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Abstract: In this paper, we investigated the corrected plasmon dispersion relation for 

graphene in presence of a constant magnetic field which it includes a quantum term 

arising from the collective electron density wave interference effects. By using quantum 

hydrodynamic plasma model which incorporates the important quantum statistical 

pressure and electron diffraction force, the longitudinal plasmons are the electrostatic 

collective excitations of the solid electron gas. It shows the importance of quantum term 

from the collective electron density wave interference effects. By plotting the dispersion 

relation derived, it has been found that dispersion relation of surface modes depends 

significantly on Bohm’s potential and statistical terms and it should be taken into 

account in the case of magnetized or unmagnetized plasma; we have noticed successful 

description of the quantum hydrodynamic model. So, the quantum corrected 

hydrodynamic model can effectively describe the Plasmon dispersion spectrum in 

degenerate plasmas, since it takes into account the full picture of collective electron-

wave interference via the quantum Bohm’s potential. By plotting the dispersion relation, 

the behavior of different wave types was predicted. It was found that one of them should 

not be propagated to the specific wave number. By drawing of contour curve of these 

modes, the areas that modes can be propagated were obtained. 
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1. Introduction 

One of the new materials in nano-structure emergence in recent few years is 

Graphene. Graphene has become one of the most amazing and technologically 

appealing fields of scientific research which has captured enormous amount of 

attention among researchers of diverse fields [1]. Actually, Graphene is an 

allotropes of carbon that is structurally as a single layer of carbon atoms 

connected in a honeycomb lattice in the form of a two-dimensional crystal 
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material. The electrodynamics properties of graphene are summarized in below, 

the structure of energy bands in graphene net changes in the spectrum is 

parabolic. Furthermore, the dynamic frequency dependent conductivity of 

graphene with strong nonlinear characteristics predicts its very promising 

applications in developments of future advanced terahertz source and detector 

technologies (terahertz gap technology) [2]. It has been found that graphene, 

usually considered as a gapless semiconductor, shows a profoundly different 

behavior from semiconductors, regarding the plasmon excitation resonances [3]. 

The quantum hydrodynamics (QHD) model, since the first developments 

several decades ago, has become one of the most convenient and useful 

methods in description of collective modes in quantum plasmas. Recent 

development of effective hydrodynamic models incorporating the electron 

recoil, spin magnetization, and relativistic effects has turned the hydrodynamics 

approach into a direct method of evaluation of the collective modes in wide 

variety of plasmas [4, 5]. 

The most important component of a QHD, which causes different dispersion 

effects in quantum plasma compared to that of a classical counterpart, is the 

degeneracy pressure. However, the second order effects, such as the quantum 

electron diffraction and spin magnetization effects, has been shown to lead to 

observable effects on ion acoustic and magneto-sonic wave propagations and 

instabilities in quantum plasmas. If the background ions form a monolayer 

planar honeycomb lattice, the degenerate electrons fill the conical band 

dispersion container, the so-called Dirac cones .Such Dirac cones are described 

by a linear energy dispersion relation as F FE k v  (with the characteristic 

Fermi energy of F F FE k v ), quite similar to that of the massless photon 

gas, except that the valence free electrons in graphene possess subluminal 

particle velocities [6]. 

 

2. Dispersion Relations 

Let’s consider a high-frequency wave which is propagated in the infinite and 

homogeneous plasma sheet which consists of quantum electron fluid doped in 

two-dimensional ion lattice. This sheet is located in  0z   and confined both 

sides by vacuum. The external and constant magnetic field 
0
ˆBB y  which is in 

plane is applied (in Figure 1).  
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Fig. 1. Schematic of a mono layered Graphene and an in plane magnetic field. 

 

Our closed hydrodynamic set of equations consists of the continuity, 

momentum and Poisson’s equations, written as: 
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Where, n  ,
2 D

P  and E are the number of electron density, electrostatic potential 

induced and pressure fluid quantum and the total electric field. In order to 

calculate the electron fluid pressure fermion quantum degenerate, for example, 

it is assumed that the plasma is in a state of complete degenerate. In two-

dimensional, Dirac pressure for the quantum fluid plasma is defined 
3/2
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Selecting changes of perturbed parameters like ( ) exp[ ( )]
x

z i k x t    , we 

can express the set of equations mentioned below, regarding the linear 

perturbation. By substituting relationships in equation (1) and with regard to 

linear disturbances can obtain the following equations. 
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Also the inducted electrostatic potential is defined as
0

/ (2 )
ind x

e n k    and 

0
2

F
k n are used [7]. The Eq. (4) and the z-component of the curl of the Eq. 

(4), one can derive a relation between v  and n : 
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By substituting 5 on 6 and 
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. We calculate the following equation. 
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To obtain equation (7), very slow nonlocal variations are neglected i.e. 
2 4 4 2 2 2
( / ) /

y y
k z z k


      . The following solution is proposed for the  

Eq. (7) 
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By definition of   

2 2

2
2 4

yF
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m m
      and using some algebraic mathematical, 

one would easy the set mentioned equations. 
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Where the definition of coefficients are like the following 
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Using the relation between E  and J  conductivity tensor as   can be written as 

follows. 
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(15) 

Using the Ampère's law can be written the dielectric tensor as follows. 
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(16) 

By calculating the determination of Eq. (18), one can drive the dispersion 

relation for propagation of electrostatic surface waves on the single-layer 

graphene. 
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Where,  

  2222224
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3. Discussion 

In this section, the numerical and analytical discussion is presented about the 

relationship dispersion i.e. Eq. (17). For two-dimensional single-layer graphene 

the numerical density of electrons can be between 
12 2

0
10n cm


  and 
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14 2

0
10n cm


 [8]. We have used for our calculation of the amount

13 2

0
10n cm


 . 

First, consider the case where there is no external field (i. e. 0
c

  ). Therefore, 

the equation (17) to be reduced the as following 
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By drawing the dispersion relation, one would find that there are two branches 

(lower and higher). Although both of them are starting from zero, by increasing 

the wave number they have different behavior. By increased gradually of the 

wave number /
y F

k k , lower-branch reaches a certain amount (cutoff 

frequency), in spite of the fact that the higher-branch increases. 

 

 
Fig. 2.  Schematic of a normalized dispersion relation /

F
   in terms of /

y F
k k  in the case of 

no magnetic field. 
 

Figure 3 illustrates the contour curves for higher- branches of quantum 

electrostatic wave, the areas in which for different values of the magnetic field 

and the wave number, wave can be stable or unstable. Stable regions are shown 

in blue color. 

Figure 3 clearly shows that the unstable area is very small. To stimulate and 

propagate lower-branch, one would choose the exact wave number and 

magnetic fields of the blue waves. 
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Fig. 3. Schematic of stable and unstable areas for different values of the magnetic field and the 

wave number for the lower branch 

 

4. Conclusion 

In summarize, quantum hydrodynamic model is an effective way to study the 

waves in various media. In this paper, it has tried to use the quantum 

hydrodynamic model for studying of propagation of the electrostatic surface 

wave in single layer graphene, in the presence of an external and uniform 

magnetic field. The direction of magnetic field was selected in plane of 

graphene sheet. Considering the set of the quantum hydrodynamic equations, 

for fluid Dirac, the dispersion relation was obtained. Numerical values were 

used to analyze the dispersion relation. By plotting the normalized dispersion 

relation, the behavior of two different wave types (i.e. the lower- and higher- 

branches) was predicted. 

It was found that the lower-branch should not be propagated to the specific 

wave number (cut-off frequency). By drawing of the contour curve of the 

higher-branches modes, the areas that modes can be propagated were obtained. 
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