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Abstract: The variation of the electrical resistivity of a material in the external magnetic 

field is known as magneto resistance. This phenomenon has been attracted both 

theoretical and experimental researchers in miniaturization of magneto meters in the 

recent years. In this paper, the magneto resistance of an inhomogeneous two dimensional 

conductor with ladder geometry is simulated by using a two dimensional resistor network 

model. Maxwell's equations have been solved for a point of lattice considered as disk and 

then, its magneto resistance was calculated using a network model. The results illustrate 
that the magneto resistance depends on the specific resistance ratios and their locations. 

Moreover, the results demonstrate when inhomogeneity is added properly, the magneto 

resistance will be increased, otherwise it will be reduced. The results also show that for 

special values of physical parameters especially the inhomogeneity, the magneto 

resistance is diverged at special magnetic field.  
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1. INTRODUCTION  

Giant magneto resistance usually occurs when a system contains ferromagnetic 

and paramagnetic metal layers exposed to a magnetic field [1]. A noticeable case 
of giant magneto resistance is the linear one. Although the theory of linear 

magneto resistance has not been developed completely, it is known that the 

disorder, in the form of impurity substitution is the cause of this phenomenon [2]. 

There are two theoretical possibilities for this phenomenon. The first one is 
classical magneto resistance that happens in a polycrystalline metal in a large 

field [3]. This kind of magneto resistance occurs when the Lorentz force is acting 

against the direction of electron motion thereby decreasing the conductivity of an 
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electronic material [4]. This property has been considered to study the 
fundamental properties of electronic materials (such as the topology of the 

electron bands) and technological applications such as magnetic memory read-

heads [5, 6]. Single electronic bands (in systems with a spatially homogenous 
carrier density) will have no magneto resistance, while the presence of two or 

more electronic bands with different carrier mobilities readily gives rise to the 

classical magneto resistance [4]. Classical magneto resistance has scientific 

applications in magnetic sensors [7-9]. When the carriers are of low density and 
small effective mass, in which all the carriers are placed in the lowest Landau, 

the quantum linear magneto resistance description is necessary [3]. Studying of 

magneto resistance leads to the observations of fascinating effects such as the 
integer and fractional quantum Hall effect [10,11]. The linear magneto resistance 

depends on the density fluctuations and the mobility of particles and is strongly 

enhanced by high mobility of the sample [2]. Linear magneto resistance is 
regularly observed in semi-metals, narrow band-gap semiconductors, multi-layer 

graphene and topological insulators [12-16]. Linear magneto resistance originates 

in an inhomogeneous conductor from distortions in the current paths induced by 

macroscopic spatial fluctuations in the carrier mobility [17]. In fact, this 
phenomenon arises from multiple scattering of the current-carrying electrons by 

low-mobility islands within the conducting layer [17]. Linear magneto resistance 

effect is observed in gold nanoparticle-decorated graphene and in bilayer mosaic 
graphene due to the two-dimensional resistor network [2, 9]. Linear magneto 

resistance due to inhomogeneity is attracting as it offers the potential of 

engineering materials for magnetic field sensor applications [2].  

The magnetoresistance of the two dimensional networks have been subject of 
many researches in the past years [7-9, 18-22]. The 2D resistor networks have 

been considered in both classical [19, 20] and quantum [21, 22] approaches and 

confirmed by some experimental works [18, 19, 20].   
In this paper, the magneto resistance of N × 2 networks consists of two 

materials with columnar and zigzag configurations for different resistivity ratios 

are calculated, and the effect of the resistivity ratio on the magneto resistance has 
been investigated. The smallest network component is a two-dimensional 

homogeneous resistor, which is formed by connecting it to a larger network. The 

impedance matrix is obtained for one disk by using Maxwell’s equations which 

leads to the entire network by the orbital relations.  
 

2. THEORY 

An inhomogeneous conductor is modeled by a random resistor network. The 

resistor network model is a classical method for solving magneto resistance that 
is sufficient for simulating a transverse magneto resistance. In this model, a 

resistor unit (Fig.1. [7]) is a homogeneous circular disk with four current 
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terminals and four voltage differences between them with an external magnetic 
field applied perpendicular to the network. 

 
Fig.1 The unit of resistor network. 

The voltage differences between terminals are considered positive in the 

clockwise direction. Currents and voltages are related to each other via a 4×4 
matrix (z). If the terminals are taken to be equally spaced and the angular width 

φ of the terminal is held fixed, then the impedance matrix will be as follows [7, 

8, 19]: 

a b c d

d a b c
z

c d a bt

b c d a





 
 
 
 
 
 

, i ij jv z   , zij=vi/Ij                              (1) 

where ρ and t are scalar resistivity and thickness of the disk respectively. The 
coefficients zij are obtained by solving the Laplace equation for the electric 

potential of a homogeneous disk, using the currents as boundary conditions [7, 

8]. 
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             (2) 

In this paper, the value of φ is considered to be 0.14 radians and g(φ) is 4.0055 
and B is magnetic field. The magnetic field is defined as a dimensionless variable 

B = μH, where μ is the mobility of the carriers and H is magnetic field intensity 

[7]. 
 The impedance matrix (Z) is characterized by two parameters μ and ρ/tπ. To 

construct an N × M resistor network, the disks are connected together using 

perfect conducting wires. Voltages and currents of network are connected via the 

impedance matrix. The impedance matrix (Z) can be obtained by grounding one 
terminal to provide a point of reference for the voltages (locating the ground or 

zero voltage) and also using the orbital relations. By classifying the voltages and 
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currents in to 2N-1 longitudinal components and 2M Hall components, the 
impedance matrix is written as follows [8]: 

 
HH HL

LH LL

Z Z
Z

Z Z

 
  
 
 

                (3) 

To determine the magneto resistance of an N × M network, 0H

iI  and the right 

VL is set to a constant potential U, and completely ground the left side of the 
longitudinal voltages [7]. The effective resistor a network is given by: 

1
( )

( )
NM N LL LL L

i ij ji i

U U
R H

I Z V 


                                                                          (4) 

in which U is terminal voltage, Ii
L is the input currents along the 

ungrounded(right) edge. 

The sum over input currents is performed along the right edge. If the ratio N / M 
is kept constant and take the limit where N → ∞, then the resistor network model 

output is the galvanomagnetic properties of the material [8]. The magneto 

resistance is defined as follows: 

( ) (0)

(0)

R R H R

R R

 
              (5) 

 

3. RESULTS AND DISCUSSION 

In this paper, N × 2 networks are investigated in which the left terminals are 

grounded and the right terminals are connected to the 1U   V as shown in Fig. 

2.  

 
Fig.2: N × 2 resistor network. 
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A. Columnar Inhomogeneity 
First, it was assumed that the resistivity of the first column is ρ1 and it is ρ2 for the 

second one (r=ρ1/ρ2, r is the resistivity ratio). Fig. 3 shows the computational 

results of Normalize Magneto resistance Variation (NMV) as a function of 
dimensionless magnetic field for N × 2 network with N= 9, 10, 19, 20, 49 and 50, 

and r=0.5 (Fig. 3(a)), r=1 (Fig. 3(b)), r=2 (Fig. 3(c)) and r=5 (Fig. 3(d)).  

As shown in Fig. 3(a), it is indicated that by increasing the number of rows, the 

magneto resistance increases, and as the number of odd rows increases, the 
magneto resistance in the higher magnetic field becomes saturated. For r=1 (Fig. 

3(b)), increasing the number of rows in the network, is caused the magneto 

resistance is increased. Fig. 3(c) and (d) illustrates that the magneto resistance has 
increased and the differences in magneto resistance between odd-N and even-N 

networks diminish as resistivity ratio increases with increasing the number of 

even and odd rows. The general trend of magneto resistance for even-N networks, 
is non-saturating but for odd-N networks is saturating. This behavior is similar to 

one-dimensional networks N × 1 [7, 8, 23]. In networks consisting of low 

numbers of atoms, there are a lot of differences in the magneto resistance between 

even and odd atoms, however these differences diminish as the number of atoms 
increases [8] simultaneously, and the magneto resistance of the network increase. 

By comparing these figures, it is concluded that by increasing the resistivity ratio, 

the magneto resistance is increased. There is asymmetry in this system, so that by 
increasing resistivity of the grounded column, the magneto resistance is raised.  

Fig. 4 shows the magneto resistance variations as a function of the resistivity 

ratio at B=300, for the odd-N networks (Fig. 4(a)) and even- N networks (Fig. 

4(b)). 
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Fig.3: Magneto resistance of the N × 2 network as a function of the magnetic field for the 

resistivity ratio (a) 0.5 (b) 1 (c) 2 (d) 5. 

 
Fig.4: The magneto resistance variations as a function of the resistivity ratio r at B=300 

(a) odd-N networks (b) even-N networks. 

For the odd-N networks, by increasing the resistivity ratio, the magneto 

resistance of the network has been significantly enlarged. Also, in this network it 

can be seen that by increasing N, magneto resistance is augmented. Moreover, 
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shown in Fig. 4(b), the magneto resistance variations are non-saturated, and in 

the high resistivity ratio, the magneto resistance will reduce as N increases.  

In Fig. 5 the magnetoresistance variations as a function of N for even (Fig. 5(a)) 

and odd (Fig. 5(b)) network in B=300 and different resistivity ratios is depicted. 

  

 
Fig.5: The magneto resistance variations in B=300 and different resistivity ratio as a 

function of the number of network rows (a) the number of even rows (b) the number of 

odd rows. 

In Fig. 5(a) it is obvious that, for a resistivity ratio less than 1, the magneto 
resistance is maximum for two disks and decreases slowly with increasing the 

number of disks. For the resistivity ratios equal or larger than 1, the magneto 

resistance is minimum for two disks and is maximized in the number of four 

disks, and then decreases slightly so that it approaches a constant value. As shown 
in Fig. 5(b), by increasing the number of disks for and resistivity ratio for odd 

network the magneto resistance increases.  
As one of important results, Fig. 6 exhibits the bottom voltage of the disks (Fig. 

6(a)) and, the vertical current (Fig. 6(b)) between the adjacent disks n and n + 1 

indices, for N × 2 network with N=49, 50 and different resistivity ratio, in B= 300 

and U=-1V. As shown in Fig. 6(a), the voltage variations of the first and second 

columns are oscillating and their amplitudes are increasing as the near-bottom 

atoms (larger n) are approached. In homogeneous system (r=1) the voltage 

fluctuation amplitude of the first column is greater than the second one. But, for 

r= 0.5, the voltage fluctuation amplitude of the second column is greater than the 

first one. For r=2 the voltage fluctuation amplitude of the first column is 

significantly greater than the second column. Fig. 6(b) reveals the fluctuating 

behavior of vertical current in both columns. Furthermore, the current fluctuation 

amplitude is maximum, while the system is homogeneous.  
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Fig.6: (a) The bottom voltage of disks (b) Vertical current between disks with resistivity 

ratio r=1, 0.5 and 2 for N × 2 networks with N = 49, 50 and for B= 300. 

B. Zigzag Inhomogeneity  

For zigzag inhomogeneity that is proposed, it is assumed that the resistivity of the 

disks with even sum is ρ1 and odd sum is ρ2 (r=ρ1/ρ2). Fig. 7 shows the normalize 
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magneto resistance variations as a function of magnetic field for a network with 
N= 49 (Fig. 7(a)) and N=50 (Fig. 7(b)). Fig. 7(a) depicts that, for the resistivity 

ratio of 0.5, 1 and 5, by increasing magnetic field, the magneto resistance is 

raised, and for higher fields, the magneto resistance becomes saturated. For 
resistivity ratio of 0.2, the NMV is negative and its magnitude is increased by 

increasing the magnetic field. Fig. 7(b) indicates for the resistivity ratio 1 and less 

than 1, the NMV are non-saturated. By increasing the resistivity ratio, the NMV 

is grown, so when the system is homogeneous, the minimum NMV is observed. 
It is noticed, for a resistivity ratio of 5, the NMV is diverged in the field about 

110.  The divergent of NMV due to extreme variation of resistivity versus 

magnetic field could be applied as high precision magnetic sensors.   
 

 
Fig. 7: The magneto resistance variation for N × 2 network (a) N=49 and (b) N=50 (the 

sum even arrays has a resistivity r=1 and the sum odd arrays has different resistivity r= 

0.2, 1, 2 and 5). 

The NMV as a function of the different resistivity ratio for B=300, for N=10, 
20 and 50 are shown in Fig. 8. This figure shows that by increasing 

inhomogeneity, the NMV increases. It is also seen that for each number of rows, 

there is a certain resistivity ratio at which point the magneto resistance diverges. 
This resistivity ratio is increased by growing the network sizes. This figure also 

indicates that for smaller networks, the peaks are sharper.  
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Fig.8: The magneto resistance variation as a function of the different resistivity ratio to 

B=300, for the network with even N  

The bottom-point voltages of the disks and the vertical current between the 
adjacent disks indices n and n + 1, for a network with N=50 with different 

resistivity ratios is shown in Fig. 9. It is worth mentioning that for the resistivity 

ratios of 1, 0.2, 0.5, the curves are plotted for magnetic field 300 and for the 

resistivity ratio of 5 that has NMV peak, the curves are plotted for magnetic field 
130.  In Fig. 9a, the oscillation of voltage variations of the first and second 

columns, for the all resistivity ratios were illustrated. It also shows that, when we 

get closer to the bottom of the network (larger n), the voltage oscillation 
amplitudes are increased (except for ratio of 0.2). Also it is observed that, as the 

magneto resistance increases, the voltage amplitude of the second column 

increases so that for r=5, the voltage amplitude of the second column is 
considerably higher than the voltage amplitude of the first column.  

Fig 9(b) shows that by increasing the resistivity ratio, the amplitude of the 

current variations of the second column with respect to the first column is 

improved, but for r=5, there is a significant difference in the amplitude of the 

current variations of two-column. 



The Investigation of Giant Magneto Resistance in an Inhomogeneous Ladder Lattice   * 49 

 

 

 
Fig.9: (a) the bottom voltage of the disks and (b) the vertical currents between the disks 

for a network with N=50, B=300 (for a resistivity ratio of 5, the magnetic field is 130).  
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4. CONCLUSION 

  In this paper, the magneto resistance of an inhomogeneous conductor can be 

calculated numerically using a resistor network model consist of four-terminals. 
As it is seemed, in a 2 × N network for even- N networks, the magneto resistance 

is non-saturated, whereas for odd- N networks, the magneto resistance will be 

saturated. In columnar inhomogeneity the higher value of resistivity of the 

material that is attached to the constant voltage, the greater the magnetic 
resistance. For a network with odd-N, by increasing resistivity ratios, the magneto 

resistance is saturated in lower fields. In zigzag inhomogeneity the higher the 

resistivity ratio of the disks, the greater the NMV. In this case, the system with 
most inhomogeneity has the minimum NMV. It is also seen that the magneto 

resistance is divergent for networks with different sizes at specific resistivity ratio 

and magnetic field. Generally, the increase or decrease of NMV value as a 
function of the dimensionless magnetic field, as well as the voltages variations 

and the vertical currents between the disks, depends on the resistivity ratio and 

the arrangement of the two materials. 
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