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Abstract–Energy management in Intelligent Electric Parking Lots (IPL) plays a crucial role in 
achieving technical and environmental goals by utilizing renewable energy sources (RES) and 
hydrogen storage systems (HSS). This article proposes a framework for risk-averse decision-
making in hydrogen-powered smart parking management, considering carbon considerations and 
green certifications. Given the uncertainty in input parameters such as solar radiation, temperature, 
wind speed, and IPL load, a probabilistic model is developed using a combination of two-point 
estimation method and Information Gap Decision Theory (IGDT). Furthermore, a combined 
optimization method, Differential Honey Badger Algorithm (DHBA), is employed to optimize 
operational costs, including energy procurement from the grid, electric vehicle (EV) charging costs 
in smart parking lots, and costs associated with green certifications and carbon emissions, as the 
main objectives of the optimization problem. The main idea of this article is for a typical IPL 
comprising a hydrogen storage system (HSS) consisting of a fuel cell, electrolyzer, and hydrogen 
storage tank, alongside load demand alongside RES. Additionally, alongside energy management, 
Demand Response (DR) management has also been optimized. Simulation results achieve all 
technical and economic objectives with the presence of renewable energy sources and electric 
vehicles, resulting in a 15.5% increase in profit. Furthermore, considering uncertainty leads to a 
9.6% decrease in profit compared to the absence of these sources. Moreover, considering green 
certifications and carbon emissions results in a significant reduction in pollution emissions. 
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1. Introduction 

 

1.1. Motivation 

 

In today's world, significant changes in energy 
consumption patterns and environmental attitudes have led 
to an increase in the use of renewable energy sources and 
the development of electric vehicles. The role of renewable 
energy sources in meeting a considerable portion of global 
energy demand indicates a deviation from fossil fuels [1,2]. 
This transition has been accompanied by the emergence of 

electric vehicles (EVs), driven by increasing awareness of 
the environmental challenges associated with conventional 
fuels. The depletion of fossil fuel reserves, coupled with 
intensified environmental pollution and increased energy 
consumption due to industrialization and population growth, 
underscores the need for sustainable alternatives such as 
electric vehicles [3,4]. The integration of EVs into power 
systems has witnessed significant growth in recent years. 
These vehicles, emblematic of technological advancements, 
pave the way for environmentally compatible transportation 
systems and provide an opportunity for countries to reduce 
dependence on fossil fuels and enhance grid reliability [5,6]. 
Additionally, they serve as the cornerstone of pursuing 
clean transportation solutions, aligning with the 
sustainability goals of modern cities. Simultaneously, 
policymakers are compelled to address the environmental 
consequences associated with EV charging and discharging 
[7]. 

Alongside these changes, new challenges emerge for the 
transportation and energy management industries. 
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Challenges include the need for improving existing 
technologies and conducting deeper research into 
optimizing Intelligent Parking Lot (IPL) management and 
energy storage in transportation systems [8,9]. Key aspects 
of these challenges include increasing energy efficiency, 
reducing environmental impacts, and devising appropriate 
strategies for integrating sustainable electric vehicles with 
the power grid. Decisive actions to address challenges 
arising from electric vehicle management in smart grids, 
including aspects such as grid integration, load 
management, and battery optimization, are necessary. 
Consequently, significant attention is directed towards 
optimizing EV charging/discharging processes and utilizing 
intermittent renewable energies, especially with the 
proliferation of smart parking lots (IPLs) driven by the 
increasing adoption of electric vehicles [6,10]. 

In addition to these challenges, the importance of 
carbon trading and green certifications in advancing 
environmental sustainability is recognized. Carbon trading 
mechanisms incentivize companies to reduce their carbon 
emissions by allowing them to buy and sell carbon credits. 
On the other hand, green certifications confirm the 
renewable source of electricity generated from renewable 
sources [11,12]. Integrating carbon trading considerations 
and green certifications into smart parking management is 
crucial for aligning environmental objectives with 
economic incentives. With these advancements, the concept 
of Intelligent Parking Lots (IPLs) emerges as a suitable 
solution for seamlessly integrating electric vehicles with 
renewable energy sources, energy storage systems, and 
carbon trading mechanisms. IPLs not only facilitate 
efficient energy management but also contribute to 
reducing carbon emissions and promoting the adoption of 
renewable energies [12]. 

To this end, optimizing smart parking management in 
comprehensive energy systems, with a focus on integrating 
electric vehicles, utilizing renewable energies, and 
combining carbon trading and green certification 
considerations, is important. This aims to address inevitable 
challenges in energy management, enhance the 
sustainability of transportation systems, and capitalize on 
economic incentives provided by carbon trading and green 
certifications. Continuous improvement and practical 
progress in this field guide technological innovations in 
energy and transportation, with positive impacts on the 
economic, environmental, and social dimensions of 
societies. Furthermore, optimal IPL management has the 
potential to inform policies and effective strategies in the 
energy and transportation sectors, providing innovative 
pathways to reduce reliance on fossil fuels, increase energy 
efficiency, and enhance environmental sustainability. 
 

1.2. Related Works 

In the field of energy management for 
charging/discharging electric vehicles (EVs) in parking lots, 
numerous studies have been conducted with a focus on 
various aspects and objectives. The literature review below 
provides an overview of research articles related to this 

topic along with their relevant sources. 
 

• Electric Vehicles and Network Integration: 

 

The continuous deterioration of the global environment 

and the depletion of fossil resources have turned energy 

conservation and reduction of greenhouse gas emissions in 

the transportation sector into a serious challenge. Today, 

due to environmental impacts and limited access to gasoline, 

there is a significant shift from fossil fuels to electric energy 

[13]. Therefore, electric vehicles (EVs) are introduced as 

suitable alternatives to fossil fuel vehicles [14]. These 

vehicles are not only energy consumers but also active 

components in the power system, which due to high 

uncertainty, pose various challenges for optimal system 

performance [15]. Electric vehicles (EVs) have advantages 

such as reducing energy consumption and greenhouse gas 

emissions, which are the main factors driving their 

widespread promotion [16]. G2V and V2G capabilities, 

along with the process of charging/discharging electric 

vehicles, provide potential benefits for electric vehicle 

owners and network operators through the 

charging/discharging of electric vehicles [17]. However, the 

unplanned entry of these vehicles into the smart distribution 

network undoubtedly will have negative effects such as 

increased load, losses, and more electrical fluctuations in 

the network [18]. However, hybrid and electric vehicles 

capable of connecting to the grid smooth the load curve 

during peak consumption hours and reduce vehicle owners' 

costs. Therefore, planning for the use of these vehicles in 

various usage scenarios is an undeniable reality [19], and 

for maximum utilization of these advantages, optimal 

electric vehicle parking performance must be thoroughly 

studied and managed [20]. These electric vehicles are 

influenced by various factors in the distribution network, 

such as different driving patterns and various charging 

schedules. This means that using smart control and 

management can create energy exchange between these 

vehicles and the power grid at specific times. Therefore, 

electric vehicles are a flexible type of load that can be 

considered as an example of demand response [18]. 

Furthermore, in article [21], a method of energy 

management involving electric vehicle (EV) load shifting to 

reduce energy costs has been discussed. Optimal charging 

and discharging management of electric vehicles in 

Intelligent Parking Lots (IPLs) in uncertain environments, 

as well as studies on optimal charging and discharging 

management of electric vehicles in IPLs in Tehran, have 

also been investigated in articles [22]and [23], respectively. 

Decisions regarding the charging and discharging of EV 

batteries for participation in storage and energy markets 
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have been specified [22]. An advanced model for smart 

parking with hydrogen storage systems, along with 

management of charging and discharging electric vehicles 

and transmission of renewable energies, has been examined 

in article [24]. Examination of a parking lot as a renewable 

energy-based microgrid with the aim of minimizing costs 

has been conducted in ref [7]. Planning based on certainty 

for optimal management of electric vehicle charging and 

discharging in IPLs under Demand Response Programs 

(DRP) and High Solar Scenarios (HSS) has been discussed 

in article [25]. 

 

• Renewable Energy Systems and Smart Parking: 

 

Renewable energy systems can be used to address 

greenhouse gas issues in power systems [26], [27], and the 

penetration of renewable energy sources that produce clean 

energy can also control environmental issues [4,27]. These 

sources can be used to integrate with microgrids such as 

wind turbines, PV systems, microturbines, and fuel cell 

units. Additionally, smart parking facilities using a large 

number of EVs can be integrated with load management 

programs to enhance microgrid performance [30]. One 

interesting application of renewable energy sources is to 

provide power for electric vehicle charging stations [6]. 

Solar panels and wind turbines can be used in these stations. 

 

• Energy Management and Optimization: 

 
An advanced development model for smart parking with 

hydrogen storage systems, along with management of 

charging and discharging electric vehicles and transmission 

of renewable energies, has been examined in article [28]. 

Examination of a parking lot as a renewable energy-based 

microgrid with the aim of minimizing costs has been 

conducted in article [29]. Planning based on certainty for 

optimal management of EV charging and discharging in 

IPLs under Demand Response Programs (DRP) and High 

Solar Scenarios (HSS) has been discussed in ref [29]. 

 

• Electric Vehicle Charging and Discharging 

Management: 

 

Decisions regarding the charging and discharging of EV 

batteries for participation in storage and energy markets 

have been specified [2]. An advanced model for smart 

parking with hydrogen storage systems, along with 

management of charging and discharging electric vehicles 

and transmission of renewable energies, has been examined 

in article [30]. Examination of a parking lot as a renewable 

energy-based microgrid with the aim of minimizing costs 

has been conducted in ref [31] . Planning based on certainty 

for optimal management of electric vehicle charging and 

discharging in IPLs under Demand Response Programs 

(DRP) and High Solar Scenarios (HSS) has been discussed 

in the article [37]. 

 

1.3 Research Contribution 

 

Contrary to previous research efforts, this study 

considers the preferences of electric vehicle (EV) owners 

and the operational constraints of the distribution system, 

along with uncertainties regarding carbon emissions and 

carbon certification. This pioneering approach offers a 

different perspective on energy management in Intelligent 

Parking Lots (IPLs) by integrating Renewable Energy 

Sources (RES) and Hydrogen Storage Systems (HSS) while 

addressing the needs and constraints of various stakeholders. 

Accordingly, this article introduces an innovative 

framework for decision-making in hydrogen-based smart 

parking management. It confirms the diverse preferences of 

electric vehicle owners and the complex operational 

constraints of the distribution system, providing a 

comprehensive solution that balances technical and 

environmental objectives. 

To address inherent ambiguities in parameters such as 

solar radiation, temperature, wind speed, and IPL load, this 

study presents a probabilistic model that utilizes a 

combined approach of two-stage estimation and 

Information Gap Decision Theory. Additionally, 

optimization is employed using a Hybrid Belder Algorithm 

(DHBA) to reduce operational costs and pollution 

emissions. It also considers the costs of electric vehicle 

charging, financial implications of green certifications, and 

carbon emissions. The main objective of the article is to 

integrate a hydrogen storage system (HSS) into a 

conventional IPL configuration alongside demand response 

(DR) management to enhance operational efficiency and 

optimize sustainability. It emphasizes all technical and 

economic objectives, reflecting significant profitability and 

environmental benefits. 

The primary research contributions are as follows: 

• Integration of hydrogen storage and 

charge/discharge management in smart parking 

systems. 

• Integration of wind and solar renewable 

energy sources in energy planning for smart parking.  

• Optimization of charge/discharge decisions for 

electrolysis and fuel cell systems in hydrogen storage 

systems (HSS) to minimize operational costs and 
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green certification expenses.  

• Evaluation of the role of electric vehicles as storage 

devices and their impact on load management and cost 

reduction.  

• Implementation of a combined decision-making 

framework using Information Gap Decision Theory 

(IGDT) and a point estimation method to model 

uncertainty in system parameters. 

• Utilization of the Hybrid Belder Algorithm (DHBA) for 

formulating the problem and achieving global optimal 

solutions.  

• Consideration of carbon emissions and green 

certification for pollution reduction and increased 

penetration of renewable resources.  

• Integration of demand response into planning and load 

management strategies. 

 

1.4 Paper Organization 

 

This article is generally divided into several important 

sections. The first section deals with the introduction and 

the explanation of the topic's significance. In the second 

section, an overview of the modeling and proposed 

framework is provided, including an explanation of the 

proposed model for smart parking, the use of renewable 

energy sources, and hydrogen storage, as well as the 

constraints and objectives of the modeling problem. The 

third section introduces the proposed algorithm for 

optimizing energy management. The fourth section is 

dedicated to the case study and the results obtained from 

the proposed models. In the fifth section, the results are 

discussed and compared with previous studies. Finally, the 

sixth section presents concluding remarks and research 

discussions. 

 

 

2. Modeling and Problem Formulation 
 

2.1 Main Title and Author affiliation 

 

In the context of smart parking systems, where 

electricity exchange is involved, there is a need for a 

mechanism that prioritizes parking operation. This includes 

minimizing operating costs and potential penalties while 

maximizing revenue. To address this issue, the system's 

objective function is designed to maximize the profitability 

of Intelligent Parking Lots (IPL). Then, optimization 

models for IPL are developed to respond to various 

scenarios, aiming to minimize total costs while maximizing 

profits. The objective function is formulated as the sum of 

differences between incomes and expenses over all time 

periods, including costs and revenues related to electricity 

buying and selling, load provisioning, energy transfer 

between parking lots and EVs, EV charging costs, fuel cells 

and hydrogen, load response costs, storage costs, and 

renewable energy production costs. Additionally, the cost of 

green certificates is also included[32].  

 ������

= �

	










���sell-grid 

� × �grid 
� � − �buy-grid 

� × �grid 
� �� × ∆�

+��sell-load 
� × ���� × ∆�+��������� �� + �������� �� � × ∆�−�!"#� + !��� + !Tank 

� � × ∆�
− �!PHEV-mV2G 

� + !CapV2G

� + !Penalty 
� � × ∆�

−�!$�%� × ∆��−�&$ × ��&$� � × ∆� '(
((
((
((
)

*+ ,

�+-
�1� 

 

+ � 0�123 × ��123� − �24� �5*+ ,

�+-
× ∆� 

 

Eq (1) outlines various components: �
buy-grid 
�  and �

sell-grid 
�  

denote the purchased and sold power to the upstream network, 

while 6
sell-load 
�  signifies the energy selling price by IPL. 

�������� ��  represents revenue from V2G vehicle energy sales, �������� ��  from G2V vehicles, and !
PHEV-mV2G 
�  for 

purchasing energy from V2G vehicles. The costs !CapV2G

� and 

!Penalty 
� stand for V2G vehicle capacity usage and charging non-

compliance penalties, respectively. Additionally, !"#� , !��� , and !Tank 
�  indicate the operation and maintenance expenses for fuel 

cells, electrolyzers, and hydrogen tanks, while !$�%�  denotes the 

investment and operational costs of renewable energies.  

 

 

2.2 Electric Vehicle Cost Modeling 

 

The costs related to V2G electric vehicles consist of three 

parts, namely !CapV2G

� , !Penalty 
� , and !

PHEV-mV2G 
� . These costs are 

further explained below. 

 

2.2.1 V2G Penalty Cost 

 

Given the structure defined for smart parking, where the 

charging and discharging of electric vehicles are planned to 

ensure that the EV battery reaches the desired state of charge 

(SOC) by the time it leaves, if the actual final SOC falls short of 

the desired level, the operator is required to pay a penalty for 

failing to meet the charging requirements of V2G vehicles upon 

their exit from the smart parking. This penalty cost is calculated 
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using equation (2)[32]. 

 

(2) 

 

!Penalty 
� = � 78!9desired − 78!9�:�

�; #

9+-
×

× 6penalty × <9: 

 

 

Where 78!9desired  represents the desired final SOC of the 

vehicle, 78!9�:  is the actual final SOC of the vehicle, and 6penalty  is the penalty fee tariff. 

 

2.2.2. Cost of V2G Vehicle Capacity  

 

Operators incur a cost per hour to encourage and 
motivate PHEV owners to participate in providing available 
capacity. This cost is outlined in equation (3)[32]. 

 

(3) 
( )

2
max min

Cap-V2G cap.V2G 

1

myG
t v t t

v v v

v

C SOC SOC C ρ
=

= − × × ×Λ∑
 

 78!9�=>  and 78!9�?3  represent the maximum and 

minimum SOC of the vehicle, respectively, !9  is the 

battery capacity, and 6cap.V2G 
� is the price of available 

capacity in period t. Λ9�  is a binary variable indicating the 
vehicle's connection status in each period. 
 

2.2.3. Cost of purchasing energy for V2G vehicles 

 
To calculate the power exchange with the grid, the final 

and initial SOC levels are calculated, and based on that, the 

amount of exchanged power is determined. If 78!�@: , the 

final SOC level, is less than 78!�@= , the initial SOC level, 

the cost of purchasing energy from V2G vehicles is 
obtained from equation (4)[32]. 
 

(4) !������� �A = � 78!�@= − 78!�@: ��9 �
9+-

× !9 × 6:,� �� × <9: 

 

where 6:,� ��
 represents the price of discharging V2G

 vehicles in period t. !9 stands for battery capacity, and <9: denotes a flag indicating the vehicle's movement time. 

 

2.3. Modeling Electric Vehicle Profit 

 

According to the profit objective function from selling 
energy to V2G and G2V vehicles using equations (5) and 
(6), the profit is calculated. 
 

2.3.1. Profit from Selling Power to V2G 

 

To compute the power sold to V2G, we need to establish 

the final and initial SOC of the vehicle, denoted as 78!�@C 

and 78!�@D respectively. By deducting the final SOC from 

the initial SOC, we can determine the amount of power 
charged into the V2G vehicle. The SOC at the time of 

departure, indicated as 78!�@C, determines whether the EV 

is selling or purchasing energy. If the final SOC is lower 
than the initial SOC, the EV acts as a seller, while if it's 
higher, the EV acts as a buyer[32]. 
 

(5) EFGHI�JIKLM = � NOPMQR − NOPMQS�
JIKL

Q+T
× PQ × UV⋅IKLM × XQR 

 6Y⋅� ��  represents the charging price for the V2G 
vehicle in a specific period, while mV2G denotes the 

collection of vehicles connected to the grid. <9: serves as a 
flag indicating the vehicle's movement time. 

 
2.3.2. Profit from selling power to G2V 

 
Profit generated from selling power to G2V vehicles is 

calculated as a benefit for IPL, as they are regarded as loads, 
solely receiving power from the upstream network. This 
profit is computed using equation (6)[32]. 

 

(6) 
EFGHI�JLKIM = � �FQ.VM × UVM �

JLKI

Q+T
× [QM × \M 

  

In each period, �9.Y�  represents the amount of power 

charged by G2V. 6Y� stands for the selling price of power, 

and Λ9�  is a binary variable reflecting the vehicle's 
connection status. 

 
2.4. Modeling Green Certificate Costs 

 

Optimizing the performance of a smart parking system 
often involves integrating green certificates, which is 
effective in enhancing the production and use of renewable 
energy sources. Green certificates serve as evidence that 
energy production or consumption is derived from 
sustainable sources, thereby aiding in reducing greenhouse 
gas emissions. Including objective functions related to 
green certificates in system modeling plays a fundamental 
role in enhancing decision-making processes[11]. In the 
following section, the objective function for the tangible 
cost of green certificates for green certificates is specified 
as follows: L]^^_P^]M`a`VSM^bPcbM

= �0de]_ × �Fe]_M − F]^M �5f
M+T

 
(7) 

The objective function emphasizes the difference 
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between the amount of green energy produced (�123� ) and 

the amount of green energy consumed ( �24� ). This 
discrepancy indicates the potential for increasing green 
energy production or reducing green energy consumption 
from sustainable sources. 
 

2.5. Modeling Renewable Resources 

 
Renewable energy sources employed in this research 

consist of wind turbines and PV systems. The power 
generated by these units is simulated using equations (8) – 
(9), taking into account the uncertain characteristics of wind 
speed, solar radiation, and solar temperature[33]. 

(8) 
�g?3:� =

hij
ik0m� < mYopm� ≥ mYm� − mYm$ − mY mY ≤ m� < m$

�$m$ ≤ m� < m"
s 

 

 

(9) 
������ = t × u��� × �1 − 0.005�w= − 25�� 

 

VC, VR, and VF represent the cutoff, grading, and unit 
shutdown wind speeds, respectively, while Vt denotes the 
predicted wind speed. Additionally, for PPV, the output 
power of the PV system, Lambda is the efficiency of the PV 
array, G(t) is the hourly solar radiation, and Ta is the hourly 
ambient temperature. 

The cost associated with using renewable resources 
includes both investment and operational costs of 
renewable resources[32]. 

 
(10) 

 
 

!$�%��� = � y1$�%
1

+ � y14:1�z$�%
1

 

 

Here, y1$�% stands for the capital investment cost, y14:1
refers to the operational cost of renewable resources, 

and �z$�%represents the power obtained from photovoltaic 
and wind turbine sources. 

 
2.6. Hydrogen Storage Modeling 

 

In this study, the hydrogen storage system (HSS) 
comprises three main parts: hydrogen storage tanks (HST), 
fuel cells (FC), and electrolyzers. The proposed HSS will 
be used as a sub-process during both peak and off-peak 
consumption periods. During off-peak hours when 
electricity prices are low due to minimal energy 
transactions, the electrolyzer transforms electrical power 
into hydrogen, which is then stored in HSTs. Conversely, 
during peak consumption periods when electricity 
pricesrise, FCs convert the stored hydrogen in HSTs back 
into electrical power. The hydrogen produced by 
electrolysis is compressed and stored in a pressure 
vessel[32]. 

 
2.6.1. Electrolyzer Modeling 

 

Modeling the electrolyzer involves its use in separating 
water into H2 and O2 elements by supplying a direct 
current to its electrodes. The electrolysis output power in 

each cycle t, ����*=3{� can be calculated using Equation (11) 
[11,32]. 
 

 

(11) ����*=3{� = �|������ × t�� 

 

where �|������ is the electrical power delivered from 

IPL to the electrolyzer and t�� is the efficiency of the 

electrolyzer. 
 
2.6.2. Electrolyzer Modeling 

 

The electrolyzer is employed to split water into H2 and 
O2 components by delivering a direct current to its 
electrodes. The power output of electrolysis in each cycle t 
can be computed using equation (11) [11,32]. 

)12(  �Tank-FC � = �"#�����
t"#  

where �"#�����  denotes the power transmitted from the 

fuel cell to IPL, and t"# represents the fuel cell efficiency. 
 
2.6.3. Hydrogen Tank Storage Modeling 

 

The hydrogen generated through electrolysis undergoes 
compression and is subsequently stored in a pressurized 
tank. The quantities of hydrogen stored in the tank and 
discharged from it to the fuel cell are computed using 
equations (13) and (14) respectively[11,32]. 

)13(  

2

Tan
Tank

t
t EL k
EL

H

P
H

E

−
− =  

)14(  

 

�Tank �"#� = �Tank �"#�
���

 

where ��� represents the energy of hydrogen per 

kilogram (kWh/kg). 
The energy condition of the stored hydrogen in the tank 

is described using a dynamic pressure model presented in 
equation (15). Taking into account the initial state, its 
amount can be calculated hourly based on the system's 
performance, either by charging or discharging hydrogen. 
The energy stored in the tank for each interval can be 
determined using equation (15). 
 

(15) �Tank � = �Tank ����
+ ��EL-Tank � − �Tank �"#�
× tTank � × �� 
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�Tank �
 and �Tank ����

 indicate the amount of stored 

hydrogen in the tank in periods t and t-∆t, respectively. 
Moreover, ∆t represents the duration of each period, which 
is one hour, and represents the efficiency of the tank. 

 
2.7. Electric Vehicle Modeling 

 

In this research, owners of PHEVs are encouraged to 
engage in the V2G program through various incentives 
provided by the IPL manager. Vehicles participating in this 
program are termed V2G, while those not participating are 
labeled G2V. Energy management can be carried out by 
restricting battery charging or discharging based on factors 
such as entry time, the presence of electric vehicles in the 
parking lot, and the forecasted hourly price. During periods 
when PHEVs are linked to the IPL, the SOC of each PHEV 

(78!9�) is influenced by the SOC of the electric vehicle in 

the previous period (78!9��∆�) and its current charging or 
discharging status, as per equation (16). This equation 
considers parameters such as battery capacity and the times 
of vehicle entry and exit to determine battery charging and 
discharging power as well as their efficiencies[26,28]. 

 

78!9� = 78!9���� + ���@�@.��
#@ − �@.C�

�C@#@� × ��; �9= < � ≤ �9:(16)  

 �9.Y�  and �9.:�  stand for the charging and discharging 

power of the battery, respectively. Moreover, tY9 and t:9  
represent the efficiency of charging and discharging, while �9=and �9: denote the battery capacity and entry and exit 
times, respectively. 

 

2.8. Modeling Demand Response 

In the realm of optimal IPL management, harnessing the flexibility of demand-side response is crucial for optimizing energy consumption and ensuring efficient operation. This study introduces an integrated DR model, where IPL load is transformed into a DR source, enabling dynamic pairing and conversion of multiple energy sources. The mathematical representation of this integrated DR model is as follows[34]: 
�&$� = [¯o�°±=²4� − ¯o�°&$� ]. ��; ∀� ∈ w (17) 

¯o�°&$� = [µ�� × ¯o�°±=²4� ]. ��; ∀� ∈ w (18) 

0 ≤ µ�� ≤ 1; ∀� ∈ w (19) 

 

2.9. Constraints Modeling 

Considering the objective function outlined in section 
2.1 for resolving this optimization problem, various 
equality and inequality constraints are involved. Thus, it is 
assumed that IPL is linked to an upstream network in a 

chain, and the objective functions are fine-tuned while 
adhering to the described limitations [26,28,32]. �|������ + ��� + �Y� + �sell-grid �

= �g?3:� + �¶9� + �"#�|���
+ �±z;�12::� + �:�  

(20) 

 

 

 

(21) ���� × t�A = µ� � + �"#� + �EL-Tank �
− �Tank �"#�  

 
 

(22) 

 
�grid � ; ·�gnid � · ≤ �gridmax 

 

(23) 

 
78!9�?3@� @̧ D¹
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The constraints can be summarized as follows: 
Equation (20) ensures a power balance within IPL, 
accounting for the total charging and discharging power of 
all PHEVs in the given period. Equation (21) maintains a 
balance in hydrogen production. Equation (22) limits the 
maximum capacity of the transmission line connected to the 
upstream network. Constraint (23) ensures that the energy 
charged into and discharged from the battery remains below 
its capacity and energy content, respectively. Constraints 
(24) and (25) set limits on the maximum charging and 
discharging power, respectively. Constraint (26) guarantees 
that the final output capacity does not exceed the desired 
final capacity. Constraints (27) and (28) establish limits on 
the maximum electrolysis and fuel cell power, as well as 
the maximum capacity of the hydrogen tank. Equation (28) 
maintains that the mass of hydrogen in the tank by the end 
of the operating period equals that at the start of the study 
day, ensuring sufficient hydrogen availability for the next 
day's operation. Constraints (29) and (30) define the 
maximum and minimum power generation capacities of 
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wind and solar renewable sources. 
 

 

3. Optimization Method 

In this section, an optimization method is introduced to 
solve the optimization problem of managing the IPL. The 
TPEM algorithm is also described. 
 

3.1. Honey Badger Algorithm (HBA): 

3.1.1. Inspiration 

The Honey Badger Algorithm (HBA) is a metaheuristic 
algorithm proposed by Hashem et al. in 2022[35]. The 
algorithm imitates the foraging behavior of honey Badger. 
To find a food source, a honey bee either smells or follows 
the dance of a guide bee. The first mode is called the 
"scouting mode," and the second mode is called the 
"exploitative mode." In the scouting mode, the bee uses its 
sensing ability to approximate the location of the food 
source. When it reaches the area, it moves around to choose 
a suitable spot for collecting the food. In the exploitative 
mode, the bee follows the dance of a guide bee to find and 
exploit the food directly. 

 
3.1.2. Proposed Mathematical Model:  

 

As discussed earlier, the HBA algorithm is divided into 
two phases: the "scouting phase" and the "exploitative 
phase." In this section, the mathematical formulation of the 
HBA algorithm is explained. The HBA algorithm is 
equipped with both exploration and exploitation phases, 
making it a global optimization algorithm. The stages of the 
HBA algorithm are as follows: 

 
Step 1: Initialization 

 

The initial population size and their corresponding 
positions of honey Badger are determined based on the 
initial equation: 

 
)31( �? = ÀÁ? + p- × �ÂÁ? − ÀÁ?� 

 

r1 is a random value between 0 and 1. In this algorithm, 

xi represents the position of the honey badger that points to 

a candidate solution in a population of N individuals, while 

lb and ub are the lower and upper bounds of the search 

domain, respectively. 

 

Step Two: Intensity Definition 
 

Intensity refers to the concentration of the scent of the prey 

and the distance between it and the honey badger. Ii 

represents the intensity of the prey's scent. If the scent is 

strong, the movement will be fast, and vice versa, according 

to the inverse square law and the following equation. 

 

)32( 

Ã? = p × 7/4�°?  7 = ��? − �?Å-�  °? = �¶24; − �? 
where S represents the strength of the source or the 

concentration power (prey location), and di indicates the 

distance between the prey and the i-th honey badger. 

 

Step Three: Updating the Density Factor 
 

The density factor (α) randomizes the variable over time to 

ensure a smooth transition from exploration to exploitation. 

The updating of the diminishing coefficient α, which 

decreases with iterations to reduce randomness over time, is 

governed by the following equation[35]. 

 

)33( Æ = ! × Ç�È� − É�/É��=>� 

   

Step Four: Escaping Local Optima 

 

This step, along with the two following steps, is used to 

escape from local optima. In this regard, the proposed 

algorithm utilizes a flag F to change the search direction, 

allowing agents to explore high-opportunity areas for 

accurate scanning of the search space. 

Step Five: Updating Representative Positions 

As mentioned before, the updating process of the HBA 

positions (xnew) is divided into two phases: "excavation 

phase" and "honey phase." 

• Excavation Phase 

During the excavation phase, a honey badger performs a 

cardio vectored movement, as shown in Fig. 1. The cardio 

vectored movement can be simulated with the following 

equation: 

 

 

 

(34) 

�34g = �¶24; + � × Ê × Ã × �¶24; +� × pË × Æ × °? × |yoÍ� 2�p,�|× [1 − yoÍ� 2�pÎ�] 

 

   
where β is the position of the prey, which represents the 

best global position found so far. In other words, it is the 

global best position. β (default value 6) indicates the honey 

badger's ability to sense the prey. di is the distance between 

the prey and a honey badger. r3, r4, and r5 are three 

different random numbers between 0 and 1. F acts as a flag 

that changes the search direction, determined using the 

following equation: 

 

)35( � = Ï1ÉÐpÑ ≤ 0.5−1ÇÀÍÇ s 
 

In the excavation phase, a honey badger strongly relies on 
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the intensity of the smell of prey (I) represented by Xprey, 

the distance between the honey badger and the prey (di), 

and the search factor variable with time (α). Additionally, 

during the excavation activity, a honey badger may 

encounter any hindrance that allows it to find an even better 

hunting location (see Fig.1). 

 

 
Fig. 1. Excavation Phase: The blue pattern represents the intensity of the 

smell (I), and the black circular line indicates the location of the prey[35]. 

 
• Honey Phase 

When a honey badger follows the guidance of a bird in 
the honey phase to reach the beehive, its movement can be 
simulated using a similar equation. 

 
)36( �34g = �¶24; + � × pÒ × Æ × °? 

 
In this equation, xnew refers to the new position of the 

honey badger, while xprey represents the location of the 
prey. The values of F and α are determined using the 
provided equation. From this equation, it can be observed 
that a honey badger, based on distance information, 
searches near the location of the prey (xprey ) that has been 
found so far. In this phase, the search is influenced by the 
search behavior, which varies with time (α). Additionally, a 
honey badger may encounter the flag F, indicating potential 
disruptions during the search process. 
 

3.3. Differential Honey Badger Algorithm (DHBA): 

 

The HBA algorithm, due to its utilization of 
evolutionary strategies and effective social learning, 
maintains a balanced exploration of both local and global 
search spaces. Consequently, it exhibits considerable power 
and performs better in solving problems with real-valued 
functions. Furthermore, the division of the population into 
multiple groups has enabled the HBA algorithm to conduct 
rapid searches with suitable convergence characteristics. 
Essentially, the population division into groups or societies 
encourages individuals to explore different directions, 

significantly increasing the diversity of mutations among 
them. Each member of the best community covers a 
specific region of the problem space. In comparison to its 
excellent capability, the HBA algorithm is relatively simple, 
requiring only one control parameter besides the population. 
This optimal control parameter value has been calculated in 
this study, eliminating the need for additional computations 
by the user. Additionally, to enhance its efficiency and 
convergence, a new phase has been added to this algorithm 
in this paper. In this new phase, the Differential Evolution 
(DE) [36] algorithm operator has been employed as the fifth 
phase of the algorithm, added through the following 
relationship. 

 

(37) Ó��É� = ÔÓ��É� p�Õ°�0,1� < !�Ó��É� o��ÇpÖÉÍÇ s 
 

 

4. Modeling uncertainty 

 
Modeling uncertainty is a critical aspect of decision-

making processes, especially when dealing with complex 
systems or situations where outcomes are not entirely 
predictable. Two common approaches to managing 
uncertainty are interval estimation and decision theory. 
Interval estimation involves assessing the best and worst-
case scenarios to provide a wide spectrum of possible 
outcomes. On the other hand, decision theory focuses on 
identifying the maximum level of uncertainty that a 
decision-maker can tolerate, particularly when significant 
uncertainty exists. The rationale for combining these two 
methods lies in their complementary nature. In many real-
world scenarios, the data used in decision-making 
predictions are often forecasted, and their performance is 
assumed to be symmetric. However, this assumption may 
not always hold true, especially when dealing with highly 
uncertain situations. By integrating interval estimation with 
decision theory, we can employ a structured approach to 
decision-making while also encompassing the range of 
probabilities provided by interval estimation. This 
combination allows decision-makers to consider not only 
the predicted data but also potential deviations from these 
predictions. Essentially, using interval estimation for 
probabilistic data enables a more comprehensive 
assessment of uncertainty and enhances the robustness of 
the decision-making process. 
 

4.1. Two-Point Estimation Method (TPEM): 

 
The two-point estimation method (TPEM) is well 

recognized as a prominent approximation technique owing 
to its exceptional precision and efficient computational 
speed [37]. Consequently, this research utilizes a TPEM-
based approach to mitigate uncertainties associated with 
wind, solar, and load factors. The disparity between 
observed and projected values indicates the level of 
uncertainty. The use of less accurate methodologies for 
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managing uncertainty leads to a significant reduction in 
implementation costs. Various modeling methodologies are 
used depending on the nature of the issue and the presence 
of unknown variables. System operators may use TPEM to 
effectively manage uncertainties due to its high accuracy 
and efficient processing time[37]. The TPEM-Hong 
technique is a valuable strategy for addressing unclear 
matters, including random factors and statistical data. A 
comprehensive understanding of the probability density 
distributions of the parameters is not necessary[38]. The 
operational methodology of this strategy is grounded on the 
use of the moment-based approach to effectively manage 
unpredictable input parameters. 
The process of calculating the moments of the output 

variables for the mid-term energy planning 

problem can be summarized in the following steps[38]: 
 

1- First, determine the number of random input 

variables, denoted by m. 

2- Set the vector of the j-th output variable moments 

to zero: E(Yj) = 0. 

3- Set t = 1 (t = 1, 2, ..., m). 

4- Determine the two standard locations:  

�É = × + √2. Ù. ÇpÐ�-�2p − 1�   (38) 

Ú�,? = Û�,Ü + �−1�Ë�? . ÝÞ�,, − Ë
, Þ�,Ë É = 1,2  (39) 

where λt, 3 are the skewness and λt, 4 are the kurtosis 
of the input random variable xt. 

 
5- Determining two locations xt,i: 

��,? = ×�,? + Ú�,?Ù�,?É = 1,2    (40) 

where µxt and σxt are the mean and standard deviation 
of xt, respectively. 

 
6- Implementation of IPL energy planning and 

management algorithm for both locations xt,i 

using two variable input vectors: 

�? = 0×>-, ×> , . . . , ��,? , . . . . , ×>�5É = 1,2      �41� 

 
where µxk (k = 1, 2, …, m; and k ≠ t) are the average 

values of the remaining random input variables. 
 
7- Determination of weight coefficients: 

Ö�,? = ��-�Üßà
á�,à�á�,â�á�,�� É = 1,2           (42) 

8- Update E(Yj): 

��ãä�
= ��ãä� + � Ö�,?[��åä�] 

?+-
       �43� 

 
 

9- Repeat steps 4 to 8 for t = t + 1 until the list of random 

input variables is finished. 

10- Implementation of the medium-term planning 

algorithm of the distribution network using the input 

variable vector: 

 

�æ = [×>-, ×> , . . . , ��,? , . . . . , ×>�]   (44) 

11- Determining the response weighting factor of the IPL 

energy planning algorithm step 10: 

Ö½ = 1 − ∑ -
Û�,è�Û�,Ü���+-            (45) 

 
12- Update E(Yj): 

 ��ãä� = ��ãä� + Ö½[��åæ�]     (46) 

 

��ãä� = ∑ ∑ Ö�?[��×>-, ×> , . . . , ��,? , . . . . , ×>��] ?+-��+- ä +Ö½[��åæ�]                 (47) 

 

By knowing the statistical moments of the output rand
om variable, the mean and standard deviation can be calcul
ated: ×é = ��ã�              (48) 

Ùé = ê��ã � − ×é (49) 

 
Based on the statistical moments, the probability 

density functions of the desired output random variables 
can be approximated using the Gram-Charlier series 
method. 
 

4.2. Information-Gap Decision Theory (IGDT) 

 

Due to limitations in current prediction methods, smart 
parking operators must calculate their own estimates 
associated with inherent uncertainties related to predicted 
variables such as wind speed, solar radiation, and demand. 
These uncertainties can significantly impact decision-
making processes regarding IPL performance for the next 
day. To address this issue, an appropriate method for 
modeling these uncertainties is necessary. The method used 
in this study is the Information-Gap Decision Theory 
(IGDT). IGDT is a non-probabilistic approach designed for 
managing models with uncertain input data. This method 
enhances uncertainty radius, provides a solution, and offers 
specific expectations regarding the target variable. IGDT 
consists of two main strategies: RA-IGDT and RS-
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In the above equations, 
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appendix to demonstrate the superior performance of the 
combined algorithm. According to the optimization results, 
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utilized in simulations related to IPL.
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related to charge compliance and cost thresholds, 
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the investment and utilization of parking lots and associated 
resources, this study has been fully explained. The planned 
parking infrastructure is illustrated in Fig. 2. The interaction 
between IPL and the upstream network, as well as energy 
storage systems and renewable energy sources, is depicted 
in this image. This IPL participates in the future market (at 
the distribution market level), and IPL management is 
responsible for energy exchange with the upstream network. 
A fuel cell, an electrol
constitute the hydrogen storage system.
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the studied system, there are 10 V2G units capable of both 
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5.1. System Under Study 

 
The scheduling of electric vehicle (EV) charging and 

discharging with the aim of maximizing parking revenue 
and minimizing costs for EV owners, reducing green 
certification costs and pollution emissions, as well as 
adhering to technical, economic constraints, and penalties 
related to charge compliance and cost thresholds, 
constitutes the main components of this study. 
the investment and utilization of parking lots and associated 
resources, this study has been fully explained. The planned 
parking infrastructure is illustrated in Fig. 2. The interaction 
between IPL and the upstream network, as well as energy 
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in this image. This IPL participates in the future market (at 
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Fig. 2. Proposed IPL topology with equipment.

Renewable energy sources are wind turbines and 
photovoltaic sources, each with a capacity of 30 kW, as 
indicated in Table 1. The 
electrolysis, FC, and hydrogen storage tank, whose 
technical specifications are given in Table 2 and Table 3. In 
the studied system, there are 10 V2G units capable of both 
charging and discharging and 5 G2V units participat
the IPL throughout the day.
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resources, this study has been fully explained. The planned 
parking infrastructure is illustrated in Fig. 2. The interaction 
between IPL and the upstream network, as well as energy 
torage systems and renewable energy sources, is depicted 

in this image. This IPL participates in the future market (at 
the distribution market level), and IPL management is 
responsible for energy exchange with the upstream network. 

yzer, and a hydrogen storage tank 

. Proposed IPL topology with equipment. 

Renewable energy sources are wind turbines and 
photovoltaic sources, each with a capacity of 30 kW, as 

hydrogen storage system includes 
electrolysis, FC, and hydrogen storage tank, whose 
technical specifications are given in Table 2 and Table 3. In 
the studied system, there are 10 V2G units capable of both 
charging and discharging and 5 G2V units participating in 
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In this section, numerical results related to the planning 
and optimal management of IPL using the combined D-
BHA method are evaluated. In addition to the results 

IPL energy management, optimal optimization 
results for nine standard test functions are provided in the 
appendix to demonstrate the superior performance of the 
combined algorithm. According to the optimization results, 

BA algorithm has 
been better, and therefore, only this algorithm has been 

The scheduling of electric vehicle (EV) charging and 
discharging with the aim of maximizing parking revenue 

imizing costs for EV owners, reducing green 
certification costs and pollution emissions, as well as 
adhering to technical, economic constraints, and penalties 
related to charge compliance and cost thresholds, 

Considering 
the investment and utilization of parking lots and associated 
resources, this study has been fully explained. The planned 
parking infrastructure is illustrated in Fig. 2. The interaction 
between IPL and the upstream network, as well as energy 
torage systems and renewable energy sources, is depicted 

in this image. This IPL participates in the future market (at 
the distribution market level), and IPL management is 
responsible for energy exchange with the upstream network. 

yzer, and a hydrogen storage tank 

Renewable energy sources are wind turbines and 
photovoltaic sources, each with a capacity of 30 kW, as 

hydrogen storage system includes 
electrolysis, FC, and hydrogen storage tank, whose 
technical specifications are given in Table 2 and Table 3. In 
the studied system, there are 10 V2G units capable of both 

ing in 
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Table 1. PV system and wind turbine unit parameters[32,42]. 

 
PV 

system 
  

Wind 

turbine 
 

Parameters Value Unit parameters Value unit 

R 1 
kW/ 

m2 
VC 3 m/s 

   VR 12 m/s 

T 25 ˚c VF 30 m/s 

 
Table 2. Technical specifications of the hydrogen unit [32]. 

EH2 

kWh/kg 

MTank-

initial 

kg 

MTank-

min 

kg 

MTank-

max 

Kg 

PFC-

max 

kW 

PEL-

max 

kW 

39.7 5 1.25 8 20 40 

 

 
 

Table 3. Equipment's economic attributes[32]. 

 

Com

pone

nts 

Maintenan

ce costs 

Cm 

$/year 

Capacit

y factor 

CF 

% 

Initial 

investme

nt cost 

A 

$/W 

Lif

e 

tim

e 

n 

Yea

r 

 

 

Effi

cie

ncy 

% 

Hydr

ogen 

tank 

20 0.9 0.625 15 

 

95 

Fuel 

cell 
13 0.9 0.700 20 

 
50 

Elect

rolyz

er 

15 0.9 0.350 25 

 

75 

 

 

All PHEVs utilized in this examination shared identical 
specifications. The technical details of these PHEVs are out
lined in Table 4. Each PHEV is assumed to have a maximu
m power consumption of 4 kilowatts for both charging and 
discharging purposes. Table 5 presents the rates for chargin
g and discharging, available capacity, and penalty rates appl
icable V2G vehicles, alongside the charging and dischargin
g costs for G2V vehicles. Additionally, Table 6 exhibits the 
anticipated SOC of V2G vehicles upon departure. Tables 7 
and 8 furnish projections for departure and arrival times, as 
well as the initial SOC of the vehicles. In Table 9, the infor
mation related to the cost of responding to the load accordin
g to the percentage of the load ratio is given. 

 
 

Table 4. Technical specifications of PHEVs[27,32]. 

SOCmax 

% 

SOCmin 

% 

t:9  

% 

tY9 

% 

Battery 

Lithium-

Ion 

kWh 

PHEV 

95 15 95 90 24 
NISSAN 

LEAF 

 

 
Table 5. PHEV charging and discharging tariff [27,32]. 

6penalty  

$/ kWh 

6cap.V2G 
�  

$/ kWh 

6:,� ��  

$/ kWh 

6Y⋅� ��  

$/ kWh 

6Y� 

$/kWh 

4*69�Az1�?3
 

0.02*69�Az1�?3
 

1*69�Az1�?3
 

1.1*69�Az1�?3
 

1.3*6grid 
�  

 

 

*69�Az1�?3
 is the market price on average for the number of times 

each PHEV is connected. 

 

 

 

Table 6. Desired SOC of PHEV V2G [27,32] 

10 9 8 7 6 5 4 3 2 1 
PHEV�v� 

60 90 70 55 75 75 85 90 60 90 78!9:4²?24:
 

 

 

Table 7. PHEVs' predicted G2V data [27,32]. 

78!9�C �9: �9= PHEV�v� 

45.59 13:11 7:13 1 22.04 15:20 9:10 2 27.3 15:50 9:35 3 40.36 18:50 7:35 4 16.47 21:45 12:07 5 
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Table 8.Predicted data of PHEV V2Gs [27,32]. 

PHEV

(v)  

50  15:33  7:10  1  

31.6 17:55  8:55  2  

42.9  15:25  6:20  3  

48.2  16:43  8:12  4  

42.5  13:46  8:05  5  

37.8  17:05  7:46  6  

48.5  13:40  9:55  7  

33  16:30  5  8  

63  14:40  6:10  9  

46.3  13:50  7:42  10  

Table 9. Data related to demand response [43] 

100% 66% 33% Load 

4.5 3.5 2.5 DR Cost 
(kW/$) 

 

The characteristics of the predicted market price and 

load demand values are shown in Fig. 3. 6
sell-load 
� tariff is 30% 

higher than the market price. The amount of solar radiation 
and wind speed are also shown in Fig. 4. 
 

 
Fig. 3. Market price and predicted cargo demand [50]. 

 

 
Fig. 4. Predicted wind speed and solar radiation. 

 

 

5.2.  Simulation Results 

 

This section presents the results obtained from 
optimizing the proposed model using the DHBA 
optimization algorithm. To this end, the proposed model for 
optimizing the performance of Intelligent Parking Lots (IPL) 
using MATLAB software was solved on a personal 
computer with an Intel Core i5-4460 CPU @ 3.20GHz and 
12 gigabytes of RAM. To better evaluate the optimized 

performance of IPL, three simulation scenarios have been 
considered. These scenarios are summarized as follows: 

 

• Scenario 1: Optimization of IPL without 

considering demand response and green 

certificates deterministically. 

• Scenario 2: Optimization of IPL considering 

demand response and green certificates 

deterministically. 

• Scenario 3: Optimization of IPL considering 

demand response and green certificates 

probabilistically. 

Subsequently, the results of each scenario are discussed 
and analyzed. 

 
5.2.1. Scenario 1 

 

To evaluate the performance of the proposed IPL model 
in this scenario, energy management strategies were 
implemented using the real IPL model. The objective of this 
scenario is to assess the optimized performance of IPL 
without considering the uncertainty of renewable sources 
and the dynamic nature of load and renewable resources. 
Additionally, demand response and green certificate costs 
are not taken into account in this scenario. The simulation 
was conducted using a deterministic approach and provided 
valuable insights into the effectiveness of the proposed 
strategy. The problem of optimizing IPL performance in the 
presence of renewable sources was solved using the 
proposed optimization method. 

In this scenario, the aim is to examine the effects of 
wind and solar renewable sources. These sources interact 
with other components in IPL to determine an optimal 
scheduling of unit production and charge/discharge of units 
and vehicles. The results obtained from optimization using 
the DHBA algorithm are presented in Table 10. These 
findings indicate that the profit obtained has increased 
compared to the scenario where renewable sources are 
absent, amounting to $2103.1 thousand. This result 
demonstrates the effectiveness of the optimization method 
in optimizing revenues against costs. 

The visual results of optimization are illustrated in Fig.s 
5 through 7. Fig. 5 depicts the optimized scheduling and 
power interactions among different sections of IPL in the 
presence of renewable sources. It is observed that the 
purchased power from the grid is mostly utilized for 
charging V2G vehicles during off-peak hours, while 
renewable sources contribute the highest share of power 
during these hours. Additionally, in some instances, power 
is sold back to the grid during hours 5 and 6, corresponding 
to lower demand periods, leading to increased system 
profits. 

The variations in hydrogen mass resulting from power 
exchange are illustrated in Fig. 6, indicating that hydrogen 
mass stored in the tank is injected into IPL via fuel cells 
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during hours 1-8 and 17-24, while it begins to be stored 
through various sources between hours 8 and 17. The 
presence of fuel cells as green storage reduces the reliance 
on grid-supplied power during times when renewable 
sources, such as photovoltaic, have zero power output. 

Fig. 7 illustrates the power for charging and the number 
of G2V charged and the power for V2G charge/discharge 
over time. In this scenario, power during hours 8-17 is 
primarily supplied through renewable sources, utilizing 
stored power in HSS and power derived from V2G 
discharge in IPL, as shown in Fig. 7. 

The optimal interaction between exchanged power in 
various units at different times has facilitated the effective 
provision of loads and fulfilled all problem constraints, 
ultimately resulting in cost reduction and profit increase. 

 

 
Fig. 5. IPL power planning and management (Scenario 1). 

 
Fig.6. Scheduling of fuel cell power along with hydrogen tank 

capacity (scenario 1). 

 
Fig.7. Scheduling V2G charging and discharging along with G2V 

power in IPL (Scenario 1). 

 

 
Table 10. Optimal results of IPL energy management, costs and income (s

cenario 1) 

Value Parameter 

1.89541×102 Revenue of Grid ($) 

1.65321×102 Revenue of Load ($) 

1.50760×102 Revenue of V2G ($) 

84.9627×101 Revenue of G2V ($) 

2.59191×102 Cost of V2G ($) 

5.31033×102 Cost of FC ($) 

6.25516×102 Cost of Electrolyzer ($) 

4.03987×102 Cost of Tank ($) 

4.56342×102 Cost of REN ($) 

2.10308×104 Profit  ($) 

 

 
5.2.2. Scenario 2 

 

In this scenario, the integration of renewable sources 
and demand response, along with considering the costs of 
green certificate issuance, demonstrates a significant 
transformation in IPL's energy management strategy. The 
strategic integration of renewable sources, as depicted in 
Fig. 8, emphasizes IPL's commitment to sustainable energy 
practices by optimizing the use of solar and wind energy 
while meeting fluctuating load demands. This strategic 
integration not only reduces reliance on non-renewable 
energy sources but also aligns with IPL's environmental 
objectives. According to the results, during hours 9 to 17, 
the highest power for G2V is mainly supplied from V2G 
vehicles, renewable sources, and other sources with an 
additional share from fuel cells. This strategic 
energydistribution ensures efficient utilization of available 
resources and minimizes resource wastage. 

Additionally, considering demand response, as shown in 
Fig.s 8 and 11, enables IPL to dynamically adjust its power 
scheduling and management, ensuring efficient resource 
utilization and minimizing wastage. This adaptability 
enhances the overall system performance and flexibility in 
response to changing demand patterns. Moreover, 
incorporating the costs of green certificate issuance, as 
depicted in Table 11, indicates IPL's environmental 
stewardship and willingness to invest in sustainable 
practices. While these costs may impact operational 
expenses, they contribute to IPL's significance as an 
environmentally conscious system. 

Based on the results, efficient scheduling of fuel cell 
power management and hydrogen storage tank capacity, as 
illustrated in Fig. 9, ensures a reliable and continuous 
power supply, optimizing energy efficiency and minimizing 
resource wastage. Similarly, strategic planning of V2G 
charge and discharge, as shown in Fig. 10, utilizes electric 
vehicles as mobile energy storage units, providing 
additional revenue streams and contributing to grid stability. 

P
o
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Additionally, the variations in stored hydrogen mass in the 
tank indicate that from hour 10 to 17, there is a greater 
accumulation of hydrogen mass coinciding with peak 
demand periods. This pattern reflects a strategic shift in fuel 
cell usage, alignment with peak demand periods, and 
maximizing energy storage and distribution efficiency. 

Overall, Scenario 2 serves as an exemplar of IPL's 
comprehensive approach to energy management, balancing 
financial profitability with environmental sustainability and 
social responsibility. In this scenario, profits increase to 
$24,905.3, indicating a significant improvement compared 
to Scenario 1 ($21,030.8), representing an approximate 18.5% 
increase. 

 
Fig.8. IPL power planning and management (Scenario 2). 

 
Fig.9. Scheduling of fuel cell power along with hydrogen tank capacity 

(Scenario 2). 

 
Fig.10. Scheduling V2G charging and discharging along with G2V power 

in IPL (Scenario 2). 

 
Fig.11. Solar-wind power production plan and load response (Scenario 2) 

 
 
 
 

Table 11. Optimal results of IPL energy management, costs and 
income (Scenario 2) 

Value Parameter 

1.82905×102 Revenue of Grid ($) 

1.53421×102 Revenue of Load ($) 

1.00975×102 Revenue of V2G ($) 

36.4463×101 Revenue of G2V ($) 

33.1330×102 Cost of V2G ($) 

5.97857×102 Cost of FC ($) 

6.58928×102 Cost of Electrolyzer ($) 

4.63745×102 Cost of Tank ($) 

4.66046×102 Cost of REN ($) 

3.05433×102 Cost of DR ($) 

4.95060×102 Cost of GC ($) 

2.49053×104 Profit  ($) 

 

 

5.2.3. Scenario 3 

 

Given the intermittent nature of renewable power 
generation and demand variations, this section examines the 
impact of uncertainty in these sources and load demand. To 
this end, a combined approach of two-piecewise estimation 
method and Risk-Averse Integrated Green Decision Theory 
(TPEM-RAIGDT) has been employed to model uncertainty. 
Initially, the TPEM method is used to obtain probabilistic 
data for wind, solar, and load, followed by the RAIGDT 
method to determine the uncertainty radius using the 
DHBA optimization method. Unlike the Monte Carlo 
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method, this approach requires fewer samples and a single 
uncertainty radius to model uncertainty effectively. 
Additionally, due to the probabilistic nature of the input 
data, the uncertainty radius is asymmetric and probabilistic. 

Fig. 11 illustrates the data generated for each of the 
renewable sources and load using the TPEM method. The 
values obtained from this method are shown to have a 
narrower range compared to predicted data. The energy 
management of IPL is optimized for each data point using 
the generated data from this method. Finally, statistical 
parameters such as mean and standard deviation are 
calculated for this method. 

The optimization results in this scenario for different β 
values based on the profit obtained from Scenario 2 are 
presented in Table 12. It can be observed that profit 
decreases with an increase in the uncertainty radius. 
Moreover, the changes in the uncertainty radius and profit 
are illustrated in Fig. 13. Additionally, considering the 
uncertainty reduces the profit compared to the deterministic 
optimization scenario, attributed to the consideration of 
non-deterministic conditions of sources and load. 

To select an appropriate uncertainty radius with 
reasonable and acceptable profit margins, a β value of 
1.5%is chosen. After optimization, the results obtained are 
presented in Table 13. In this case, the profit value is 
$2.25126 thousand, which indicates a decrease of a few 
percentage points compared to the deterministic scenario. 

Furthermore, the simulation results of Scenario 3 in Fig. 
14 depict the optimized energy management and 
interactions of IPL components with the grid. It is evident 
from Fig. 14 that due to renewable energy generation, 
purchasing decreases in some time periods. This reduction 
in purchasing from the grid coincides with an increase in 
stored hydrogen mass in the tank, facilitating consumption 
during peak demand hours. The presence of this source and 
the possibility of energy storage and direct consumption in 
hydrogen fuel cell electric vehicles will have the greatest 
economic benefit for IPL owners. Thus, IPL management 
with system uncertainty can provide practical applications 
with similar economic benefits to Scenario 2. Additionally, 
at hour 3, despite the presence of renewable sources, selling 
to the grid occurs, leading to increased profit. However, 
compared to Scenario 2, grid purchasing increases in more 
instances due to uncertainty, resulting in a decrease in 
energy purchase income. 

Fig. 15 illustrates changes in hydrogen tank mass and 
power exchanges between HSS and IPL. With increased 
purchasing from the grid and interactions with electric 
vehicles, the amount of energy stored in the hydrogen tank 
increases during early and low-demand hours. However, 
due to uncertainty regarding electric vehicle loads and 
storage benefits, this increases the cost of HSS. 

Fig. 16 also depicts changes in the power and 
participation levels of G2V and V2G. As seen in these 
figures, the total charge and discharge power of these 
electric vehicles decrease compared to Scenario 2 based on 
charge and discharge management decisions. Additionally, 
a comparison of the two scenarios reveals that the number 

of vehicles involved in the charging and discharging 
process changes slightly, and even remains equal in some 
hours. However, due to the uncertain system, the charging 
and discharging capacity of each EV has changed. 

Fig. 17 also illustrates changes in wind and solar 
generation considering the cost of green certificates, along 
with the participation levels of loads in the demand 
response program. 

 

 
Fig.12. Uncertainty range of solar radiation and wind speed using point 

estimation method (scenario 3) 

 
Fig.13. Uncertainty radius according to β changes based on profit 

(scenario 3) 

 
Fig. 14. IPL power planning and management (Scenario 3) 
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Fig.15.Scheduling of fuel cell power along with hydrogen tank capacity 

(scenario 3) 

 
Fig.16. Scheduling V2G charging and discharging along with G2V power 

in IPL (scenario 3) 
 
 
 

 
Fig.17. Solar-wind power generation plan and demand  response 

(scenario 3) 

 

 

Table 12. Results of the combined TPEM-RAIGDT method for the 
radius of uncertainty (scenario 3) 

Profit ($) α β 

2.21435×104 0.00964 0.1 

1.96029×104 0.01568 0.2 

1.43082×104 0.03092 0.3 

1.27773×104 0.03946 0.4 

 

 

 

 

 

 

 

Table 13. Optimal results of IPL energy management, costs and 
income (scenario 3) 

Value  Parameter  

1.80721×102  Revenue of Grid ($)  

1.56225×102 Revenue of Load ($)  

1.09405×102 Revenue of V2G ($)  

1.59372×102 Revenue of G2V ($)  

1.44884×102 Cost of V2G ($)  

3.97728×102  Cost of FC ($)  

6.04085×102  Cost of Electrolyzer ($)  

6.62042×102  Cost of Tank ($)  

4.68409×102  Cost of REN ($) 

2.46510×102 Cost of DR ($) 

1.37915×103 Cost of GC ($) 

2.25126×104 Profit  ($)  

 

 

5.3. Comparison of Results 

 

After a thorough analysis of the three potential scenarios 
with the aim of increasing the efficiency of IPL 
management and utilizing the DHBA optimization method, 
significant findings regarding the practicality and benefits 
of the proposed strategy have emerged. This underscores its 
implementability in real-world environments, especially in 
smart parking facilities. Through comprehensive 
examination using both deterministic and probabilistic 
approaches, a comprehensive understanding of the optimal 
exploitation framework of IPL has been achieved. This 
includes various aspects such as vehicle charging and 
discharging, upstream network purchasing, hydrogen 
storage, demand response, green certification, pollution 
emission, and electrolysis performance under different 
conditions, whether usual or uncertain. 

The cost and income results for each of the three 
scenarios are precisely presented in Table 14. Upon 
reviewing these findings, it is evident that the integration of 
renewable sources leads to increased profitability. It also 
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reduces environmental impacts and pollution emissions by 
maximizing renewable resources. However, on the other 
hand, calculating uncertainties using the proposed 
combined method results in reducing profit margins. 
Consequently, IPL operators can make informed decisions 
to maintain reasonable profit margins and ensure optimal 
and beneficial exploitation facilitation. 

 
 

Table 14. Optimal results of IPL energy management, costs and 
income  

scenario 3  scenario 2  scenario 1  Parameter  

1.80721×102  1.82905×102  1.89541×102 Revenue of 

Grid ($) 

1.56225×102 1.53421×102  1.65321×102 Revenue of 

Load ($) 

1.09405×102 1.00975×102  1.50760×102 Revenue of 

V2G ($) 

1.59372×102 36.4463×101  84.9627×101 Revenue of 

G2V ($) 

1.44884×102 33.1330×102  2.59191×102 Cost of 

V2G ($) 

3.97728×102  5.97857×102  5.31033×102 Cost of FC 

($) 

6.04085×102  6.58928×102  6.25516×102 Cost of 

Electrolyzer 

($) 

6.62042×102  4.63745×102  4.03987×102 Cost of 

Tank ($) 

4.68409×102  4.66046×102 4.56342×102 Cost of 

REN ($) 

2.46510×102 3.05433×102 -- Cost of DR 

($) 

1.37915×103 4.95060×102 -- Cost of GC 

($) 

2.25126×104 2.49053×104  2.10308×104 Profit  ($) 

 

6. Conclusion 

 
The integration of Intelligent Parking Lots (IPLs) with 

Renewable Energy Sources (RES) and Hydrogen Storage 
Systems (HSS) holds significant promise in achieving both 
technical and environmental objectives. This paper 
proposes a novel energy management framework for IPLs 
based on HSS, encompassing various energy management 
strategies. Our analyses demonstrate that these systems, by 
leveraging diverse energy management approaches and 
clean energy sources, can achieve high profitability and 
desirable performance. Moreover, considering uncertainty 
and employing combined modeling methods can enhance 
system performance under different conditions. These 
findings indicate that IPL operators, through cautious 

decision-making, can minimize costs while simultaneously 
increasing system profitability, leading to efficient and 
effective operations. 

The adoption of integrated solutions of smart electric 
parking combined with renewable energy sources and 
hydrogen storage systems can play a crucial role in 
addressing the growing demand for sustainable energy 
solutions. By employing advanced energy management 
strategies and utilizing renewable energy sources, these 
systems have the potential to reduce carbon emissions and 
reliance on traditional energy grids. Furthermore, the 
integration of hydrogen storage systems enables efficient 
energy storage and utilization, enhancing overall 
infrastructure sustainability and flexibility. Additionally, our 
study underscores the importance of considering 
uncertainty and employing robust modeling techniques to 
calculate various factors affecting system performance. By 
combining probabilistic modeling and decision frameworks, 
IPL operators can better anticipate and mitigate risks 
associated with energy management and resource utilization. 
This proactive approach not only enhances system 
efficiency but also ensures adaptability and flexibility in 
facing variable environmental conditions and operations. In 
conclusion, the findings highlight the transformative 
potential of integrating renewable energy sources and 
hydrogen storage systems in electric parking lots. Through 
strategic planning and effective management practices, IPL 
operators can optimize system performance, minimize costs, 
maximize profitability, and ultimately contribute to the 
creation of a more sustainable and resilient urban energy 
infrastructure. 
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