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Abstract:  
Discrete energy levels of quantum dots (QD) have 

electronic and optoelectronic applications. In this paper, a 

novel graphene nanoribbon (GNR) field effect transistor 

(FET) is modeled numerically using the NEGF 

formalism. In the new device model of this paper, the 

channel region is composed of one or two QDs, made by 

only one metallic gate electrode. This model utilizes a 
semiconductor  armchair graphene nanoribbon through 

which the current may pass. The two highly doped ends 

of GNR act as  source and drain contacts. At this unique 

model, one or two quantum dots form on GNR channel.  

The discreteness of energy levels of the two coupled 

quantum dots, revealed by applying gate voltage, gives 

rise to resonant tunneling.  Resonant tunneling through 

these levels results in negative differential conductance. 

The coupling between QDs determines the current 

characteristics of device. Step-wise increment of current 

by increasing drain voltage manifests QDs discrete 
energy levels. 
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Modeling Graphene-based PIN-FET with Quantum Dot Channel 

1. INTRODUCTION  

Discrete energy levels of quantum dots (QD) have electronic and optoelectronic 

applications [1-5]. Phototransistors, which are FETs with light detection ability, 

are among the modern devices which functionality is based on the discrete 

energy levels of the device [6-8]. This discreteness may give rise to negative 

differential resistance (NDR) which has many applications in today’s fast 

electronics [9-20].  

 Two-dimensional flat structure of graphene and its carrier's ballistic transport of 

very high mobility, leads to applications of graphene-based QDs in quantum 

devices. GNR-phototransistors with discrete density of states, provide optical 

response spectra with sharp peaks. The discrete energy levels of QD may also 

give rise to resonant tunneling and NDR. In ref. [2], QD-channel on graphene 

FET is modeled by different engineering method on GFET. 

In the new device model of this paper, the channel region is composed of one or 

two QDs, made by only one metallic gate electrode. In the next section, the 

structure and working essentials of the new GFET are explained. If one 

incorporates the spin of electrons e.g. by using ferromagnetic substrate, 

spintronic applications are allowed. QDs spin valves have applications in the 

spin injection and detection processes [21-23]. QDs are possible candidate 

elements in quantum computers [24-27]. 

 

 

2. GFET MODEL  

 

Diagram of the modeled device is plot schematically in Fig. 1. It manifests a 

Metal-Oxide-Semiconductor field effect transistor with GNR channel and a 

modified gate contact. This construction creates a couple of quantum dots (QD) 

at the channel of device. The current-carrying QDs and the source and drain 

electrodes are designed on semiconducting armchair graphene nanoribbon (A-

GNR) of 1.5 nm width that has band gap of about 0.72eV. By heavily doping 

the two ends of GNR, the source and drain contacts with high density of states 

are constructed. This GNR, is layed between two SiO2 layers (dielectric 

constant 𝑘 = 3.9) having thickness of 0.8 nm.  
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Fig. 1. Schematic diagram of coupled QD GNR-FET. 

 

The GNR-FET (GFET) structure has symmetry on top and bottom about the 

GNR layer.  

The new structure introduced is a new configuration of GNR-based PIN-FET 

(Field effect transistor with p-type source and n-type drain doping) with unique 

geometry of gate electrode that forms quantum dots in channel.  

In the model, drawn schematically in Fig. 1, two metallic plates cover the 

dielectric layer on top of channel regions. Another metallic electrode also lay on 

top of the two plates. By this construction, the plates are equipotential while the 

gate voltage is connected. Therefore, by this arrangement, by applying gate 

voltage, in the GNR channel a barrier forms between the two metallic plates. In 

order to construct barriers between the channel and the contacts (source and 

drain) two possibilities are employed. For designing the source-connected 

barrier, p-type source doping is adopted so that the doping type of the source 

and n-type QD-channel are different.  For designing the drain-connected barrier, 

the gate plate, does not cover a thin layer (we chose four unit cells) of channel in 

contact to the highly doped drain contact and so, it is not under the gate control 

and acts as barrier.  

This model structure for GFET (Fig. 1), creates two separate n-type 

conducting QD channels with discrete energy levels by applying gate voltage. A 

thin barrier couples these QDs to each other. Discrete energy levels are 

constructed at the channel and contribute to the resonant tunnelling of electrons. 

The potential energy profile, charge density and current are determined by 

solving Poisson equation and the non-equilibrium Green’s function (NEGF) 

equations [28]. NEGF is used for real-space tight-binding Hamiltonian (𝐻) for 

GNR (by hopping energy 𝑡 = 2.7e𝑉) [29]. 

The Green’s function is 

  

                 (1) 
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E is energy and 𝑈 is a diagonal matrix with on-site potential energies. The 

source- and drain-connected self-energies are Σ𝑠 and Σ𝑑 [30] and  ɳ is a small 

number.  
 

         
† 1Σ , [ ]   d s R L R L R Lτg τ     g E iη I H               (2) 

 

 R LH  and  R Lg are the Hamiltonian and Green’s functions of the right (left) 

contact, respectively. The iterative algorithm of ref. [30] calculates the self-
energies. The energy level broadenings of channel by the source and drain 

contacts are, 
 

   

†

Γ ( )s d
s d s d

i    

The potential energy, U, in Eq. (1) is obtained by solving Poisson equation (4) at 

the whole simulated device; 
 

                                                                  (3) 

 

The electron density is calculated from the NEGF formalism,  
 

 2
2
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ndE
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π
                                                                  (4) 

 
nG , the electron correlation function is determined from 

 

 
†Σn inG G G                                                                       (5) 

 

where Σ
in

, is defined 
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    ,
s d Fs d

f E E is the source (drain) Fermi-Dirac distribution function. 

In order to obtain the device current in the ballistic regime, Landauer formula is 
employed as,  

      
2
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In this formula, T(E) is the electronic transmission function at energy E . 
According to this equation, mainly the states at energy intervals between the 

source and the drain Fermi levels contribute to the current.  

 
 In the NEGF formalism, T(E) is; 

 

  †Γ Γs d
 
 

T E Tr G G                                                                                      (8) 

 

 

3.  RESULTS AND DISCUSSION 

The lengths are attributed to the number of unit cells along the ribbon length. 

Each unit cell of an AGNR is a rectangle of a width equal to that of a Benzene 
ring and the length of all Benzene rings along the width of ribbon. Therefore,  it 

is assumed that the ribbon is a one-dimensional structure. The width of unit 

cells, is about 0.43 nm and the length is about 1.5 nm. 

The channel length, 𝑁𝐶ℎ , contains the lengths of the dots, 𝑁𝐷1, 𝑁𝐷2, the barrier 

between dots, 𝑁𝐵-in, and the channel to drain barrier, 𝑁𝐵-out. We fix the latter at 4 

(unit cells). Therefore, 𝑁𝐶ℎ  = 𝑁𝐷1 + 𝑁𝐵-in + 𝑁𝐷2 + 4. If we set the barrier width, 

𝑁𝐵 equal to zero, single QD forms in channel.  
 
 

 

 

 

 

A. Single QD-GFET 
 

The first set of parameters are related to a single QD-FET using the channel 

parameters:  𝑁D = 20, 𝑁𝐵-out = 4. The conduction and valence bands are shown in 

Fig. 2 for 𝑉𝐷=0.2𝑉 and 𝑉𝐺  equal to 0.8V and 1.2V. As expected from the 

designed structure, two barriers form at the interface between channel and 
source and drain. Therefore, a QD forms in the channel. 
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Fig. 2. Conduction (blue) and valence (red) bands along channel for 𝑉𝐷 = 0.2𝑉 and 

𝑉𝐺=0.8V (solid), 1.2V (dot).  
 

In Fig. 3 the device 𝐼 − 𝑉𝐷 characteristic curves are plot for different gate 

voltages, 𝑉G. An increase of current by the drain voltage in step-like manner is 
revealed. This is a manifestation of the discreteness of energy levels in QD 

channel. As indicated by arrows for first steps, the step edge that stands for one 

of the energy levels shifts along drain voltage axis. This is due to the shift of 
energy levels of QD by changing the depth of QD by applying the gate voltage.  

The following section, in which we consider double-QD channel, provides more 

diagrams with detailed explanations. 
 

 
Fig. 3: 𝐼 − 𝑉𝐷 curves for 𝑁D = 20 and different amounts of 𝑉G. 
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B. DOUBLE QD-GFET 

 

The set of parameters of a double QD-FET are 𝑁D1 = 24, 𝑁D2 = 15, 𝑁𝐵-in =6 and 

𝑁𝐵-out = 4. 

The conduction and valence bands are shown in Fig. 4 for 𝑉𝐷=0𝑉 and 𝑉𝐺=1.4V.  

At this structure, there are two barriers at the two ends of channel and a barrier 

inside the channel. Therefore, two QDs form in series at the channel. 
 

 

 

 

 

 

 
 

Fig. 4:  Conduction (blue) and valence (red) bands for 𝑉𝐺=1.2V (solid), 1.6V (dot). 
 

 

The density of electrons (LDE) in the channel is present in Fig. 5 for 𝑉𝐺=1.6V 

and 𝑉D=0.3V. The energy levels of QDs and the edge of the conduction band are 
observed. In addition, the energy modes of electrons in the left QD manifest 

decreasing wavelength by increasing energy. 
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Fig. 5:  Color plot of DOE along channel. 

 

Since the two QDs have different widths, they have different distributions of 

discrete energy levels. Therefore, current of the channel is carried through the 

aligned energy levels of the two QDs.  

The 𝐼 − 𝑉𝐷 characteristic curves of device are plot in figure 6 for different 

amounts of 𝑉G. 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6:  𝐼 − 𝑉𝐷 characteristics for different amounts of 𝑉G. 
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We observe that in contrast to normal GFETs, current does not necessarily 

increase by increasing the gate voltage, 𝑉G. This is a footprint of quantum effect 

of confinement. By increasing the QD depth by the gate voltage, the energy 

level distribution changes. This may result in two significant effects: 1- some 
energy levels which contributed to the current, may shift to the outside of the 

current-related energy window (the energies between source and drain Fermi 

energies) and 2- some energy levels of the two QDs which were aligned at some 
gate voltage, will lose alignment.  

To investigate current behavior by changing the gate voltage, we plot the current 

curve versus gate voltage, 𝐼 – 𝑉G in figure 7 for double-QD FET. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 7:   𝐼 − 𝑉𝐺 curve for 𝑉D=0.1V. 

 

 

The current oscillation by the gate voltage results in negative differential 

conductance. 
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4. CONCLUSIONS 

We introduce a new design for GFET model with p|i|n doping structure. Unlike 

traditional GFETs the gate metal governs the electrostatics of two distinct 

regions of the GNR channel. Also a quantum barrier separates two regions of 
the channel while two other barriers forms between source and drain reservoirs 

and the channel. This quantum confinement by the barriers gives rise to 

formation of quantum dots and discrete energy levels in the channel. Current 
increases in step-like manner by increasing the drain voltage. This behaviour of 

the device current has applications in nanoelectronics, optoelectronics and 
quantum computing. 
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