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Optimal reactive power distribution is a critical aspect of economic and secure 

operation of power systems. This problem falls within the category of power system 

optimization problems where a specific objective function is optimized subject to a 

set of constraints and control variables. Due to the non-linear nature of this problem 

and the existence of multiple local optima, deterministic methods are not suitable for 

solving it. Therefore, stochastic and intelligent algorithms must be employed. 

Control variables in this problem include generator voltages, transformer tap 

positions, and reactive power compensation devices such as reactors and capacitors. 

Three objective functions, namely, minimizing active power losses, improving 

voltage profile, and maximizing voltage stability, are considered both individually 

and in a multi-objective manner. The primary algorithms investigated in this thesis 

include Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Colonial 

Competitive Algorithm (ICA), and Differential Evolution (DE). Additionally, 

weighted sum method and Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

are employed for multi-objective optimization. 
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1. Introduction 

Achieving a cost-effective and reliable power system 

is a primary objective for power system operators. To 

attain this goal, optimal planning and operation of 

power systems have been the focus of extensive 

research. One of the key tools to achieve this objective 

is optimal reactive power distribution, which 

significantly impacts the reliable and economic 

operation of power systems. This problem is a sub-

problem of optimal power flow calculations, first 

introduced by Carpentier in 1962. Optimal reactive 

power distribution is a power system optimization 

problem that aims to optimize a specific objective 

function subject to a set of constraints and control 

variables.In this problem, the objective function can be 

minimizing losses, improving voltage stability, 

reducing voltage deviations, and so on. By adjusting 
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reactive power sources such as capacitors and reactors, 

transformer tap positions, and generator bus voltages, 

while satisfying constraints such as power flow 

equations, voltage limits, and generator reactive power 

limits, these objectives can be achieved.This study 

focuses on minimizing losses, improving voltage 

stability, and reducing voltage deviations. Since 

generator reactive power outputs, bus voltage 

magnitudes, and angles are continuous variables, 

while transformer tap positions and outputs of shunt 

reactors and capacitors are discrete, the optimal 

reactive power problem can be modeled using non-

linear programming and may have multiple local 

optima. This makes finding the global or near-global 

optimal solution challenging.The importance of 

electrical energy is undeniable. Due to its ease of 

conversion to other energy forms, ease of 

transmission, easy control, and environmental 

considerations, electrical energy has found more 

applications than other types of energy. Supplying the 

required electrical energy to customers at the lowest 

cost and with the best possible quality is the main 

objective of a power system. In electrical networks, 

losses are one of the biggest problems that affect 

power generation, transmission, and distribution. 

Therefore, reducing losses and improving voltage 

profile have been the main goals of power system 

designers.Voltage control (reactive power control) is 

an essential issue in both emergency and normal 

operating conditions of a power system. In emergency 

conditions, it can increase voltage stability margins by 

identifying voltage instability limits and thus enhance 

system security. In normal conditions, it can lead to 

reliable operation of the network with high power 

quality.Reactive power plays a significant role in 

power system voltage security. Insufficient reactive 

power in the system can cause undesirable voltage 

drops at some buses. If the system cannot overcome 

this voltage deficiency, it may lead to voltage 

instability in the entire network. Insufficient reactive 

power, which leads to voltage collapse, is known as a 

major cause of widespread power outages.The reactive 

power transmitted over a transmission line depends on 

the voltage difference between the line ends. Also, 

increasing the magnitude of the sending end bus 

voltage increases the reactive power injected from the 

bus. The reactive power generated by a generator 

depends on its excitation, and by changing the 

generator's driving force, the amount of reactive power 

generated or consumed can be adjusted. In an 

interconnected system, it can be seen by performing 

load flow studies in different conditions that injecting 

reactive power into a bus raises the voltage of all buses 

and has the most significant impact on the voltage of 

that bus. 

1-1 Literature Review 

Numerous mathematical methods have been employed 

to solve this problem. In [A2,A3], gradient-based 

optimization methods [A1] have been used to solve 

this problem. In recent years, the interior point method 

[A2] has been used to solve the ORPD problem [A4]. 

In [5], a quadratic programming approach is used for 

optimization. However, the aforementioned methods 

often face limitations when dealing with nonlinear 

problems, discrete variables, and problems with 

multiple local optima, and they may fail to find the 

global or near-global optimal solution. To overcome 

these limitations, simplifications have been made in all 

these methods. Nevertheless, these methods are 

ultimately inefficient for solving the optimal reactive 

power distribution problem in large-scale practical 

systems.In the last decade, many stochastic search 

methods have been developed to solve optimization 

problems. Genetic Algorithm (GA) [A3], Particle 

Swarm Optimization (PSO) [A4], Differential 

Evolution (DE) [A5], and Colonial Competitive 

Algorithm (ICA) [A6] are among these optimization 

methods [A6-A8]. The genetic algorithm is inspired 

by the methods used in the living world to optimize the 

adaptability of organisms to the environment. PSO is 

a swarm intelligence method that was developed by 

simulating social systems and is very effective in 

solving nonlinear problems. The differential evolution 

algorithm is similar to the genetic algorithm, and the 

only difference is the selection method. ICA is a new 

exploratory algorithm proposed by the Iranian 

Scientist Professor Caro Lucas, which is population-

based and considers the optimization process as a 

search for the optimal solution using a population of 

colonizing and colonized countries [A7,A8].Over the 

past two decades, the power industry has undergone 

fundamental changes in the way power is generated, 

transmitted, and distributed, known as restructuring. 

With the restructuring of the power industry, reactive 

power has been introduced as one of the most 

important ancillary services for the secure and reliable 
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operation of the power system. In recent years, 

reactive power markets have been defined to increase 

system reliability, create a proper competitive 

structure, and encourage producers to generate 

reactive power. However, reactive power is 

interrelated through various means, such as power 

flow equations, synchronous generator capability 

curves, and maximum power transfer limits of lines.In 

[A9], a multi-objective approach for reactive power 

control in a network in the presence of generation 

sources and FACTS devices is proposed. Although 

this reference achieves optimization objectives to 

some extent using FACTS devices, the optimization 

performed does not consider the costs of purchasing 

power from the grid and distributed generation 

sources, and the simulation is only performed for peak 

hours.In [A10], a reactive power control method using 

fuzzy optimization is proposed. Although the 

proposed method in this reference considers tap 

changers and capacitors, it models the network 

without distributed generation sources. Considering 

the importance of reactive power control and voltage 

reduction, many studies have been conducted in this 

area in recent years 

1-2 Efforts Made 

In this paper, the probabilistic and stochastic 

algorithms introduced above are investigated for 

optimal reactive power distribution. This problem is 

examined both as a single-objective and multi-

objective problem. 

2- Multi-Objective Optimization  

Considering three objective functions, namely 

minimizing active power losses, reducing voltage 

deviations, and improving system stability, the 

optimal reactive power distribution problem in power 

systems becomes a multi-objective optimization 

problem. In this section, the weighted sum method and 

NSGA-II are used to solve this problem. In the 

weighted sum method, four algorithms, GA, PSO, 

ICA, and DE, will be used. 

2-1 Multi-Objective Optimization Using Weighted 

Sum Method  

The advantage of this method over methods that 

generate a set of solutions is its simplicity. However, 

one of the biggest drawbacks of this method is the 

inaccessibility to a portion of good solutions. 

Additionally, determining the weighting coefficients 

is another drawback in this method. 

In this method, the objective function is as shown in 

equation (1). 

(1) min 𝑍 = 𝑊1𝑓1 + 𝑊2𝑓2 + 𝑊3𝑓3 +

∑ λVi(Vi − Vi
lim)iϵNV

lim +

∑ λGi(QGi − QGi
lim)iϵNQ

lim  

where 𝑓1 ،𝑓2 و   𝑓3 are active system losses, voltage 

deviations and L index. Of course, three objective 

functions are first normalized using equation (2) and 

then used in equation (1). 

(2) 𝑓̅ = (𝑓 − 𝑓𝑚𝑖𝑛)/(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) 

Type equation here. 

λVi و   λGi are penalty coefficients that are considered 

equal to 0.1 and 0.2, respectively, to optimize the 

active losses of the system. The coefficients ... are 

considered with two scenarios as shown in Table 1. 

Table 1: Multi-objective optimization coefficients in the 

IEEE 30-bus system 

Coefficients 𝑊1 𝑊2 𝑊3 
Scenario 1 4/0  3/0  3/0  

Scenario 2 6/0  2/0  2/0  

 

3- Multi-Objective Genetic Algorithm 

Optimization is essentially the process of finding one 

or more solutions from a set of possible options 

(subject to constraints) with the aim of optimizing one 

or more criteria. Multi-objective optimization is a 

subset of multi-criteria decision-making (MCDM) 

methods, which involves searching among an infinite 

set of potential solutions. Multi-objective optimization 

arises from real-world decision-making problems 

where decision-makers face a set of conflicting and 

competing objectives and criteria. Unlike single-

objective optimization problems, in these types of 

problems, due to the presence of multiple conflicting 

objectives, instead of a single solution, a set of 

solutions is obtained. The general form of multi-

objective optimization problems is shown in equation 

(3) 

min 𝐹(𝑥) = {𝑓1(𝑥), … , 𝑓𝑖(𝑥), … , 𝑓𝑛(𝑥) } 

s.t. 𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0 
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𝑥 ∈ 𝑅 

"g(x) includes inequality constraints and h(x) includes 

equality constraints of the problem." 

In this section, we will introduce the multi-objective 

genetic algorithm based on non-dominated sorting. To 

understand this, we must first familiarize ourselves 

with the concept of dominance. 

3.1 Concept of Dominance 

In multi-objective optimization, to illustrate the 

concept of dominance, let's consider a two-objective 

optimization problem. As shown in Figure 1, point A 

dominates point C if A is not worse than C in any 

objective and A is better than C in at least one 

objective. 

 

Figure 1: Points A and B dominate point C. 

In multi-objective optimization, the goal is to find a set 

of good solutions known as the Pareto front. The 

advantage of this method over weighted sum methods 

is that weighted sum methods can never produce 

solutions within the green region shown in Figure 2. 

  

Figure 2: Pareto front in a two-objective optimization 

problem. 

 Depending on the type of multi-objective 

optimization problem, the shape of the Pareto front can 

vary, as illustrated in Figure 3. In this figure, the 

yellow curve represents the desired set of solutions 

 

 

Figure 3: Pareto front in a two-objective optimization problem. 

Now, considering the concept of dominance that we 

have learned, the steps of the NSGA-II algorithm can 

be described as follows. 

3.2 Steps of the NSGA-II Algorithm 

Step 1: Initial Population Generation As usual, the 

initial population is generated based on the problem's 

scale and constraints. 

Step 2: Evaluation of the Generated Population The 

generated population is evaluated based on the defined 

objective functions. 

Step 3: Non-dominated Sorting Using the non-

dominated sorting method as shown in Figure 4, the 

population members are classified into different 

fronts. Members in the first front are completely non-

dominated by other members of the current 

population. Members in the second front are 

dominated only by members of the first front, and this 

process continues for all other fronts until a rank is 

assigned to each member based on its front number. 
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Figure 4: First and second steps in a two-objective 

optimization problem. 

Step 4: Crowding Distance Calculation A control 

parameter called crowding distance is calculated for 

each member in each front. This parameter measures 

the density of a solution with respect to its neighbors. 

As shown in Figure 5, a larger crowding distance value 

leads to better diversity and spread of the population 

members 

 

 

Figure 5: Crowding distance calculation in a two-objective 

optimization problem 

(4)  

Step 5: Parent Selection One common selection 

mechanism is binary tournament selection, where two 

individuals are randomly chosen from the population. 

The individual with a better fitness (often determined 

by rank or crowding distance) is selected as a parent. 

Step 6: Crossover and Mutation Crossover and 

mutation operations are performed. Crossover 

involves exchanging genetic material between two 

parents to create offspring, while mutation introduces 

random changes to the offspring's genetic material. 

Step 7: Termination Criteria If the termination criteria 

is not met (e.g., reaching a maximum number of 

generations or a satisfactory solution), the algorithm 

returns to step 2. 

4. Simulation  

We will now discuss the IEEE 30-bus system, a 

standard test system. This system will be used to 

demonstrate the application of various random search 

algorithms for solving single-objective and multi-

objective optimization problems. 

IEEE 30-bus System The IEEE 30-bus system, as 

depicted in Figure 6, consists of 13 control variables: 

6 generator bus voltage magnitudes, 4 transformer tap 

settings, and 3 shunt compensators. The tapped 

transformers are located on lines 6-9, 4-12, 6-10, and 

27-28. Transformer taps are discrete variables with a 

step size of 0.01 per unit. Buses 2, 5, 8, 11, and 13 

contain generators, and bus 1 is the reference bus. 

Three shunt compensators are located on buses 3, 10, 

and 24, and they are also discrete variables with a step 

size of 0.01 per unit. 

 

Figure 6: IEEE 30-bus system [6] 

The limits of the system variables are given in Table 

2. The initial conditions of the IEEE 30-bus system are 

as follows:  

Pload = 2.834 pu        Qload = 1.262 pu        𝑆𝑏𝑎𝑠𝑒

= 100 MW 
 

If the initial voltages of the generator buses and 

transformer taps are set at one per unit, the total 

generation and power losses will be as follows: 

∑ P = 2.8937 pu           ∑ Q = 0.974 pu 

Ploss = 0.059743 pu        Qloss = 0.2585 pu 

 

Table 2: Variable limits in IEEE 30-bus system 
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           The three buses which voltages have exceeded 

the permissible limits are as follows: 

V26 = 0.932 pu     V29 = 0.940 pu     V30

= 0.928 pu 

 
4-1 Scenario 1 

Four algorithms, GA, PSO, ICA, and DE, are 

presented in Table 3. By comparing the results and 

examining Figures 7 and 8, it is evident that PSO and 

ICA algorithms have performed better. Moreover, 

based on Tables 3 and 4, all parameters have remained 

within their specified limits across all four methods 

 

 

 

 

 

Table 3: Results of the weighted optimization algorithm 

applied to the IEEE 30-bus system 

objective 

function GA PSO 
ICA DE 

Best system 

loss (mw) 
3287/5  2982/5  

2760/5  2971/5  

Best voltage 

deviation 
1475/0  1483/0  

1635/0  1542/0  

The best 

voltage 

stability 

1367/0  1346/0  

1330/0  1332/0  

 

 

Table 4: Control variable values in per unit after the 

weighted optimization algorithm. 

variable GA PSO ICA DE 

𝑉1 0342/1  0368/1  0429/1  0370/1  

𝑉2 0241/1  0271/1  0329/1  0292/1  

variable GA PSO ICA DE 

𝑉5 0062/1  0059/1  0075/1  0037/1  

𝑉8 9911/0  0028/1  0054/1  0042/1  

𝑉11 0028/1  0077/1  0090/1  0014/1  

𝑉13 0029/1  0297/1  0218/1  0247/1  

𝑇6−9 95/0  03/1  04/1  03/1  

𝑇6−10 97/0  98/0  03/1  03/1  

𝑇4−12 96/0  99/0  98/0  98/0  

𝑇27−28 95/0  95/0  96/0  95/0  

𝑄3 22/0  05/0-  04/0-  01/0-  

𝑄10 19/0  29/0  36/0  34/0  

𝑄24 11/0  11/0  13/0  13/0  

 

 

Figure 7: Convergence of GA and PSO algorithms in multi-

objective optimization, Scenario 1, in the IEEE 30-bus 

system. 

 

Figure 8: Convergence of ICA and DE algorithms in multi-

objective optimization, Scenario 1, in the IEEE 30-bus 

system. 

4-2 Scenario 2 

The results of the four algorithms, GA, PSO, ICA, and 

DE, are presented in Table 5. By comparing the results 

and examining Figures 9 and 10, it is evident that the 

PSO and ICA algorithms have exhibited superior 

performance. Moreover, according to Table 6, all 

parameters have remained within their specified limits 
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DE

ICA

limitations of reactive power generation (pu) 
bass 1 2 5 8 11 13 
QG

max 596/0  480/0  6/0  53/0  15/0  155/0  

QG
min 298/0-  24/0-  3/0-  265/0-  075/0-  078/0-  

Limitations of tap transformer settings and voltage 

(pu) 
VG

max VG
min Vload

max Vload
min Tk

max Tk
min 

1/1  9/0  05/1  95/0  05/1  95/0  

Voltage limitations and reactive power production 

of reactive compensation sources (pu) 

QC
max QC

min VC
max VC

min 

36/0  12/0-  05/1  95/0  
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in both methods. Another advantage of PSO and ICA 

compared to GA and DE is their faster convergence 

speed, as evident in Figures 7 to 10. Additionally, with 

the increase in the weighting factor of the loss 

function, we observe an improvement in the response 

of the active power loss in the system. Naturally, with 

the decrease in the voltage deviation and voltage 

stability coefficients, these two indices exhibit a 

weaker response in Scenario 2 compared to Scenario 

1. 

Table 5: Results of the weighted optimization algorithm 

applied to the IEEE 30-bus system. 

objective 

function 
GA PSO 

ICA DE 

Best system 

loss (mw) 
2530/5  1451/5  

2448/5  2800/5  

Best voltage 

deviation 
1840/0  2392/0  

1686/0  1711/0  

The best 

voltage 

stability 

1375/0  1352/0  

1334/0  1307/0  

 

 

 

 

Table 6: Control variable values in per unit after the 

weighted optimization algorithm in the IEEE 30-bus system. 

variable GA PSO ICA DE 

𝑉1 0396/1  0547/1  0418/1  0414/1  

𝑉2 0291/1  0448/1  0313/1  0280/1  

𝑉5 0078/1  0199/1  0066/1  0033/1  

𝑉8 0078/1  0205/1  0075/1  0038/1  

𝑉11 0338/1  9912/0  0038/1  9877/0  

𝑉13 0314/1  0363/1  0250/1  0244/1  

𝑇6−9 99/0  1 02/1  02/1  

𝑇6−10 02/1  01/1  02/1  06/1  

𝑇4−12 99/0  01/1  98/0  98/0  

𝑇27−28 96/0  97/0  96/0  96/0  

𝑄3 03/0  10/0  02/0  01/0  

𝑄10 18/0  23/0  32/0  36/0  

𝑄24 11/0  13/0  12/0  10/0  

By comparing the four optimization algorithms, GA, 

PSO, ICA, and DE, in both single-objective and multi-

objective reactive power optimization, it is clear that 

the PSO and ICA algorithms have higher capabilities 

in solving this problem.Due to the problems and 

disadvantages of the weighted coefficient method in 

multi-objective optimization, the NSGA-II algorithm 

is used in the next step to solve the multi-objective 

optimization problem, which has the ability to provide 

a set of good solutions. 

 

Figure 9: Convergence of GA and PSO algorithms in multi-

objective optimization, Scenario 2, in the IEEE 30-bus 

system. 

 

 

Figure 10: Convergence of ICA and DE algorithms in multi-

objective optimization, Scenario 2, in the IEEE 30-bus 

system. 

2-2 Multi-objective optimization using 

NSGA-II 

Unlike the weighted coefficient method, this method 

does not require normalization of the objective 

functions. Moreover, this method provides a set of 

good solutions, which is called a Pareto front. The 

initial settings in this method are considered exactly 

like the genetic algorithm. The number of 

chromosomes in the first layer is considered to be 40. 

Figure 11 shows the Pareto front of the multi-objective 

reactive power optimization problem in the standard 

IEEE 30-bus system. The advantage of this method 

over the weighted coefficients is the diversity of the 

system's output response. In this method, as in the 

previous methods, all parameters in all responses are 

within the permissible limits. 
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Figure 11: Pareto front in multi-objective optimization using 

NSGA-II, in the IEEE 30-bus system. 

Table 7 shows four sample solutions generated 

for solving the multi-objective reactive power 

optimization problem by the NSGA-II algorithm. By 

carefully examining the objective function values in 

this table, it is clear that the concept of non-domination 

is well observed in these data. One of the advantages 

of the NSGA-II method compared to optimization 

using weighted coefficients is the generation of a set 

of desirable solutions by this algorithm in a single 

program run. However, its disadvantages include: 

 Difficult computer program implementation. 

 Reduced program speed. 

 High computer memory consumption. 

Table 7: Results of running the NSGA-II algorithm in the 

IEEE 30-bus system 

 NSGAII 

objective 

function 
Answe

r 1 

Answe

r 2 

Answe

r 3 
Answe

r 4 

Best 

system 

loss 

(mw) 

5411/5  5751/5  0840/5  0162/5  

Best 

voltage 

deviatio

n 

6379/0  1438/0  5697/0  5013/0  

The best 

voltage 

stability 

1214/0  1344/0  1263/0  1251/0  

 

5. Conclusion 

The problem of optimal reactive power distribution in 

power systems has a growing impact on the economic 

and reliable performance of power systems. The two 

main objectives in this problem are to reduce losses 

and create a suitable voltage profile. Since there is a 

possibility of voltage collapse in large-scale 

transmission systems, voltage security is also 

considered as the third objective in this problem. It is 

clear that this problem is a non-linear, multi-modal 

optimization problem with a combination of discrete 

and continuous variables that obtains the optimal value 

of control variables for a network state, parameters, 

and load using reactive power compensation sources 

such as capacitors and reactors, transformer taps, and 

generator bus voltage regulation, while satisfying 

constraints such as load flow constraints, bus voltage 

constraints, and generator reactive power output. In 

this paper, different reactive power optimization 

algorithms were investigated, and then the drawbacks 

of traditional methods such as derivative-based 

methods and linear programming methods were 

mentioned. To overcome these problems, the most 

important of which is the existence of a non-linear 

system with many local optimal points and the 

existence of discrete variables, it was preferred to use 

random search methods. In this paper, GA, PSO, ICA, 

and DE methods were investigated in the single-

objective optimization problem, and the weighted 

coefficient method and NSGA-II algorithm were 

investigated in the multi-objective. 
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