr- and Al-Cr-based SCs exhibit a maximum 
scJ  of about 

25 mA/cm². Overall, these results could help in the design of POSCs. 
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