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Abstract: The natural frequency and pull-in instability of clamped-clamped nano-

actuators in the presence of a dielectric layer are analyzed. The influence of the presence 

of Casimir force, electrostatic force, fringing field effect, axial force, stretching effects 
and the size effect are taken into account. The governing equation of the dynamic 

response of the actuator is transformed in a non-dimensional form. The Galerkin 

decomposition method is employed to decompose the equations in time and space. Then, 

the obtained decomposed governing equations are solved numerically. The results show 

that the presence of the size effect and the axial force increases the natural frequency of 

the system. It is found that there is a unique value of the dielectric layer, in which the 

pull-in deflections of the nano-actuators are independent of the Casimir force, size effect 

and the axial loads. The advantage of this dielectric layer can be utilized in the design of 

nano-actuators and nano-sensors in the nanoscale. 
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1. Introduction 
 

A typical clamped-clamped nano-actuator is constructed using a moveable 
suspended conductive electrode over a substrate. Applying voltage difference 

between the electrode and the substrate induces an electro-static field, which 

attracts the moveable electrode into the substrate [1]. The system comprising of 
the electrode and the substrate can be seen as a capacitor, in which the capacity 

of the capacitor is a function of the deflection of the electrode. Hence, the 

deflection of the suspended electrode can be detected using electronic devices 
[2]. 

It is demonstrated that the nano-electro mechanical systems (NEMS) are good 

potential candidates to overcome many of the speed and sensitivity limitations of 

the conventional Micro-Electro-Mechanical Systems (MEMS) because of their 
very small size and tiny mass [3]. The NEMS devices and actuators have been 

utilized as nano-antennas and nano-switches [4], mass detection sensors [5, 6], 

hydrogen detection sensors [7], and nano-switches [8].  
The experimental measurements show that when the structures are of the order 

of microns or sub-microns, the material properties exhibit the size-dependent 

effect in the torsion and bending tests of structures [9-11]. It is clear that the 
classical continuum theories are not capable of describing such size-dependent 

behaviors in small-scale elements. Thus, recently, several non-classical 

continuum theories, containing additional parameters for the material length 

scale, have been developed to capture the size effects [12].  
Another issue, which is important in the nanoscale electro-mechanical 

systems, is the inter-molecular forces. As the size of a structure reduces to the 

dimension of a few nanometers, the inter-molecular forces become important, 
and they induce significant effects on the deflection and pull-in instability of the 

structures [13-15]. When the separation space between the electrode and the 

substrate is about 20 nm, retardation appears. In this case, the force between the 

nano-electrode and the substrate can be described by the Casimir force [16, 17]. 
In an ideal case, this force is proportional to the inverse fourth power of the 

separation [13, 18]. The Casimir force is usually negligible in micro-actuators, 

but is important in the design and operation of nano-actuators [14, 19]. The 
presence of an axial load [1, 20] is important in the fabrication and design of 

actuators. The axial loads are the results of the residual stress, because of the 

inconsistency of the properties of the nano-electrode. These axial loads are a 
crucial issue that should be accurately taken into account [21]. The presence of a 

dielectric layer can also significantly affect the behavior of a nano-actuator [16]. 

In a very recent study, Yazdanpanahi et al. [16] examined the static pull-in 

instability of nano-actuators in the presence of a layer of liquid dielectric over the 
substrate. They considered the effect of Casimir force on the behavior of the 

nano-actuator and found a unique value of the dielectric parameter, in which the 
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pull-in deflection of the nano-actuator is independent of the Casimir force. The 

presence of this unique dielectric layer reduces the nonlinearity of the nano-
actuators and facilities design and application of these nano-electro-mechanical 

systems as sensors or other potential nano-scale devices. In the study of 

Yazdanpanahi et al. [16], the size effects and the axial loads were neglected. 
However, the literature review indicates that these effects are very important in 

the application and behavior of nano-actuators. In addition, to the best of authors’ 

knowledge, the effect of the presence of a dielectric layer on the natural frequency 

and the dynamic behavior of the actuator has not yet been addressed.  
The present study aims to analyze the dynamic pull-in instability and natural 

frequency of nano-actuators in the presence of a dielectric layer, Casimir effects, 

electrostatic forces, axial loads and considering the size effects. The presence of 
a unique dielectric layer, in which the pull-in deflections of the nano-actuators 

are independent of the axial loads, the Casimir forces and the size effects, is 

examined.  

2. Mathematical model 

A. The modified couple stress theory 

The small-size effects are taken into account using the modified couple stress 

theory proposed by Yang et al. [22]. Based on the modified couple stress theory, 
the strain energy Ub in an isotropic linear elastic material is evaluated as [23]:  
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Where Y(x) is the displacement of the nanoelectrode; NXY and MX represent 

the couple moment and the resultant moment, respectively. For a beam type 
nanoelectrode NXY and MX are introduced as: 
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A

N dA   
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A

M ZdA   
(3) 

Where A is the cross section area of the nanoelectrode. The ζ XY and σXX are 

defined as: 
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Where lc is the material length scale parameter of the nanoelectrode. E denotes 
the Young’s modulus, and µ denotes the second Lame’s constant (or the shear 
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modulus). Therefore, using Eqs. (4) and (5), the couple moment and the resultant 

moment, i.e. Eqs (2) and (3), are evaluated as: 
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Where I denotes the moment of inertia of the nanoelectrode cross section, and E′ 

is the effective Young’s modulus material of the nanoelectrode. The effective 

Young’s modulus is (E′=E) for narrow beams (b<5h), and it becomes the plate 
modulus (E′=E/(1-υ2)) for wide beams (b>5h) where υ is the Poisson ratio.  

 

B. Modeling of the nano-actuator 

Consider a conductive nanoelectrode with a length l and a rectangular cross 
section A, which is suspended over a substrate. This type of actuators was 

fabricated by Hayamizu et al. [24] and analyzed in the work of Yazdanpanahi et 

al. [16]. The width of the nano-actuator is b, and its thickness is h. There is a layer 

of a dielectric over the substrate with a thickness hD and a permeability εD. The 
initial separation space between the nanoelectrode and the dielectric is g0. There 

is an external voltage difference V between the electrode and substrate, in which 

the voltage of the substrate is –V/2 and the voltage of the electrode is +V/2. The 
schematic view of the nano-actuator, geometric details and the coordinate system 

are shown in Fig. 1.  

 
Fig. 1: The schematic view of the clamped-clamped nano-actuator 
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The strain energy of the nano-actuator is evaluated by substituting the 

relations of the couple moment (Eq. (6)) and the resultant moment (Eq. (7)) into 
the strain energy equation (Eq. (1)) as: 
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The work done by a transverse external force, FEx, per unit length of the 
nanoelectrode is evaluated as [25]: 

 
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l

Ex Ex
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The work due to the stretching and residual forces, Ua, in the nanoelectrode is 

evaluated as: 
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Where N̂ denotes the residual forces and Ta is the additional axial force due to 

the mid-plane stretching. The axial force because of the mid-plane stretching, Ta, 
can be evaluated as: 
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The total energy of the system is Π=Ub-Us-Wex+Ke where Ke is the 
kinematic energy of the nanoelectrode. Using the principle of the energy method, 

δΠ=δUb-δUs-δWex+δKe, the governing equation of the deflection for the nano-

actuator is obtained as: 
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(12) 

Where FEx is the sum of the Casimir force (Fc), electrostatic force (Fe) and the 

fringing field effect (Fr). The Casimir force per unit length of the beam, fc, can 

be evaluated as [26]: 
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where h=1.055×10-34 Js is the reduced Planck's constant, and c is the light speed 
in vacuum such as c= 2.998×108 m/s. It should be noticed that Eq. (13) is valid 

for nano-actuators with widths (b) that are sufficiently higher than the separation 

space (g0). This assumption is valid for most of nano-actuators since, in most 

cases, the width of the electrode is much larger than the separation space [13, 27].   
The electro-static force is the results of an applied external voltage between 

the substrate and the nanoelectrode. The electro-static force is the sum of the 

electro-static field and the fringing field effects, fe+fr. The electro-static force per 



14 * Quarterly Journal of Optoelectronical Nanostructures Summer 2016 / Vol. 1, No. 2 

length of the beam can be evaluated using Maxwell's equations. Considering the 

first-order fringing field effects, the electro-static force is evaluated as [16]: 
2 2
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Where 
0
  is the permeability of the vacuum (

0
 =8.854×10-12 c2/Nm2). 

D
  is 

the permeability of the dielectric layer and 
D

h  is the thickness of the dielectric 

layer. The boundary conditions for a clamped-clamped nanoelectrode are written 

as: 

 
 

 
 0, ,

0, 0, , 0
Y t Y l t

Y t Y l t
X X

 
   

 
                   (15) 

By using the following non-dimensional parameters: 
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The non-dimensional governing equation for the nano-actuator is obtained as: 
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The non-dimensional boundary conditions are also as follow: 

 
 

 
 0, 1,

0, 0, 1, 0
y y

y y
x x

 
 

 
   

 
          (18) 

 

3. Solution Method 

The Galerkin decomposition method is employed herein to approximate Eq. 
(17) by a reduced-order model composed of the first discrete modal equation. The 

robustness of this method for dynamic analysis of actuators has been 

demonstrated in the study of Batra et al. [28]. The process starts by separating the 

dependences of the deflection of the deformed nanoelectrode using y(x, 
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τ)=ξ(τ)ϕ(x) where ξ(τ) captures the temporal dependence of the beam deflection 

and ϕ(x) is the first Eigen mode of the clamped-clamped beam satisfying the 
boundary conditions. ϕ(x) can be expressed by a polynomial as [29, 30]: 

   
2216 1x x x  
                                                        

Substituting y(x, τ)=ξ(τ)ϕ(x) in Eq. (17) results in  
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Applying the Bubnov–Galerkin method gets 
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Eq. (21) is rewritten in a more convenient form as: 
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Following the work of Batra et al. [28], the pull-in parameters are determined 

by discarding the inertia term in Eq. (23), i.e. , and by requiring that the pull-in 

deflection should satisfy the resulting equation as: 
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The pull-in deflection should also satisfy the nonlinear equation arising 

from differentiating both sides of Eq. (26) with respect to ξ [28, 31] as: 
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Eqs. (26) and (27) can be solved simultaneously for any given set of prescribed 
non-dimensional parameters and an unknown non-dimensional parameter to 

obtain the corresponding value of ξPI. Then using the deduced ξPI, the pull-in 

value of the unknown parameter can be achieved. For example, assume a given 
set of the non-dimensional parameters of δ, η, αc, γ and κ and an unknown non-

dimensional parameter of β. Solving Eqs. (26) and (27) for ξPI results in: 
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Subtracting Eq. (30) from Eq. (29), 
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It is worth noticing that the functions f and f were defined in Eqs. (25) and (28), 

respectively. As seen, the functions f and f are in an integral form as a function 
of ξ. Thus, Eq. (31) should be solved numerically for the pull-in value of ξPI. 

Later, the deduced value of ξPI can be substituted into Eq. (29) to evaluate the 

pull-in electro-static parameter (βPI) as: 
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In order to evaluate the oscillation frequency of the nano-actuator after 

deflection, Eq (26) should be solved for the basic deflection of the beam ( ). 

Then, assuming    , the governing equation (23) is rewritten as [28, 31]: 
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2 1 2

1 2 3                             c

a e e

f f f

    

        

     

    

                    (33) 

where retaining only the linear terms in   gives: 

           

2

2 1 1 2 2

1 1 2 2 3 3

3

   c c

a e e e e

f f f f f f

     

              

       

       
   (34)                                                                         

Since  is the solution of Eq. (27), the above equation is simplified as: 

     2

2 1 2 1 2 33 ca e e f f f                      
   (35) 

Now, a harmonic solution of 0

ie      is assumed where 1i    and ω is 

the oscillation frequency. Substituting 0

ie      into Eq. (35) yields: 

     

2 2

2 0 1 0 2 0

0 1 0 2 0 3

3

                  

i i i

i i i

c

a e e e e e

e f e f e f

  

  

    

        

      

    
         (36) 

Dividing both sides of Eq. (36) by 0

ie   gives: 

     2 2

2 1 2 1 2 33 ca e e f f f            
                    (37) 

and solving for the angular frequency of ω results: 
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 
     2

1 2 1 2 3

2

3
c

e e f f f

a

      
 

   
                               (38) 

Therefore, the fundamental frequency of the nano-actuator can be obtained using 

Eq. (38) for any prescribed set of non-dimensional parameters. When the non-

dimensional parameters of the nano-actuator tends to the pull-in parameters, the 

frequency of the nano-actuator, ω(τ), suddenly drops and tends to zero. This 
effect is noticed in the work of [20] in the study of micro-beams. Therefore, it 

can be concluded that, at the onset of the pull-in instability, the fundamental 

frequency of the actuator is zero.  

4. Validation 

By neglecting the size effect, the dielectric layer and the Casimir forces (i.e. 
δ=0, αc=0, κ=0), the present study reduces to the analysis of a micro-actuator. In 

this case, Tilmans and Legtenberg [32] experimentally analyzed the vibration of 

micro-actuators with different lengths. The properties of the proposed micro-

beams are shown in Table 1. A comparison between the results of the present 
study and the experimental results reported by Tilmans and Legtenberg [32] as 

well as the theoretical results reported by Abdel-Rahman et al. [20] is performed 

in Fig. 2. Fig. 2 shows the normalized natural frequency of the actuators (ω/ω0) 
as a function of the electro-static parameter for two actuators with the lengths of 

210 μm and 510 ηm; where ω0 is the fundamental frequency of the actuator 

without any applied voltage.   
The pull-in voltage of the micro-actuators, proposed in Table 1, are evaluated 

using the present method and the results are compared with the experimental 

results reported by Tilmans and Legtenberg [32] as well as the analytical results 

reported by Kuang and Chen [33] in Table 2. The fundamental frequency is 
obtained from the solution of Eq. (38). The pull-in voltages are calculated from 

Eqs. (31) and (32). The integral terms, i.e. f and f , are calculated numerically 
using the Gaussian quadrature integral method with the relative error of 10-12. 

The roots of the functions are calculated using the Newton method with the 

relative error of 10-12. 
Yazdanpanahi et al. [16] examined the static deflection and pull-in instability 

of nano-actuators in the presence of a dielectric layer. Therefore, neglecting the 

axial load and size effects (δ=0 and N=0), the evaluated maximum deflection of 
the nano-actuator is compared with the results reported by Yazdanpanahi et al. 

[16]. Considering, β=5, γ=0.065, α=0.96, αc=20 and κ=-0.396, the maximum 

static deflection of the actuator is evaluated as ξ=0.1354 in the study of 
Yazdanpanahi et al. [16]. In the present study and assuming (δ=0 and N=0), the 

maximum deflection is obtained as ξ=0.1341, which shows good agreement with 

the static deflection of the nano-actuator reported by Yazdanpanahi et al. In this 
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case, the analysis of the dynamic response of the system shows that the non-

dimensional natural frequency of the nano-actuator, ω(τ), is 18.5. 

 
Fig. 2. A comparison between the natural frequencies of the actuators (proposed in Table 1) 

with lengths of 210μm and 510μm. 

5. Results and Discussion 

A. Free vibration 

In this section, the effect of the non-dimensional parameters on the deflection 

and the fundamental frequency of nano-actuators is analyzed. The results of this 

section are obtained from the numerical solution of Eqs. (27) and (38). 
Figs. 3 and 4 show the influence of the dielectric parameter (κ) and the size 

effect parameter (δ) on the deflection and the natural frequency of the nano-

actuator, respectively. The presence of the size effect, because of the nano-size 
of the actuator, tends to harden the actuator. Hence, as seen in Fig. 3, the presence 

of the size effect reduces the maximum deflection (u(τ)) of the nano-actuator. Fig. 

3 shows that an increase in the magnitude of the dielectric parameter increases 

the maximum deflection of the nano-actuator. Indeed, the presence of the 
dielectric layer magnifies the strength of the electro-static force and results in 

higher deflections of the actuator. The effect of variation of the size effect 

parameter is more significant in the case of high magnitudes of the dielectric 
parameter. Fig. 4 shows that the presence of the dielectric layer decreases the 

natural frequency of the actuator. In contrast, the presence of the size effect 

increases the natural frequency of the nano-actuator. In the case of high 
magnitudes of the dielectric parameter, the natural frequency of the nano-actuator 

drops rapidly.  
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Fig. 3. The maximum deflection of the nano-actuator as a function of the dielectric parameter 
(κ) for selected values of the size effect parameter (δ). 

 

Fig. 4.  The natural frequency of the nano-actuator as a function of dielectric parameter (κ) for 
selected values of the size effect parameter (δ). 
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Figs. 5 and 6 show the maximum deflection and the natural frequency of the 

nano-actuators, respectively, as a function of the dielectric layer parameter for 
selected values of the axial load parameter. These figures show that the presence 

of the axial load decreases the maximum deflection of the nano-actuator, but it 

increases the natural frequency of the actuator. The presence of the initial tensile 
in the actuator induces the hardening effects. The results of these figures which 

are in agreement with the results of Figs. 3 and 4 indicate that the increase of the 

magnitude of the dielectric parameter raises the maximum deflection of the nano-

actuator and reduces its natural frequency. Abdel-Rahman et al. [20] studied the 
dynamic vibration of micro-actuators subject to electro-static forces and found 

that the electro-static force provides a softening effect on the overall mechanical 

stiffness, while the membrane stretching introduces strain hardening. The results 
of present study are in good agreement with the results of Abdel-Rahman et al. 

[20]. 

 

Fig. 5. Maximum deflection of the nano-actuator (u(τ)) as a function of the dielectric 
parameter (κ) for selected values of the axial load parameter (N). 
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Fig. 6. Natural frequency of the nano-actuator (ω(τ)) as a function of the dielectric parameter 

(κ) for selected values of the axial load parameter (N). 

B. Pull-in stability analysis 

The results of this section are obtained from the numerical solution of Eqs. 

(31) and (32). The pull-in deflection and the pull-in electrostatic parameter as a 
function of the pull-in dielectric parameter are plotted in Figs. 7 and 8, 

respectively for selected values of the size effect parameter. Fig. 7 shows that as 

the magnitude of the dielectric parameter (|κ|) increases, the pull-in deflection 
decreases. This observation is in contrast with the trends of the results of Fig. 3. 

Indeed, the increase of the magnitude of the dielectric parameter magnifies the 

effect of the electro-static force and hence, increases the deflection of the nano-
actuator. However, at the onset of the pull-in instability, the pull-in occurs with 

larger gap sizes because of the larger electro-static forces. In other word, when 

the presence of a dielectric layer magnifies the electro-static force, the applied 

force gets enough strength to induce the pull-in instability merely after a small 
deflection of the nano-actuator. Thus, the pull-in deflection in the presence of a 

dielectric layer is lower than that of the regular nano-actuators without a dielectric 

layer (i.e. κ=0).   
Fig. 8 depicts that an increase in the magnitude of the dielectric parameter, 

significantly decreases the magnitude of the pull-in electrostatic parameter (βPI). 

As the magnitude of the dielectric parameter increases, the influence of the size 
effect parameter on the variation of the pull-in electro-static parameter (βPI) 

reduces. The variation of the size effect parameter in Fig. 7 reveals that there is a 
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focal point in which the magnitude of the deflection of the nano-actuator is 

independent of the size effect. As seen, the magnitude of this dielectric parameter 
is -0.39. Here, this special dielectric parameter is denoted by κ*.  

 

Fig. 7. The pull-in deflection of the nano-actuators as a function of the pull-in dielectric 
parameter for selected values of the size effect parameter. 

 

Fig. 8. The pull-in electrostatic parameter (βPI) as a function of the pull-in dielectric 
parameter for selected values of the size effect parameter (δ). 
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Fig. 9 depicts the pull-in deflection of nano-actuators as a function of the 

dielectric parameter for selected values of the axial load parameter. Fig. 10 shows 
the corresponding pull-in voltages of Fig. 9. Fig. 9 shows that an increase in the 

magnitude of the dielectric parameter, decreases the pull-in deflection. The trend 

of the results of Fig. 9 are in full agreement with the trend of the results of Fig. 7 
in the present study as well as Fig. 8 in the study of Yazdanpanahi et al. [16].  Fig. 

10 shows that increasing the magnitude of the dielectric parameter, significantly 

reduces the pull-in electrostatic parameter. In contrast, increasing the axial load, 

increases the pull-in electrostatic parameter. However, the influence of the axial 
load parameter on the pull-in electro-static parameter reduces as the dielectric 

parameter gets stronger. Fig. 9 indicates a focal point for the axial load parameter 

(N). This focal point shows that there is a magnitude for the dielectric parameter 
in which the variation of the axial load does not affect the pull-in deflection of 

the nano-actuator. In this figure, the corresponding non-dimensional dielectric 

parameter (κ*) is -0.39.  

 

Fig. 9. The pull-in deflection of the nano-actuators as a function of the pull-in dielectric 
parameter for selected values of the axial load parameter (N). 
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Fig. 10. The pull-in electrostatic parameter (βPI) as a function of the pull-in dielectric 
parameter for selected values of the axial load parameter (N). 

 

Fig. 11 presents the pull-in deflection of the nano-actuator as a function of the 
dielectric parameter for selected values of the Casimir parameter. Fig. 12 displays 

the corresponding pull-in electro-static parameters of Fig. 11. These figures are 

in agreement with Figs. 7-10 as they depict that an increase in the magnitude of 
the dielectric parameter, decreases the pull-in deflection (ξPI) as well as the 

electrostatic pull-in parameter (βPI). Fig. 12 shows that the presence of the 

Casimir effect reduces the pull-in values of the electrostatic parameter (βPI). Fig. 

11 indicates that there is a focal point for the pull-in deflection of the nano-
actuator, in which the variations of the Casimir parameter do not affect the pull-

in deflection of the actuator. The corresponding dielectric parameter for this focal 

point (κ*) is - 0.395. This magnitude for the dielectric parameter is almost the 
same as that of Figs. 7 and 9. Therefore, designing a nano-actuator with a 

dielectric parameter of κ*≈-0.39 results in a nano-actuator, in which its pull-in 

instability deflection is not sensitive to the size effect, axial loads or the Casimir 
forces.  
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Fig. 11. The pull-in deflection of the nano-actuators as a function of pull-in dielectric 

parameter for selected values of the Casimir parameter (αc). 

 

Fig. 12. The pull-in electrostatic parameter (βPI) as a function of the pull-in dielectric 

parameter for selected values of the Casimir parameter (αc). 
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Such a focal point, which eliminates the non-linear effects of the Casimir 

force, size effect and the axial loads, is crucial in the design of nano-actuator 
sensors. This observed focal point facilities the design of nano-actuators and 

nanosensors in nano-scale sizes. 

6. Conclusion 

The dynamic oscillation, deflection and pull-in instability of the clamped-

clamped nano-actuators in the presence of a dielectric layer, Casimir force effect, 

size effect, electro-static forces and axial loads are analyzed. The results are 
compared with the experimental and theoretical results available in literature and 

are found in good agreement. The results of the present study can be summarized 

as follows: 
1- The presence of the size effect and the axial loads decreases the deflection 

of the nano-actuator, but the presence of these effects increases the natural 

frequency of the system. 

2- The presence of a dielectric layer significantly increases the deflection of 

the nano-actuator and decreases its natural frequency. 

3- The presence of the size effect, axial loads and the dielectric layer raises 

the pull-in voltage of the system. In contrast, the presence of the Casimir force 

effect reduces the pull-in voltage. 

4- There is a unique value for the dielectric layer parameter (κ*) in which the 

pull-in deflections of the nano-actuators are independent of the variation of the 
size effect, the Casimir force effect and the axial forces.  

5- The value of κ* is obtained to be about -0.39 in the present study 

As mentioned, the system of the nano-electrode and the substrate constructs a 

capacity. Indeed, a nano-actuator in the presence of an electro-static force is a 

nano-capacitor. The deflection of this nano-capacitor changes the capacity of the 
system, which later can be detected by electronic devices. Hence, the obtained 

value for the dielectric parameter in which the deflection of the nano-actuator is 

independent of the fabrication process (the initial tensile which leads to axial 
loads) and the nano-size effects (the Casimir force and the size effect) can be 

facilitated in the design of nano-actuators and nano-sensors. The future studies 

can be focused on the fabrication methods of these new types of nano-actuators 
and experimental validation of the evaluated value of the obtained dielectric 

parameter. 
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