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Abstract 

The blood supply chain (BSC) is a critical component of healthcare systems, where efficiency 

and reliability are paramount to ensuring timely and safe delivery of blood products to patients 

in need. Risk factors as the factors that directly affect the BSC could be considered permanently 

to ensure BSC’s productivity.  So, understanding and managing these risks is vital for ensuring 

a robust and resilient blood supply chain. This research employs the Fuzzy Cognitive Mapping 

(FCM) approach to identify key risk factors affecting the blood supply chain. The required data 

was gathered using pairwise comparison questionnaire from 10 experts of the regional office 

of the Blood Transfusion Organization in Tehran province and analysed using FCM Expert 

software. By mapping the complex interrelationships between various risks, the study reveals 

that "Delays in Allocation and Distribution," "Disruptions in Logistics Processes," and "Blood 

Shortages" are among the most influential factors, with significant implications for the overall 

performance of the supply chain. The analysis also highlights the importance of "Weak 

Collaboration" and "Insufficient Capacity," which exacerbate operational inefficiencies. The 

findings suggest that addressing these risks through enhanced collaboration, capacity building, 

and the integration of advanced technologies can substantially improve the resilience and 

effectiveness of blood supply chains. Furthermore, the study offers strategic recommendations 

and suggests avenues for future research, 
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1. Introduction 

The blood supply chain (BSC) plays a critical role in the healthcare system, ensuring that blood 

and blood products are available to meet the needs of patients across the country. However, the 

BSC faces several challenges that make its management particularly complex. These 

challenges include uncertain supply and demand, high service level requirements (Meneses et 

al., 2023). In addition to these challenges, the BSC must also address the perishability of blood 

products, which adds further complexity to supply chain management (Toude Bahambari and 

Soufi, 2021). Blood is a degradable product, and only a small fraction of donated blood is 

usable due to specific storage and processing requirements. For example, red blood cells have 

a shelf life of 35 to 42 days, platelets last only 5 to 7 days, and plasma can be stored for 1 to 3 

years under specific conditions (Pirabán et al., 2019; Kazemi et al., 2024). This perishability 

necessitates precise planning and coordination across multiple facilities to avoid shortages, 

wastage, and to ensure that blood is available at the right time and place (Beliën & Forcé, 

2012). Perishability of blood products enhances complexity to the supply chain (SC), making 

difficult the determination of optimal quantities of blood to be available for medical treatments 
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(e.g., cancer, anemia), organ transplants, surgeries (e.g., open-heart surgery), or emergencies 

(Kazemi et al., 2024). 

Given these complexities, efficient blood supply chain management is crucial. The BSC in Iran 

is a multi-facility and multi-product network that must comply with strict safety and public 

health directives. The blood supply chain is generally divided into 5 echelons: (1) blood 

collection, (2) blood testing, (2) blood processing, (4) blood storage, and (5) blood distribution. 

The process of receiving blood from donors is called blood collection. When blood is collected, 

should be tested to screen its viruses and diseases in terms of blood testing (. Next, in the 

processing phase, whole blood should be processed to separate its derivations such as red blood 

cells (RBC), plasma, and platelets. Once available for use, the blood derivations are allocated 

to inventories, typically at blood banks and hospitals, being ready to be distributed and used. 

The process of supplying the amount of blood required to satisfy the demand is examined 

during the distribution phase (Dillon et al., 2017; Pirabán et al., 2019).  

Managing the BSC encompasses the major challenge of balancing storage and wastage of the 

blood units. Given the perishable nature of this product, storing an excessive number of blood 

units could result in the wastage of this limited resource. On the other hand, having shortages 

may result in tragic outcomes since lives can be lost if no stock is available when it is needed 

(Dillon et al., 2017). The BSC must be both efficient and sustainable in these six processes to 

guarantee the availability of blood for medical treatments, encompassing everything from 

blood collection from donors to transfusion to patients (Osorio et al., 2018). 

The Iranian Blood Transfusion Organization (IBTO), established in 1974, has developed into 

a comprehensive system responsible for collecting, processing, and distributing blood and 

blood products nationwide. Iran's reliance on voluntary, non-remunerated blood donations is a 

key factor in ensuring the safety and reliability of its blood supply (WHO, 2017). However, the 

country faces significant challenges, including a high prevalence of traffic accidents, which 

placed Iran in the 7th rank among the ten most accident-prone countries between 1999 and 

2018, leading to increased blood demand for trauma and surgeries (Kazemi et al., 2024). 

Despite this, only about 5% of the population donates blood, which has resulted in shortages 

that complicate the management of blood supply and increase the risk of higher fatality rates 

(Rajendran & Ravindran, 2019).  

Besides the donations uncertainty, risks created from natural disasters, epidemic diseases such 

as COVID-19, increase this uncertainty. The majority of studies on BSC problems do not 

dedicate enough attention to these risks that disturb the decision-maker on the design, planning, 

and operations of a BSC (Samani and Hosseini-Motlagh, 2019). This paper addresses these gap 

in the literature by presenting fuzzy cognitive mapping (FCM) approach for analyzing the 

complex BSC systems with high interactions. Because of FCM’s capabilities for analyzing 

feedback structures, dealing with qualitative variables, considering direct and indirect 

relationships between variables, modelling systems where explicit knowledge is limited but 

expert (implicit) knowledge is available, and its simplicity and accuracy in comparison to other 

methods, this paper applied FCM to analyze the main risks that affect the blood supply network 

in Iran. 

The remainder of the paper is structured as follows: Section 2 reviews the recent literature on 

the blood supply chain, Section 3 outlines the research methodology and proposed framework, 

Section 4 presents the developed model and discusses its application in a real case study, and 

Section 5 concludes with recommendations for future research. 

 

2. Literature Review 

Blood supply chain studies began in the 1960s. Jacobs et al. (1996) presented a model in their 

research. In the field of location-allocation of facilities in the blood supply chain and relocation 

and network configuration and facilities (Beliën and Force, 2012). Wang and Ma (2015) 

https://www.sciencedirect.com/science/article/pii/S2772390922000014#b0445
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proposed an approach based on the age of blood units in which they compared the two modes 

of age and the amount of inventory in the blood bank of hospitals, due to decreasing inventory 

or increasing the age of blood units exchanged between hospitals when there is a shortage. 

Habibi-Kouchaksaraei et al. (2018) proposed a robust optimization model for designing a bi-

objective multi-period three echelons supply chain network of blood in a disaster. The proposed 

model determines the number and location of facilities and the best strategy to allocate them 

under three different scenarios, while the goals are to minimize costs and shortages of blood. 

Dutta and Nagurney (2019) proposed a multitiered competitive supply chain network model 

for the blood banking industry, that captures the economic interactions among three blood 

service organizations, the hospitals or medical centers, and the player groups. They modeled 

the behavior of each category and used the theory of variational inequalities to derive the 

equilibrium conditions for the entire supply chain. Hosseini Motlagh et al. (2019) developed a 

bi-objective MLP model to design the collection, production, and distribution network of blood 

under uncertain conditions and through a multi-period planning horizon. In a research, Liu and 

Song (2019) proposed a discrete-time MILP model to cope with the underlying uncertainty 

through a rolling horizon approach in order to optimally manage the blood supply chain system 

in disaster relief. Their model also takes into account blood characteristics and blood 

emergency supply constraints. 

Khalilpour Azari et al. (2020) developed an efficient model for a 6 echelon BSC which consists 

of donors, blood collection centers (permanent and temporary), regional blood centers, local 

blood centers, regional hospitals, and local hospitals. The solution aims to avoid the worst 

consequences of a disaster using a neural-learning process. Fallahi et al. (2021) formulated a 

closed-loop BSC that considers blood transportation equipment and the relevant quality 

features. Then, they used a differential evolution algorithm for solving the problem. Kenan and 

Diabat (2022) using two-stage stochastic programming formulated the BSC problem in 

disasters considering the uncertainty of both supply and demand. Solving the model with 

heuristic algorithms showed that bigger capacities of permanent collection facilities are favored 

over the mobility of temporary facilities. Suen et al. (2023) proposed a two-stage stochastic 

programming model to investigate the opportunity of incorporating frozen PLTs into the PLT 

supply chain. To investigate a more realistic situation when clear targets of blood shortage, 

wastage and substitution penalties are available, an extended goal programming model is built 

based on the proposed model. Aghsami et al. (2023) developed a mathematical model to 

minimize the total costs and maximize satisfaction of donors by waiting time reduction in a 

BSC system. They presented and solved a real-world case study using a new meta-heuristic 

algorithm to illustrate the model’s applicability. Hosseini-Motlagh et al. (2024) investigated 

the challenge of adapting collection planning to dynamic fluctuations in potential blood donors’ 

behavior by introducing an innovative updatable approach based on the rolling horizon 

planning approach. they present a robust optimization approach to mitigate uncertainty across 

various parameters such as donors' behavior, demand, transportation time, and operational cost. 

Given the impact of dynamic and diverse conditions. Ala et al. (2024) proposed a multi-

objective BSC network design problem that aims to reduce the cost of establishing fixed and 

temporary facilities, transferring blood products, and the amount of shortage. They used a 

robust possibilistic MILP method in order to deal with distribution and locational decisions.  

Table (1) summarized some of the studies on BSC where conducted in the last 5 years. 
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Table 1. Recent studies on BSC 

Reference Title 

Fanoodi et al. (2019) Reducing demand uncertainty in the platelet supply chain through artificial neural networks and ARIMA 

models 
Ghatreh Samani et al. (2019) A multilateral perspective towards blood network design in an uncertain environment methodology and 

implementation 

Gilani Larimi and Yaghoubi 
(2019) 

A robust mathematical model for platelet supply chain considering social announcements and blood 
extraction technologies 

Rajendran and Ravindran 

(2019) 

Inventory management of platelets along blood supply chain to minimize wastage and shortage 

Pritha and Nagurney (2019) MultitieRB supply chain network competition: Linking blood service organizations, hospitals, and payers 

Liu and Song (2019) Emergency Operations Scheduling for a Blood Supply Network in Disaster Reliefs 

Salehi et al. (2019) Developing a robust stochastic model for designing a blood supply chain network in a crisis: a possible 
earthquake in Tehran 

Hosseini-Motlagh et al. 

(2019) 

Robust and stable flexible blood supply chain network design under motivational initiatives 

Dehghani et al. (2019) Proactive transshipment in the blood supply chain: A stochastic programming approach 

Ezugwu et al. (2019) Mathematical model formulation and hybrid metaheuristic optimization approach for near-optimal blood 

assignment in a blood bank system 
Gilani Larimi et al. (2019) Itemized platelet supply chain with lateral transshipment under uncertainty evaluating inappropriate output 

in laboratories 

Samani (2019) An enhanced procedure for managing blood supply chain under disruptions and uncertainties 
Haghjoo et al. (2020) Reliable blood supply chain network design with facility disruption: A real-world application 

Wang and Chen (2020) A distributionally robust optimization for blood supply network considering disasters 

Ghorashi et al. (2020) Modeling and optimization of a reliable blood supply chain network in crisis considering blood 
compatibility using MOGWO 

Hamdan and Diabat (2020) Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation 

Khalilpour Azari et al. (2020) Designing an efcient blood supply chain network in crisis: neural learning, optimization and case study 
Nezamoddini et al. (2020) A risk-based optimization framework for integrated supply chains using genetic algorithm and artificial 

neural networks 

Fallahi et al. (2021) Designing a closed-loop blood supply chain network considering transportation flow and quality aspects 
Kenan and Diabat (2022) The supply chain of blood products in the wake of the COVID-19 pandemic: Appointment scheduling and 

other restrictions 

Torrado and Barbosa-Póvoa 
(2022) 

Towards an Optimized and Sustainable Blood Supply Chain Network under Uncertainty: A Literature 
Review 

Asadpour et al. (2022) An updated review on blood supply chain quantitative models: A disaster perspective 

Mansur et al. (2023) A mixed-integer linear programming model for sustainable blood supply chain problems with shelf-life 
time and multiple blood types 

Suen et al. (2023) A two-stage stochastic model for a multi-objective blood platelet supply chain network design problem 

incorporating frozen platelets 
Meneses et al. (2023) Modelling the Blood Supply Chain 

Aghsami et al. (2023) A meta-heuristic optimization for a novel mathematical model for minimizing costs and maximizing donor 
satisfaction in blood supply chains with finite capacity queueing systems 

Shih et al. (2023) A multiple criteria decision-making model for minimizing platelet shortage and outdating in blood supply 

chains under demand uncertainty 
Hosseini-Motlagh et al. 

(2024) 

Dynamic optimization of blood collection strategies from different potential donors using rolling horizon 

planning approach under uncertainty 

Entezari et al. (2024) A Bi-objective stochastic blood type supply chain configuration and optimization considering time-
dependent routing in post-disaster relief logistics 

Ala et al. (2024) Blood supply chain network design with lateral freight: A robust possibilistic optimization model 

Kazemi et al. (2024) Multi-objective Optimization of Blood Supply Network Using the Meta-Heuristic Algorithms 

  

 

Reviewing the literature, it did not find any research which considers risk analysis in blood 

supply chain with an analytical fuzzy approach.  

 

3. Research Method  

This study applied a systematic approach namely fuzzy cognitive mapping for analyzing the 

risk factors of blood supply chain in Iran. The required data to implement the real world 

problem, attained from experts of regional office of the Blood Transfusion Organization in 

Tehran province. 

FCM is chosen for its holistic way of analyzing the problem and the potential success factors 

affecting the system and developing improvement strategies. So, the initial step involves a 

thorough review of existing literature to identify key risk factors that impact the blood supply 

chain. This review focused on previous studies and reports, leading to the identification of 14 

primary risk factors. The aggregated expert opinions were then used to construct an adjacency 

https://www.sciencedirect.com/science/article/abs/pii/S0010482519302926#!
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matrix, reflecting the relationships between BSC risk factors. Finally, the FCM technique was 

employed to model the interactions between risk factors within the blood supply chain. This 

involved analyzing the influence, sensitivity, and prioritization of each risk factor using static 

analysis outputs. The FCM was visually represented as a graphical model, highlighting the 

interrelationships between factors. Dynamic behavior analysis was then conducted using 

activation functions, which allowed for the examination of the system's response to various 

scenarios. This step also demonstrated the FCM's capability to simulate changes in risk factors 

and assess their overall impact on BSC. Fig (1) illustrates the steps of risk factors’ evaluation 

in BSC.  

 

 
Fig 1. Research framework 

 

Fuzzy Cognitive Map (FCM) 

FCM first introduced by Kosco (1986), is a powerful method used to model and analyze 

complex systems with high levels of interaction between components. The reasoning process 

of fuzzy cognitive mapping is based on neuro-fuzzy system (Movahedi et al., 2022). Actually, 

FCM consists of a set of neural processing entities called concepts (neurons) and the causal 

relations among them. The activation value of such neurons regularly takes values in the [0, 1] 

interval, so the stronger the activation value of a neuron, the greater its impact on the network. 

Recent scientific papers on BSC 

Extracting 33 initial risk factor 

Conducting Delphi in 3 rounds 

Determination of 13 main factors 

Conducting FCM based on 10 experts’ judgments 

Ordering risk factors based on centrality index 

Start 

Literature Review 

Risk Factors Identification 

Delphi Technique 

Main Risks Determination 

Fuzzy Cognitive Mapping 

Ranking the BSC Risk  

Start 
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Also, connected weights are relevant in this scheme. The strength of the causal relation between 

two neurons Ci and Cj is quantified by a numerical weight wij ∈ [−1, 1]. 

There are three types of causal relationships between neural units in an FCM, being detailed as 

follows (Kharaghani et al. 2024; Tavakkol et al., 2023): 

 wij > 0 indicate a positive causality,  

 wij < 0 indicate a negative causality, 

 wij = 0 indicate no causality.  

Equation (1) formalizes Kosko’s activation rule, with A (0) as the initial value. A new 

activation vector is calculated at each step t and after a fixed number of iterations the FCM will 

be at one of the following states: (i) equilibrium point, (ii) limited cycle or (iii) chaotic behavior. 

The FCM is said to have converged if it reaches a fixed-point attractor, otherwise the updating 

process terminates after a maximum number of iterations T is reached. 
 

𝐴𝑖
(𝑡+1)

= 𝑓 ( ∑ 𝑤𝑗𝑖

𝑀

𝑗=1,𝑗≠𝑖

× 𝐴𝑗
(𝑡)

)   (1) 

 

Subsequently, the values Ai
t+1 and Ai

t, respectively, provide the value of the conceptual variable 

Ci at discrete times t+1 and t. In this case, Aj
t will be the value of the concept Cj in the t-th 

iteration of the simulation. 

In the equation (1), f (0) denotes a monotonically non-decreasing function to clamp the 

activation value of each concept to the allowed intervals [0, 1] or [-1, 1]. The functions most 

extensively used based on literature are depicted as Bivalent, Trivalent, Saturation, Hyperbolic 

and Sigmoid function. 

Stylios and Groumpos (2004) proposed a modified inference rule (Equation 2), where neurons 

also take into account its own past value. This rule is preferred when updating the activation 

value of independent neurons, i.e., neurons that are not influenced by any other neural 

processing entities.  
 

𝐴𝑖
(𝑡+1)

= 𝑓 ( ∑ 𝑤𝑗𝑖

𝑀

𝑗=1,𝑗≠𝑖

× 𝐴𝑗
(𝑡)

+ 𝐴𝑖
(𝑡)

)   (2) 

 

After analyzing the adjacency matrix, FCM is drawn. Subsequently, in the continuation of the 

modeling process, FCM implements the model and repeats the simulation based on the 

principles of the neural network method and using one of the common activation functions and 

continues the calculations until the system converges. As illustrated in equation 3, convergence 

occurs when the difference between the next two output values equals to or less than epsilon 

(ε=0.001). 
 

 |𝐴𝑖
(𝑡+1)

− 𝐴𝑖
(𝑡)

| ≤ 𝜀 (3) 

 

The FCM network can be described using concepts such as input degree, output degree and 

centrality. The input degree (degree of influence) of the concept i is equal to the sum of the 

values of the column related to the variable i and the output degree (degree of to be influenced) 

is also equal to the sum of the values of the row related to variable i in the adjacency matrix. 

The centrality index is also obtained from the sum of the input and output degrees of that 

concept. Generally, using FCM, it is possible to evaluate the impact of concepts on each other, 

as well as the whole system. The steps of FCM modeling are as followings: 

- Step 1. Identification of the factors related to the problem  

- Step 2. Evaluation of causal relationships among related factors by experts 
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- Step 3. Evaluation of the causal relationships’ intensity among the factors (concepts). 

In this step, the experts were asked to determine the causal relationships’ intensity using 

a linguistic scale. It should be noted that before determining the relevant intensities, a 

consensus on the direction (sign) of all system effects was reached by experts.  

- Step 4. Aggregation of the expert opinions. After de-fuzzification of the individual 

fuzzy influence matrixes, the average of the experts’ judgments, called “aggregated 

adjacency matrix” will be computed using equation (14)." The elements of the main 

diameter of matrix are considered equal to zero, which means that no measure leads to 

its formation. 

- Step 5. Developing the fuzzy cognitive map. The analysis of the adjacency matrix from 

the fourth step, provides important information such as input degree, output degree, 

centrality index and density of fuzzy cognitive map to analyze the network structure.  

- Step 6. Implementation of the simulation process. In order to check the dynamic state 

of the system and using relations (4) and (9), the values of the factors are calculated 

during the simulation and the new values will repeatedly replace the previous values. 

- Step 7. Checking the termination conditions. After the system convergence, it will be 

possible to present the final values of the concepts.  
 

4. Result & Disscusion 

To implement the proposed model in the real world, the experts of Iranian Blood Transfusion 

Organization (IBTO) were asked to judge about concepts causalities and the relationships 

strengths. Although determining the exact number of expert group members is challenging, it 

is recommended that the researcher be in contact with a small number of experts (for example, 

three to ten experienced individuals) (Ferreira et al., 2017). Therefore, in this phase of research, 

a group consisting of 10 experts at IBTO, were participated in this study. The criteria for 

selecting research experts were their theoretical expertise, practical experience, willingness, 

and ability to participate in the research. All discussions, inferences, and evaluations related to 

the identification and comparison of factors were determined under consideration of these 

experts.  

 
Table 2. Main risk factors of the blood supply chain 

Risk Factor Reference 

Blood Shortages 
Pirabán et al., 2019; Khalili et al., 2020; Ghatreh Samani et al., 2018; Fahimnia 

et al., 2018; Nezamoddini et al., 2020; Nezamoddini et al., 2020 

Blood Wastage 
Ghatreh Samani et al., 2018; Fahimnia et al., 2018; Habibi-Kouchaksaraei et al., 

2018; Khalili et al., 2020; 

Blood Products 

Perishability 

Kazemi et al., 2024; Sharifi et al., 2019; Hamdan & Diabat, 2020; Nezamoddini 

et al., 2020;  

Demand and Supply 

Uncertainty 

Meneses et al., 2023; Ghatreh Samani et al., 2018; Fahimnia et al., 2018; Khalili 

et al., 2020; Nezamoddini et al., 2020 

Infrastructure and 

Technological Limitations 

WHO, 2017; Khalili et al., 2020; Sharifi et al., 2019; Nezamoddini et al., 2020 

Delays in Allocation and 

Distribution 
Nezamoddini et al., 2020; Hamdan & Diabat, 2020; Eskandari-Khanghahi & 

Ghatreh Samani, 2018;  

Disruptions in Logistics 

Processes 
Hamdan & Diabat, 2020; Khalili et al., 2020; Sharifi et al., 2019; Ghatreh Samani 

et al., 2018; Fahimnia et al., 2018 

Complexities in Inventory 

Processes 
Sharifi & Ghaneipour, 2019; Nezamoddini et al., 2020; Khalili et al., 2020; 

Exceeding Blood 

Requisition in Actual 

Usage 

Habibi-Kouchaksaraei & Kazemi, 2020; Sharifi et al., 2019; Ghatreh Samani et 

al., 2018; Fahimnia et al., 2018; Nezamoddini et al., 2020 

Weak Collaboration Fahimnia et al., 2018; Khalili et al., 2020; Nezamoddini et al., 2020 

Problems in Quality 

Control 
Nezamoddini et al., 2020; Rajendran & Ravindran, 2019; Khalili et al., 2020; 

Hamdan & Diabat, 2020 
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Weak Screening 
Hamdan & Diabat, 2020; Sharifi et al., 2019; Ghatreh Samani et al., 2018; 

Fahimnia et al., 2018; Nezamoddini et al., 2020 

Insufficient Capacity 
Ghatreh Samani et al., 2018; Hamdan & Diabat, 2020; Fahimnia et al., 2018; 

Khalili et al., 2020; Sharifi et al., 2019; Nezamoddini et al., 2020 

Problems in Safety Issue 
Khalili et al., 2020; Sharifi et al., 2019; Ghatreh Samani et al., 2018; Fahimnia 

et al., 2018 

 

After identifying the affecting factors on VC, they must be evaluated by the experts. For this 

purpose, a questionnaire was designed based on the factors in Table (3); then, the 20 selected 

indicators were mentioned in the first row and column of the questionnaire table, and the 

experts were asked to determine the intensity of causal relationships between the factors based 

on the linguistic variables mentioned in Table (2). Since the judgments of the experts were 

ambiguous and uncertain, the linguistic variables in this study were converted to triangular 

fuzzy numbers. Next, the fuzzified matrixes of the experts’ judgments were obtained and their 

average is calculated in form of the "aggregated adjacency matrix". Table 2 demonstrates this 

matrix. 
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Table 2. Aggregated adjacency matrix for BSC risk factors 

Factors  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 

Blood Shortages F1 - -0.12 0.00 0.00 0.00 0.67 0.16 0.00 0.00 0.19 0.00 0.00 -0.25 0.00 

Blood Wastage F2 0.44 - 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.17 0.12 

Blood Products Perishability F3 0.51 0.26 - 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.00 -0.19 0.35 

Demand and Supply Uncertainty F4 0.67 0.40 0.00 - 0.00 0.60 0.51 0.23 0.00 0.35 0.00 0.00 0.21 0.09 

Infrastructure and Technological 

Limitations 
F5 0.20 0.28 0.16 0.00 - 0.35 0.68 0.00 0.00 0.36 0.27 0.20 0.62 0.37 

Delays in Allocation and Distribution F6 0.39 0.24 0.45 0.21 0.00 - 0.43 0.00 0.19 0.34 0.00 0.00 0.00 0.00 

Disruptions in Logistics Processes F7 0.53 0.36 0.22 0.00 0.00 0.79 - 0.00 0.00 0.30 0.00 0.00 0.00 0.35 

Complexities in Inventory Processes F8 0.00 0.00 0.00 0.00 0.00 0.18 0.00 - 0.00 0.18 0.00 0.00 0.00 0.00 

Exceeding Blood Requisition in Actual 

Usage F9 0.25 0.35 0.00 0.23 0.00 0.00 0.24 0.00 - 0.26 0.00 0.00 -0.18 0.25 

Weak Collaboration F10 0.31 0.16 0.22 0.24 0.00 0.49 0.50 0.00 0.11 - 0.00 0.00 0.33 0.29 

Problems in Quality Control F11 0.00 0.39 0.18 0.00 0.00 0.15 0.00 0.00 0.00 0.00 - 0.55 0.00 0.46 

Weak Screening F12 0.00 0.34 0.23 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.27 - 0.00 0.55 

Insufficient Capacity F13 0.47 0.69 0.00 0.39 0.00 0.15 0.35 0.00 0.00 0.38 0.00 0.00 - 0.29 

Problems in Safety Issue F14 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.34 0.00 0.00 - 
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In the modeling process, the structure of fuzzy cognitive map was analyzed using the FCM Expert 

software. The output of FCM static analysis, which is based on the principles of graph theory, was 

analyzed and the results are presented as degree of input, degree of output and centrality index of 

the BSC risk factors. Risk factors are ranked in Table, 3 based on the descending order of the 

centrality index. It should be noted that the higher the centrality index score of a factor is, the more 

influence it has on the network and plays a more central role in the fuzzy cognitive map. 
 

Table 3. Ranking the risk factors of BSC 

Factors Indicator Input Output Centrality 

Delays in Allocation and Distribution F6 3.59 2.25 5.84 

Disruptions in Logistics Processes F7 2.98 2.55 5.53 

Blood Shortages F1 3.77 1.39 5.16 

Weak Collaboration F10 2.36 2.65 5.01 

Insufficient Capacity F13 1.95 2.72 4.67 

Blood Wastage F2 3.59 0.84 4.43 

Demand and Supply Uncertainty F4 1.07 3.06 4.13 

Problems in Safety Issue F14 3.12 1.01 4.13 

Blood Products Perishability F3 1.86 1.93 3.79 

Infrastructure and Technological Limitations F5 0 3.49 3.49 

Problems in Quality Control F11 0.88 1.73 2.61 

Weak Screening F12 0.75 1.6 2.35 

Exceeding Blood Requisition in Actual Usage F9 0.3 1.76 2.06 

Complexities in Inventory Processes F8 1.12 0.36 1.48 

 
 

According to the results, "Delays in Allocation and Distribution" with the centrality score of 5.84 

has the highest interaction with the BSC risk factors. Among the other risk factors, “Disruptions 

in Logistics Processes”, “Blood Shortages” and “Weak Collaboration” took the 2nd to 4th place, 

from the centrality point of view. The column related to the degree of output shows the total 

influence of each risk factor on other related risk factors; In this column, "Infrastructure and 

Technological Limitations", “Demand and Supply Uncertainty” and “Insufficient Capacity” with 

the output scores of 3.49, 3.06 and 2.72, respectively have the highest influences on the system’s 

risk factors. The input degree column also provides the total influence of the other risk factors on 

a given concept. Finally, "Blood Shortages", “Delays in Allocation and Distribution” and “Blood 

Wastage” with the input grade of 3.77, 3.59 and 3.59 has received the greatest influence from the 

system’s risk factors, respectively. Table (3) also provides other information of static analysis of 

fuzzy cognitive maps of the research. 

Next, the FCM graphic structure of the BSC risk factors is presented in Figure (2). In this fuzzy 

cognitive maps, the number of 14 risk factors are connected by 84 arcs that express the causal 

relationships between the related risk factors. The transfer function is considered “Sigmoid”, the 

activation rule is “Kosko’s activation rule with self-memory”, and the epsilon index (Convergence) 

is equal to 0.001. 
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ndustryiharmaceutical pFigure 2. Graphical structure of the value chain drivers in  

 
In order to visually understand the FCM in Figure (2), after eliminating the causal relationships 

with weights less than |±0.4|, the corresponding FCM was again presented in Figure (3); So, only 

the most important causal relationships are displayed and a more accurate understanding of FCM 

is obtained for the viewer. 

 
Figure 3. Graphical structure with important causal relationships 

 

 

Finally, model interface allows performing reasoning using the provided activation values. Before 

performing the inference process, the user must specify the activation values of input concepts 

used to activate the FCM-based system (see Editing concepts). This option will summarize the 
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inference results through a chart and a table with the activation value of concepts at each iteration 

(see Figure 4). 

 

 
Figure 4. The graphical interface results 

 
The graphical interface visualizes the response vector obtained after adjusting the weights. It 

should be mentioned that the convergence index (ε) in this research considered 0.001. 

 

5. Conclusions  

This study has conducted an in-depth analysis of risk factors within the blood supply chain using 

Fuzzy Cognitive Mapping (FCM), providing crucial insights into the interconnected risks that can 

significantly impact the efficiency and reliability of blood supply operations. The centrality index 

derived from the FCM analysis has helped to identify and rank the most critical factors, 

highlighting key areas that demand immediate attention and strategic intervention. The findings 

revealed that "Delays in Allocation and Distribution" is the most central and influential risk factor 

in the blood supply chain, underscoring the critical need for optimizing distribution strategies and 

minimizing bottlenecks. Closely following this are "Disruptions in Logistics Processes" and 

"Blood Shortages," which further emphasize the necessity of a robust and agile logistics network 

that can adapt to varying demand levels and unforeseen disruptions. Other significant factors 

include "Weak Collaboration" and "Insufficient Capacity," both of which point to the need for 

stronger partnerships and improved resource management across the supply chain. "Blood 

Wastage" and "Demand and Supply Uncertainty" also emerged as critical risks, suggesting that 

better forecasting, inventory management, and technological integration could greatly reduce 

inefficiencies and wastage. 

Given the identified risks, there is a clear need to develop more efficient and responsive allocation 

and distribution systems. This can be achieved through the adoption of advanced logistics 

technologies, such as real-time tracking systems and predictive analytics, to better manage 

distribution timelines and reduce the impact of potential disruptions. In addition, Improved 

collaboration among all stakeholders in the blood supply chain, including blood banks, hospitals, 
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and transportation providers, is essential. Creating shared platforms for communication and data 

exchange can lead to more coordinated efforts and resource sharing, thereby enhancing overall 

capacity and responsiveness. 

To tackle the issues of blood wastage and supply-demand imbalances, it is recommended to invest 

in more accurate demand forecasting tools and to optimize inventory management practices. This 

may include the implementation of machine learning algorithms for predictive modeling and the 

use of block chain technology for transparent tracking of blood products. Strengthening screening 

processes, adhering to stringent quality control standards, and adopting innovative preservation 

techniques for blood products can also help mitigate the risks associated with perishability and 

safety issues. 

To further enhance the resilience and efficiency of blood supply chains, future studies could 

explore the integration of advanced machine learning models with FCM to develop more accurate 

predictive tools for managing demand fluctuations and optimizing inventory levels. Investigating 

the potential of block chain and the Internet of Things (IoT) for improving traceability, 

transparency, and real-time monitoring in the blood supply chain could provide new avenues for 

reducing risks and enhancing safety. 

Research could also focus on developing comprehensive resilience models that consider the 

interdependencies between various risk factors, helping to create more robust blood supply chains 

that can withstand both internal and external shocks. Finally, future studies should examine the 

role of policy and regulatory frameworks in mitigating risks, particularly in areas such as 

collaboration, data sharing, and quality control, to ensure that best practices are consistently 

applied across all levels of the blood supply chain. By focusing on the suggested areas for future 

research, it is possible to develop more resilient, efficient, and safe blood supply chains that can 

better serve the needs of healthcare systems and improve patient outcomes globally. 
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