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Abstract:  
A detailed study of a novel configuration for junctionless 

tunneling FET (J-TFET) with extremely low off- (Ioff) 

and ambipolar current (Iamb) is reported in this paper. In 

order to achieve desirable on/off current ratio (Ion/Ioff), we 

have employed voltage difference technique on the gate 

electrode based on the potential distribution benefits. 

Main and side gates with an optimum voltage difference 

creates a stepped potential profile along the channel. This 

raises the drain side’s bands, reduces the electric field, 

puts restriction on the flow of charge carriers, and finally 

remarkable reduction of Iamb from 6.52×10-10 A/µm to 

1.14×10-17 A/µm. Also an extremely low subthreshold 

swing (SS) (22 mV/dec) is achieved thanks to the sharp 

transition from off- to the on-state. Finally we have 

investigated the electrical performance of the proposed 

device for sub-30 nm channel length to examine its 

immunity against short channel effects. Therefore, our 

approach renders the novel structure more desirable for 

the future low power applications.  
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Voltage Difference Technique in Junctionless Tunneling FET for Suppression … 

1. INTRODUCTION  

     Consecutive power consumption is an immediate concern for continued 

scaling of devices [1-3]. Thus, there is a strong push toward focusing on 

tunneling field-effect transistors (TFETs) as a meet candidate for low power 

applications, because their conduction relies strongly on the tunneling 

mechanism (BTBT) [4-6]. This mechanism presents the possibility of low 

subthreshold swing (SS) under the 60 mV/dec of the conventional MOSFETs 

together with high on/off current ratio (Ion/Ioff) [7-10].  

     However, TFETs suffer from some major concerns including: 1) low Ion [7-

16]; 2) extremely high ambipolar current (Iamb), an inherent property of 

conduction irrespective of gate voltage polarity [17-22] which relies strongly on 

the tunneling chance near the drain side; 3) large variation in doping 

concentration due to the abrupt highly doped junctions of the scaled TFETs over 

a few nanometers [23-24]. Beside other shortcomings, to overcome the last 

challenge, junctionless TFET (J-TFET) without any stringent requirement for 

controlling a precise and steep p-n junction was numerically studied to attend as 

an encouraging approach for conventional TFET [25-32]. 

     In this paper, we will introduce a novel J-TFET structure to obtain desirable 

Ion/Ioff ratio thanks to modified band diagrams near the drain side. Voltage 

difference technique is utilized on the gate electrode, in order to deplete 

electrons effectively, and widen the tunneling path extensively all near the drain 

side to diminish ambipolar current noticeably.  

 

2. DEVICE PARAMETERS AND SIMULATION MODELS 

     To realize the proposed structure emphasizing on voltage difference 

technique (VDJ-TFET), we first begin with a junctionless MOSFET with 

uniform n+ doped. To obtain the J-TFET, the charge plasma concept is utilized 

with an appropriate workfunction (Pt, Platinum, WF= 5.93 eV) of a metal 

electrode using the ATLAS device simulator [33] as shown in Fig. 1(a). This 

converts N+ doped source region into a P+. Also, the VDJ-TFET consists of a 

main gate and a side gate of LMG and LSG in length, respectively, which both 

have the same workfunction (WF= 4.2 eV) as illustrated in Fig. 1(b). The 

voltage difference between the gates controls the channel to improve the 

electrical performance especially Iamb. The voltage for the side gate (VSG) is 
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greater than that of the main gate (VMG) as much as VDiff. In order to examine the 

characteristics of the VDJ-TFET, we have applied several values for the VDiff. 

The gap length between the gates is 2 nm. Parameters for the VDJ-TFET 

structure are listed in Table I. The VDJ-TFET has the same typical parameters 

as for the J-TFET unless otherwise stated.  
 

 

 

 

Fig. 1. Cross sectional views of the (a) J-TFET, and the (b) VDJ-TFET structures.  

 

Table. I: Parameters used for simulation of devices 

Parameters VDJ-TFET J-TFET 

Channel length  30 nm 30 nm 

Main-Gate (MG) and Side-Gate (SG) length 14 nm - 

Gap length between the MG and the SG 2 nm - 

Thickness of silicon film (tsi) 10 nm 10 nm 

Thickness of gate oxide (tox) 1 nm 1 nm 

Doping Concentration of the silicon film (NA) 1×1019 cm-3 1×1019 cm-3 
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     To account for the lateral tunneling, nonlocal BTBT model [12-14] is 

employed. This model explains carrier transport through the energy band profile 

along the entire tunneling path. The doping-dependent and field-dependent 

mobility degradations were taken into consideration using the Philips and 

Lombardi mobility models, respectively. We have also employed the direct 

recombination (Auger) as well as the band gap narrowing (BGN) models 

because of the high carrier concentration in the silicon layer [33]. The Shockley-

Read-Hall (SRH) model is utilized for the thermal generation-recombination 

mechanism. Worth noting that the quantum confinement model as given by 

Hänsch et al. [34] is taken into account. However, this can be neglected because 

the thickness of silicon film in our simulation is more than 7 nm [31-34].   

     Fig. 2 exhibits calibration of an experimental TFET against results of the 

simulation models under similar conditions as those reported in [5]. As can be 

seen from the figure, obtaining results from the transfer characteristics (IDS-VGS) 

are in well agreement against experimental data. This indicates that our 

simulation study effectively consider the impact of lateral BTBT (L-BTBT). 
 

 

Fig. 2. Calibration of transfer characteristics (IDS-VGS) against experimental results [5].  

 

3. RESULT AND DISCUSSION 

     Fig. 3(a) demonstrates the effect of the voltage difference on the VDJ-

TFET’s band diagrams in the region of ambipolar conduction (VGS= -1.0 V, 

VDS= 1.0 V) with VDiff taken as parameter. To decrease the Iamb, the tunneling 

path between the channel and the drain regions needs to be extend enough [18-

24] which can be provided by changing the VDiff values. Increasing the VDiff from 
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0.0 V (act as a J-TFET) to 1.0 V realizes a stepped profile in the band diagram of 

the VDJ-TFET. This provides widening of the tunneling path from 6 nm to 12 

nm that leads to negligible probability of the electrons tunneling and thus in turn 

noticeable reduction of the ambipolar conduction. In Fig. 3(b), the effective 

impact of VDiff on Iamb alleviation is exhibited when the VDJ-TFET’s transfer 

characteristics (IDS-VGS) are plotted. As it is obvious from the figure, a 

significant improvement in Iamb extracted at VGS= -1.0 V is observed when VDiff is 

enhanced. High amount of VDiff is responsible for further step of the band 

diagrams near the drain side which extends the tunneling width. As can be seen 

from Fig. 3(b), the effect of VDiff on the SS and Ion parameters is negligible while 

they remain almost constant by different values of the VDiff. This is so desirable, 

because the main focus of employing VDiff technique is on the Iamb improvement.   

     Fig. 4(a) demonstrates the Iamb taken out at VGS= -1.0 V, as a function of the 

VDiff for various amounts of the VDS. Since, the VDiff assigns the width of the drain 

side’s tunneling path, Iamb is strongly decreased as the VDiff is enhanced. Also, the 

SS value versus the drain current is shown in Fig. 4(b). As well as J-TFET, the 

VDJ-TFET exhibits the capability of realizing favorable SS values over wide 

ranges of the ID. Thus not only the Iamb but also the SS of the VDJ-TFET exhibit 

superior operation for low power applications.   

 

 

Fig. 3. (a) Band diagrams of the VDJ-TFET at VGS= -1.0 V, (b) The VDJ-TFET’s 

transfer characteristics with voltage difference between the MG and SG as a parameter.  
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Fig. 4. (a) Iamb as a function of Vdiff for different values of the VDS at VGS= -1.0 V, (b) 

subthreshold swing versus drain current for the VDJ-TFET and J-TFET structures, when 

line of SS= 60 mV/dec is drawn as a reference.   
 

     To study the impact of VDiff on the Iamb, refer to Fig. 5(a), where we have 

exhibited the potential profile of the VDJ-TFET at VGS= -1.0 V. As it is clear 

from the figure, VDiff provides a step potential with a sharply increase along the 

channel of the VDJ-TFET, but not in the J-TFET structure. This can be regarded 

as a main factor to extend tunneling path adjacent to the drain region which 

reduces Iamb noticeably. The electric field as a function of the VDiff is also 

investigated in Fig. 5(b) at VGS= -1.0 V. Although the electric field steeply 

enhances under the gap thanks to the bending of the band diagram, increasing 

the VDiff, will alleviate the high amount of the electric field near the channel-

drain region.  

     This discontinuity in the electric field can be interpreted as a decrease in the 

BTBT rate as shown in Fig. 6(a). This plot depicts the rate of the BTBT with 

VDiff taken as parameter. As can be seen, for larger VDiff, the electron’s tunneling 

probability from the valence band of the channel into the conduction band of the 

drain is small, leading to lower electrically induced free carriers at the drain 

side, and thus in turn reduced Iamb. Fig. 6(b) displays the electron concentration 

across the VDJ-TFET as a function of the VDiff. Observe that as the VDiff is 

increased, the electrons in the drain region are further depleted due to the 

extended tunneling path near the channel-drain junction. 
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Fig. 5. The VDJ-TFET’s (a) potential and (b) electric field along lateral direction for 

different value of the Vdiff. 
 

 

Fig. 6. (a) BTBT rate and (b) electron concentration for different values of the Vdiff 

across lateral direction in the VDJ-TFET structure. 

 

     In Fig. 7, simulations are performed by measuring the dependence of the Ioff, 

Ion/Ioff, Iamb, and SS on the channel length to investigate the application of the 

VDJ-TFET in sub-20 nm regime. As it is obvious from the figure, only a slight 

variation is achieved when channel length is taken as a comparative parameter. 

Sub-30 nm channel length of the VDJ-TFET primarily retains the 30 nm 

characteristics and does not considerably degrade from the short channel effects 

(SCEs). Thus, the VDJ-TFET can be scaled down into the sub-30 nm regimes 

without any drastic influence of the SCEs. 
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Fig. 7. Dependence of (a) Ioff and Ion/Ioff, (b) Iamb and subthreshold swing on the channel 

length variation. 
 

4. CONCLUSION 

Ambipolar current (Iamb) is a detrimental problem in tunneling FETs (TFETs) 

which should be alleviated noticeably for low power applications. In this letter, 

a novel design is introduced for providing a Junctionless TFET (J-TFET) with 

highly diminished ambipolar current. In the proposed structure (VDJ-TFET), an 

extended tunneling path near the channel-drain junction is achieved by gate 

voltage difference (Vdiff). Higher Vdiff leads to widening of the tunneling path 

which acts as a barrier for tunneling to occur and thus in turn remarkable 

reduced Iamb. Also we have optimized the Vdiff value to obtain superior 

performance. Therefore the VDJ-TFET can be a proper substitution for the 

conventional J-TFET in the reliable low power applications. 
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