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Abstract  

The blood supply chain is one of the most important challenges in health and medical networks. In this paper, a non-linear multi-objective 

robust model of the blood supply chain under the condition of blood demand uncertainty is presented. The proposed model is a three-level 

model including supply, processing, and distribution of blood. The decision variables determined after solving the model include, the 

amount of blood collected from donors in the collection centers and sent to the blood centers, the product sent from the blood centers to the 

hospital, the optimal number of blood collection centers, the amount of product inventory in each center and hospital, and the amount of 

product shortage in each center and hospital. The aim of the proposed model is to reduce the costs of blood transfusion, shortages, and 

waste of blood and increase the reliability of the blood supply chain. To validate the proposed model, sensitivity analyses were performed 

using real data with different dimensions in the Barron solver in GAMS software. Sensitivity analyses of the model were carried out on the 

costs of waste, shortage, and the objective function. The results confirmed the validity and efficiency of the proposed model. 
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1. Introduction 
Blood products are essential items in the fields of health 
and medicine, and despite advances made in the medical 
field, a suitable alternative has not yet been found for it 
(Nahofti Kohneh et al., 2016). One of the most important 
issues in the blood supply chain is the provision of 
sufficient and healthy blood under normal and critical 
conditions. Due to the importance of blood products in 
saving human life, the perishable nature of blood 
products, and random behavior in supply and demand 
areas, the blood supply chain has received more attention 
from experts, scientists, and governments than the supply 
chain of other normal goods (Rezaei-Malek et al., 2016). 
Shortage of blood can increase mortality risks at 
hospitals; on the contrary, high inventory levels could 
generate wastage of this scare resource (Ramírez and 
Labadie, 2017). 
In the design and modeling of the blood supply chain, 
researchers have paid less attention to blood collection 
centers by donors and timely blood and blood products 
transfusion to demand points (blood centers), while they 
have a significant impact on the reliability of the supply 
chain (Motamedi et al., 2019). To supply and respond to 
the blood demand needed by hospitals, shortages and 
wastages of blood should be considered as two factors of 
uncertainty because they have the greatest impact on the 
entire supply chain (Motamedi et al., 2020). 
The aim of this research is to provide an optimal and 
robust model of the 3-level blood supply chain, including 
the supply, processing, and distribution of blood, 
considering the uncertainty in blood demand. 
A schematic of the research problem is presented in 

Figure 1. As can be seen, blood collected from donors is 
transported to blood centers for testing and preparing the 
blood products needed by patients. Then, blood centers 
meet the blood demand of hospitals and medical centers 
based on their need for blood and blood products. The 
decision variables determined after solving the model 
include, the amount of blood collected from donors in the 
collection centers and sent to the blood centers, the 
product sent from the blood centers to the hospital, the 
optimal number of blood collection centers, the amount of 
product inventory in each center and hospital, and the 
amount of product shortage in each center and hospital. 
Therefore, the decision variables of the model are 
determined in different scenarios with the objectives of 
maximizing the reliability of the supply chain and 
minimizing the costs of blood transfusion, waste and 
wastage, and blood shortage under conditions of 
uncertainty in the blood demand. Due to the non-
deterministic parameters of the problem, the value of the 
objective functions and variables of the model under post-
crisis conditions can be very different from those under 
pre-crisis conditions. To reduce the value of this 
difference, a robust model is first built based on non-
deterministic parameters for all available scenarios. Then 
real data from a blood transfusion organization are 
applied to solve the model using exact methods. 
The remainder of this paper is organized as follows: 
Section 2 reviews relevant literature, and at the end, the 
gap and research model are described. In section 3, the 
proposed approach of the research is presented. In section 
4, sensitivity analyses are presented. Finally, section 5 
presents the conclusions and future studies. 
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2. Literature Review  

In this section, the literature related to the blood supply 
chain is briefly reviewed. The results are summarized in 
Table 1.  
Muriel et al. (2014) proposed an integer linear 
programming considering total cost minimization and the 
number of donors required. They considered distinct 
constraints such as capacity, proportionality, and demand 
fulfillment. Jokar and Hosseini-Motlagh (2015) presented 
an optimization model to decrease blood shortage, blood 
wastage, and blood supply costs in emergencies. The aim 
of this model was to determine the optimal number and 
service areas of blood facilities under different disaster 
scenarios using mixed integer linear programming. 
Fereiduni and Shahanaghi (2016) presented a multi-period 
model for a blood supply chain in an emergency situation 
to optimize decisions related to locating blood facilities 
and distributing blood products after natural disasters. 
They proposed a robust network to capture the uncertain 
nature of blood supply chain during and after disasters. 
Cheraghi et al. (2016) proposed a mixed integer linear 

programming model for blood supply chain network 
design with the need for making both strategic and tactical 
decisions throughout a multiple planning period. A robust 
programming approach was developed to handle the 
inherent randomness in the model parameters. Cheraghi 
and Hosseini-Motlagh (2017) presented a fuzzy-stochastic 
mixed integer linear programming model to design a 
blood supply chain network for disaster relief. To deal 
with the uncertainty in the model parameters, a fuzzy 
programming approach was considered, and a 
combination of the expected value and the chance 
constrained programming was applied to solve the 
proposed model. Ensafian et al. (2017) developed a 
stochastic multi-period mixed-integer model for 
collection, production, storage, and distribution of platelet 
in blood transfusion organizations, ranging from blood 
collection centers to clinical points. Patil et al. (2018) 
presented a model wherein the blood stocks are 
redistributed from one blood bank to another with the 
assurance of meeting the minimum demand during an 
emergency to avoid stockout.  

 

 
Fig. 1. Research problem schematic  

Ekici et al. (2018) discussed the effect of processing time 

limit on collection operations. They believed that their 

discussions lead to interesting research areas worth future 

investigation from both practical and theoretical 

perspectives. The aim of the proposed model was to 

determine the quantity and location of facilities and the 

best strategy to allocate them under three different 

scenarios, while the goals are minimizing costs and 

shortages of blood. The proposed model was developed 

using a robust optimization approach. Baş et al (2018) 

considered the blood donation appointment scheduling 

problem, aiming at balancing the production of different 

blood types among days to provide a quite constant 

feeding of blood units to the blood donation system. They 

proposed a framework for appointment reservation that 

accounts for both booked donors and donors arriving 

without a reservation. Osorio et al. (2018) presented a 

multi-objective stochastic integer linear programming 

model to optimize two objectives: the total cost and the 

number of donors required. They developed an integrated 

approach that generates robust solutions that consider the 

stochastic nature of demand and guarantees that features 

such as proportionality and compatibility are met. Ghatreh 

Samani et al. (2018) proposed a multi-objective mixed 

integer linear programming model for designing an 

integrated blood supply chain network for disaster relief. 

The their model included all the special properties of 

blood supply chains involving uncertain demand of blood 

products and their irregular supply, perishability of blood 

products, and shortage avoidance.  

Khalilpourazari and Arshadi Khamseh (2019) proposed a 

new multi-objective mathematical model to design 

efficient and effective blood supply chain network in 

earthquakes. To solve the proposed multi-objective mixed 

integer linear programming model, five multi-objective 

decision-making methods as well as the lexicographic 

weighted Tchebycheff method were utilized to provide 

the decision maker with Pareto optimal solutions. 
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Hamdan and Diabat (2020) presented a bi-objective 

robust optimization model for the design of blood supply 

chains that are resilient against disaster. The two-stage 

stochastic optimization model was proposed with the aim 

of minimizing the time and cost of delivering blood to 

hospitals after the occurrence of a disaster while, 

considering possible disruptions in blood facilities and 

transportation routes. A Lagrangian relaxation-based 

algorithm was developed that was capable of solving 

large-scale instances of the model. Derikvand et al. (2020) 

presented a robust stochastic bi-objective programming 

model for an inventory-distribution problem in a blood 

supply chain. The first objective attempted to minimize 

the total number of shortages and wastages, and the 

second objective maximized the connection between two 

different types of hospitals. Mathematical approximations 

were employed to remove the nonlinear terms, and a 

hybrid solution approach, combining the ε-constraint and 

the Lagrangian relaxation method, was applied to solve 

the proposed bi-objective model.  

Razavi et al. (2021) presented a multi-objective 

mathematical model with the objectives of minimizing 

costs, minimizing the maximum level of dissatisfaction 

with unfairness among affected areas in terms of blood 

distribution to field hospitals, and maximizing the greatest 

coverage of demand to allocate blood to field hospitals. A 

new hybrid algorithm based on improved multi-choice 

goal programming and genetic algorithm with real data 

was developed to solve the problem. Robust optimization 

was also used to deal with the uncertainty of the baseline 

scenario. Pouraliakbari‑Mamaghani et al. (2022) 

proposed a fuzzy-robust multi-objective optimization 

model for blood supply chain network design for disaster 

relief. The objective of this problem was to minimize (1) 

the expected total cost of the system, (2) the implicit cost 

associated with patients’ waiting in hospitals, and (3) 

unsatisfied demands. Babazadeh Rafiei et al. (2023a) 

presented a mathematical model to reduce the risk of the 

blood supply chain under the conditions of the COVID-19 

pandemic. They proposed a scenario-based multi-

objective model with the aim of reducing the risk of the 

blood supply chain under the conditions of the COVID-19 

pandemic. To avoid failures that may affect the entire 

supply chain, Babazadeh Rafiei et al. (2023b) identified 

and ranked the risks affecting the blood supply chain 

during the COVID-19 pandemic. Babazadeh Rafiei et al. 

(2024) provided a mathematical model to reduce the risk 

of the blood supply chain in pandemic conditions, based 

on which, a stable multi-objective scenario-based model 

was presented with the aim of reducing the risk of the 

blood supply chain in critical conditions. 

As reviewed recently, most studies have ignored 

disruptions and uncertainties in the blood transfusion 

supply chain, and few studies have paid attention to the 

reliability of the blood supply chain. In addition, the blood 

transfusion supply chain has been seen to be less multi-

level, and in most of the presented models, reliability in 

blood transfusion facilities is either not considered or 

addressed in the form of chains without levels. Therefore, 

in this research, reliability in blood transfusion centers 

will be considered at two levels: supply and production. 

On the other hand, most of the presented models have 

been in the form of integer linear programming, which 

has reduced the problem-solving space and rendered the 

results far from reality. In this paper, a mixed integer non-

linear programming model is presented so that the results 

are closer to reality. In addition, in most previous studies, 

the blood supply chain model was considered with the 

aim of minimizing the shortage and waste of blood and 

blood products, and the maximization of effective factors 

was not addressed. In this research, in addition to 

minimizing the cost of shortages and waste of blood and 

blood products in the blood supply chain, maximizing the 

reliability of the supply chain is also considered. 
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3. Proposed Approach 

3.1. Model formulation  

In this section, a scenario-based supply chain model is 

presented to describe the discussed problem. Thus, 

scenarios must be specified in the first stage. The 

scenarios considered in this study are defined as follows. 

According to the amount of supply and demand of blood 

and its products in different periods of time and especially 

in critical situations, there will always be three states of 

shortage, surplus, and balance in the amount of blood 

storage. In the blood supply chain, shortages or wastes 

occur if supply and demand changes are not at the same 

level. In other words, if the change in supply is more than 

the demand, it causes waste, and if it is less than the 

demand, it causes a shortage (and vice versa in connection 

with the changes in demand). Table 2 presents all possible 

situations related to changes in supply and demand. In this 

research, two scenarios are considered, one based on 

increasing demand and the other based on decreasing 

demand. In the first scenario, the demand for blood 

decreases (row 3 of Table 2), and in the second scenario, 

the demand for blood increases (row 5 of Table 2). 

According to experts from the blood transfusion 

organization, the probabilities of the first and second 

scenarios are 0.6 and 0.4, respectively. In the following, a 

scenario-based model is presented to describe the problem 

in more detail. A mixed non-linear two-objective 

mathematical model is presented to describe the problem. 

The indicators, parameters, and decision variables of the 

model are introduced in Table 3. 

 
Table 2 

 Scenarios related to changes in supply and demand 

Row Supply Demand Result 
1 Increase supply by amount X  Increase demand by amount X  Balance in the blood supply chain 

2 Increase supply by amount X  Consider demand as a constant The wastage of blood 

3 Increase supply by amount X  Reduce demand by amount Y  The wastage of blood 

4 Reduce supply by amount Y  Consider demand as a constant The shortage of blood 

5 Reduce supply by amount Y  Increase demand by amount X  The shortage of blood 

6 Reduce supply by amount X  Reduce demand by amount X  Balance in the blood supply chain 

7 Consider supply as a constant Consider demand as a constant Balance in the blood supply chain 
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Table 3 

 Indices, parameters, and decision variables in the mode   

Indicas and Parameters 

𝑗 ∈ 𝐽 Collection of Blood Collection Facilities 

𝑘 ∈ 𝐾 Collection of Blood Centers  
ℎ ∈ 𝐻 Hospital Complex  

𝑡 ∈ 𝑇 Period  

𝑝 ∈ 𝑃 Collection of Blood Products 
𝑠 ∈ 𝑆 Possible Scenario  

Parameters  

�̅�1 
Average confidence in the condition and safety of blood transfusion in terms of temperature and other items from 

the collection site j to the blood center k 

�̅�2 Average confidence in the operation of laboratory equipment in collection centers 

�̅�3𝑗𝑘𝑡
𝑠  Average confidence in meeting the blood demand in the blood center k from the collection center j in period t. 

𝛿�̅�
1 Average percentage of non-standard blood packaging at the collection site j 

𝛿�̅�
2 Blood and blood products in the blood center k. 

𝐶𝐶𝑗𝑡 The cost of collecting each unit of blood from donors by the j collection facility in period t. 

𝐶𝑉𝑝𝑘ℎ𝑡 The cost of transporting each unit of product p from the blood center k to hospital h in period t. 

𝐶𝑃𝑝𝑘𝑡 Production cost per unit of product p in the blood center k in period t. 

𝐶𝑉𝑗𝑘
′  The cost of transporting each unit of blood from the collection point j blood center k in period t. 

𝐶𝐻𝑝ℎ𝑡
′  Average cost of maintaining each unit of product type p in hospital h in period t. 

𝐶𝐻𝑝𝑘𝑡
"  Average cost of maintaining each unit of product type p in the blood center k in period t. 

 

Equations 1 and 2 describe the objective functions. The 

first objective function (1) maximizes the reliability value 

of the blood supply chain in different scenarios, which 

include: confidence in the conditions and safety of blood 

transportation in terms of temperature fluctuations, 

confidence in the operation of laboratory equipment in the 

blood collection center, and confidence in meeting the 

blood demand in the blood center. The second objective 

function (2) minimizes the total cost of the supply chain 

in different scenarios, which includes the costs of non-

standard blood packaging, storage, transportation, 

production, shortage, and waste. Constraint (3) guarantees 

that the blood produced does not exceed the blood sent 

from the collection centers in scenario (s). Constraint (4) 

shows the maximum storage capacity of product (p) in the 

hospital for scenario (s). Constraint (5) shows the 

maximum capacity of blood centers to store product (p) in 

scenario (s). Constraint (6) shows the maximum blood 

collection facility capacity in scenario (s). Constraint (7) 

shows the inventory balance in the hospital for scenario 

(s). Constraint (8) shows the inventory balance in the 

blood center for scenario (s). Constraint (9) determines 

the amount of blood wastage in the blood centers for 

scenario (s). Constraints (10 and 11) indicate the shortage 

in hospital and blood center, respectively, in scenario (s). 

Constraint (12) guarantees that the product produced 

exceeds the product sent to the hospital in scenario (s). 

Constraint (13) indicates to the amount of product sent to 

demand point in scenario (s). Constraint (14) guarantees 

that blood is not collected more than the blood centers 

require in scenario (s). Constraints (15, 16 and 17) ensure 

that blood centers have either an inventory or shortage in 

a given period. Constraint (18) ensures flow balance in 

the collection facilities and transfers all the blood received 

by the collection facilities to the blood centers. Constraint 

(19) shows the amount of product (p) produced from the 

amount of blood sent to the blood centers in scenario (s). 

Constraint (20) shows the control constraint for the 

uncertainty in the demand of product (p) in scenario (s) in 

the hospital. If the value of ξpht
s  is equal to zero, we will 

not have unsatisfied demand, and otherwise we have 

unsatisfied demand. Constraints (21, 22, and 23) express 

the types of decision variables. 

 

 

 

 

 

 

 

 

 

 

(1) 
𝐌𝐚𝐱 𝐙𝟏 = ∑ 𝑝𝑟𝑜𝑠𝑠  ((β̅1 × ∑𝑘∑𝑡∑𝑗𝑐𝑏𝑗𝑘𝑡

′𝑠 ÷ 𝐷𝑏𝑗𝑘𝑡
𝑠 )) × (�̅�2 × ∑𝑗∑𝑡𝑁𝑗𝑡

" 𝑠 × 𝑢2𝑗𝑡 ÷ ∑𝑘𝐷𝑏𝑗𝑘𝑡
𝑠 )) × (�̅�3𝑗𝑘𝑡

𝑠 ×

∑𝑘∑𝑡(𝐶𝑏𝑗𝑘𝑡
′ 𝑠 ÷ 𝐷𝑏𝑘𝑗𝑡

𝑠 )   

(2) 

𝐌𝐢𝐧 𝐙𝟐 = ∑ 𝑝𝑟𝑜𝑠𝑠  ((∑ ∑ ∑ 𝐼𝑁𝑝𝑘𝑡
′ 𝑠

𝑡𝑘𝑝 × 𝐶𝐻𝑝𝑘𝑡
" ) + (∑ ∑ (𝑁𝑗𝑡

" 𝑠
𝑡𝑗 × 𝑐𝑐𝑛) + (∑ ∑ ∑ 𝐼𝑁𝑝ℎ𝑡

"   𝑠
𝑡ℎ𝑝 ×

𝐶𝐻𝑝ℎ𝑡
′ ) +   (∑ ∑ ∑ ∑ 𝑄𝑝𝑘ℎ𝑡

𝑠
𝑡ℎ𝑘𝑝 × 𝐶𝑉𝑝𝑘ℎ𝑡) + (∑ ∑ ∑ 𝐷𝑒𝑝ℎ𝑡

′ 𝑠
𝑡ℎ𝑝 × 𝐶𝑆𝑝ℎ𝑡

′ ) + (∑ ∑ ∑ 𝐷𝑒𝑝𝑘𝑡
′′ 𝑠

𝑡𝑘𝑝 ×

𝐶𝑆𝑝𝑘𝑡
" ) + (∑ ∑ ∑ 𝐶𝑏𝑗𝑘𝑡

′ 𝑠
𝑡𝑘𝑗 × 𝐶𝑉𝑗𝑘𝑡

′ ) +  (∑ ∑ ∑ 𝑃𝑅𝑝𝑘𝑡
𝑠

𝑡𝑘𝑝 × 𝐶𝑃𝑝𝑘𝑡) − (∑ ∑ 𝐶𝑏𝑗𝑡
𝑠

𝑡𝑗 × 𝐶𝐶𝑗𝑡) +
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∑ (𝛿�̅�
1 × (∑ 𝐶𝑏𝑗𝑡

𝑠 × 𝐶𝐶𝑗𝑡𝑡 ))𝑗 + ∑ (𝛿�̅�
2 × (∑ ∑ 𝑃𝑅𝑝𝑘𝑡

𝑠
𝑡 × 𝐶𝑃𝑝𝑘𝑡𝑝 ))𝑘 +  (∑ ∑ ∑ 𝑊𝐵𝑝𝑘𝑡

′ 𝑠
𝑡𝑘𝑝 × 𝐶𝑊𝑝𝑘𝑡

′ ))  

 Subject to: 

(3) ∑ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑗 ≥ ∑ 𝑃𝑅𝑝𝑘𝑡
𝑠

𝑝                                                                          ∀  𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

(4) 𝐼𝑁𝑝ℎ𝑡
"   𝑠 ≤ 𝑢4𝑝ℎ𝑡                                                                                      ∀   𝑝 ∈ 𝑃, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

(5) 𝐼𝑁𝑝𝑘𝑡
′ 𝑠

≤ 𝑢1𝑝𝑘𝑡                                                                                      ∀  𝑝 ∈ 𝑃 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

(6) 𝑁𝑗𝑡
" 𝑠

× 𝑢2𝑗𝑡 ≥ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠                                                                              ∀  𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

(7) 𝐼𝑁𝑝ℎ(𝑡−1)
"   𝑠 + ∑ 𝑄𝑝𝑘ℎ𝑡

𝑠
𝑘 − ∑ 𝐷𝑝𝑘ℎ𝑡

𝑠
𝑘 + 𝐷𝑒𝑝ℎ𝑡

′  𝑠 = 𝐼𝑁𝑝ℎ𝑡
"   𝑠                  ∀   𝑝 ∈ 𝑃, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

(8) ∑ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑗 ≥ ∑ 𝑃𝑅𝑝𝑘𝑡
𝑠

𝑝                                                                   ∀  𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆  

(9) 𝐼𝑁𝑝ℎ𝑡
"   𝑠 ≤ 𝑢4𝑝ℎ𝑡                                                                                       ∀   𝑝 ∈ 𝑃, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

(10) 𝐼𝑁𝑝𝑘𝑡
′ 𝑠

≤ 𝑢1𝑝𝑘𝑡                                                                                       ∀  𝑝 ∈ 𝑃 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆  

(11) 𝑁𝑗𝑡
" 𝑠

× 𝑢2𝑗𝑡 ≥ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠                                                                               ∀  𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

(12) 𝐼𝑁𝑝ℎ(𝑡−1)
"   𝑠 + ∑ 𝑄𝑝𝑘ℎ𝑡

𝑠
𝑘 − ∑ 𝐷𝑝𝑘ℎ𝑡

𝑠
𝑘 + 𝐷𝑒𝑝ℎ𝑡

′  𝑠 = 𝐼𝑁𝑝ℎ𝑡
"   𝑠                    ∀   𝑝 ∈ 𝑃, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆       

(13) ∑ 𝐼𝑁𝑝𝑘𝑡−1
′ 𝑠

𝑝 + ∑ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑗 − 𝐷𝑏𝑘𝑡
𝑠 − ∑ 𝑊𝐵𝑝𝑘𝑡

′ 𝑠
𝑝 = ∑ 𝐼𝑁𝑝𝑘𝑡

′ 𝑠
𝑝       ∀   𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

(14) ∑ 𝑊𝐵𝑝𝑘𝑡
′ 𝑠

𝑝 = ∑ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑗 × 𝜑                                                          ∀   𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆               

(15) 𝐷𝑒𝑝ℎ𝑡
′  𝑠 ≤ ∑ 𝐷𝑝𝑘ℎ𝑡

𝑠
𝑘 − 𝐼𝑁𝑝ℎ𝑡

"   𝑠                                                              ∀   𝑝 ∈ 𝑃, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆       

(16) 𝐷𝑒𝑝𝑘𝑡
′′  𝑠 ≤ 𝐷𝑏𝑘𝑡

𝑠 − ∑ 𝐼𝑁𝑝𝑘𝑡
′ 𝑠

𝑝                                                            ∀   𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

(17) 𝑃𝑅𝑝𝑘𝑡
𝑠 ≥ ∑ 𝑄𝑝𝑘ℎ𝑡

𝑠
ℎ                                                                          ∀  𝑝 ∈ 𝑃 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

(18) ∑ 𝑄𝑝𝑘ℎ𝑡
𝑠

ℎ = ∑ 𝐷𝑝𝑘ℎ𝑡
𝑠

ℎ − 𝐷𝑒𝑝ℎ𝑡
′  𝑠                                                      ∀  𝑝 ∈ 𝑃 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆      

(19) ∑ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑗 ≤ 𝐷𝑏𝑘𝑡
𝑠                                                                             ∀  𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

(20) 𝐼𝑁𝑝ℎ𝑡−1
"   𝑠 − 𝐼𝑁𝑝ℎ𝑡

"   𝑠 + 𝜉𝑝ℎ𝑡
𝑠 + ∑ 𝑄𝑝𝑘ℎ𝑡

𝑠
𝑘 = ∑ 𝐷𝑝𝑘ℎ𝑡

𝑠
𝑘                            ∀   𝑝 ∈ 𝑃, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆       

(21) 𝑄𝑝𝑘ℎ𝑡
𝑠 , 𝑃𝑅𝑝𝑘𝑡

𝑠 , 𝑁𝑗𝑡
” , 𝑊𝐵𝑝𝑘𝑡

′ 𝑠
∈  𝑍+ 

(22) 𝐷𝑒𝑝ℎ𝑡
′ 𝑠

, 𝐷𝑒𝑝𝑘𝑡
′′ 𝑠

, 𝑃𝑅𝑝𝑘𝑡 , 𝐶𝑏𝑗𝑡
𝑠 , 𝐶𝑏𝑗𝑘𝑡

′ 𝑠 , 𝐼𝑁𝑝𝑘𝑡
′ 𝑠

, 𝐼𝑁𝑝ℎ𝑡
"    𝑠 𝑎𝑛𝑑 ξ𝑝ℎ𝑡

𝑠 ≥ 0 

(23) 𝑧1, 𝑧2, 𝑦1, 𝑦2  𝜖{0.1} 

 

3.2. Robust optimization model 

Due to fluctuations and uncertainty in demand, the values 

of objective functions and optimal variables of the 

investigated problem can be different from the values of 

objective functions and variables obtained from the 

presented model. To reduce the value of this difference, a 

robust model is first built based on non-deterministic 

parameters for all available scenarios. In a robust 

optimization model, there are two types of variables: 

design variables and control variables. The design 

variables are decision variables whose optimal value is 

not conditioned on the realization of uncertain parameters. 

The variables in this set cannot be adjusted once a specific 

realization of the data is observed. Control variables are 

decision variables that are subject to adjustment once 

uncertain parameters are observed. Their optimal value 

depends both on the realization of uncertain parameters 

and on the optimal value of the design variables. The 

constraints of the robust model include: structural and 

control constraints. Structural constraints do not have 

parameters and non-deterministic variables, whereas 

control constraints have parameters or non-deterministic 

variables. In this paper, a robust formulation based on 

Mulvey et al. (1995) is used to stabilize the research 

model in the face of fluctuations and uncertainty in 

demand. 

The linear optimization models have the following 

structure (24 to 27). In this model, X and Y denote the 

vectors of the design and control variables, respectively. 

In addition, S and 𝑃𝑠 represent the set of available 

scenarios and the probability of each scenario, 

respectively ( ∑ 𝑃𝑠
𝑆
𝑠=1 = 1 ). Constraints (25) and (26) 

denote the structural and control constraints of the 

problem, respectively. 

 

𝒎𝒊𝒏 𝒁 = 𝐶𝑇𝑋 + 𝑑𝑇𝑌 (24) 

Subject To:  

𝐴𝑋 = 𝑏 (25) 

𝐵𝑠𝑋 + 𝐶𝑠𝑌 = 𝑒𝑠                ∀ 𝑠 (26) 

X and 𝑌 ≥ 0                       ∀ 𝑠 (27) 

 

Now, we define 𝛿𝑠 as a set of error vectors that measure 

the infeasibility of the control constraints under scenario 

s. Therefore, the robust mathematical model for the above 

mathematical model (24 to 27) can be expressed as 

follows. 

 

𝒎𝒊𝒏 σ(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑠)  + 𝜔 𝑝(𝛿1, 𝛿2, … , 𝛿𝑠) (28) 
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Subject To:  

𝐴𝑋 = 𝑏 (29) 

𝐵𝑠𝑋 + 𝐶𝑠𝑌𝑆 + δ𝑠 = 𝑒𝑠                       ∀ 𝑠  (30) 

X and 𝑌𝑠 ≥ 0                                        ∀ 𝑠  (31) 

 

In the above model, σ(𝑥, 𝑦1, 𝑦2 , … , 𝑦𝑠) and 

𝑝(𝛿1, 𝛿2, … , 𝛿𝑠) measure the stability of the solution, and 

the stability of the model, respectively. It should be noted 

that different functions can be defined for each statement; 

for example 𝑝(𝛿1, 𝛿2, … , 𝛿𝑠) is usually considered equal 

to∑𝑠𝜖𝑆𝑃𝑠𝛿𝑠. In multiple scenarios, the objective function 

𝑍 = 𝐶𝑇𝑋 + 𝑑𝑇𝑌 becomes a random variable taking the 

value 𝑍𝑠 = 𝐶𝑇𝑋 + 𝑑𝑠
𝑇𝑌𝑠, with probability 𝑃𝑠. The term 

σ(𝑥, 𝑦1 , 𝑦2, … , 𝑦𝑠) was defined by Malloy et al. (1995) as 

the sum of the expected value (32), and λ was considered 

as the coefficient of variance of the objective function. 

 

 

σ(𝑥, 𝑦1 , 𝑦2, … , 𝑦𝑠) = ∑ 𝑃𝑠
𝑠∈𝑆

 𝑍𝑠 + λ ∑ 𝑃𝑠
𝑠∈𝑆

(𝑍𝑠 − ∑ 𝑃𝑠′

𝑠′∈𝑆
𝑍𝑠′  )2 (32) 

 
 

A quadratic linear programming model will be obtained 

by replacing σ(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑠) in the objective function 

(28). Yu and Lie (2000) suggested that the 

expression ∑ Pss∈S (Zs − ∑ Ps′s′∈S Zs′  )2, which increases 

the time required to solve the problem, can be replaced by 

an expression containing the absolute term. Therefore, the 

stability of the solution changes as Eq. (33): 

 

σ(𝑥, 𝑦1 , 𝑦2, … , 𝑦𝑠) = ∑ 𝑃𝑠
𝑠∈𝑆

 𝑍𝑠 + λ ∑ 𝑃𝑠
𝑠∈𝑆

 |𝑍𝑠 − min ∑ 𝑃𝑠′

𝑠′∈𝑆
 𝑍𝑠′| (33) 

 

The objective function (33) is a non-linear equation. Yu 

and Lie (2000) proved that the minimization of 
σ(𝑥, 𝑦1 , 𝑦2, … , 𝑦𝑠) is equivalent to the linear programming 

model with additional equations (34) to (36) as follows. 

 

𝐦𝐢𝐧 ∑ 𝑃𝑠
𝑠∈𝑆

 𝑍𝑠 + λ ∑ 𝑃𝑠
𝑠∈𝑆

 (𝑍𝑠 − min ∑ 𝑃𝑠′

𝑠′∈𝑆
 𝑍𝑠′ + 2𝜃𝑠) (34) 

Subject To:  

𝑍𝑠 − min ∑ 𝑃𝑠′

𝑠′∈𝑆
 𝑍𝑠′ + 𝜃𝑠 ≥ 0                ∀ 𝑠 (35) 

θs ≥ 0                                                                   ∀ s 
(36) 

 

 

Finally, the linear optimization model with structures (24  to 27) transformed into the model with the following 

structure. 

 

 

min ∑ 𝑃𝑠
𝑠∈𝑆

 𝑍𝑠 + λ ∑ 𝑃𝑠
𝑠∈𝑆

 (𝑍𝑠 − ∑ 𝑃𝑠′

𝑠′∈𝑆
𝑍𝑠′  + 2𝜃𝑠) + ∑ 𝑃𝑠

𝑠∈𝑆
 𝛿𝑠 (37) 

 

Subject To: 

 

 

(29), (30), (31), (35), and (36) 

 

 

To stabilize the scenario-based mathematical model with 

the model proposed by Mulvey et al. (1995), objective 

functions (1) and (2) are replaced by objective functions 

(38), and (39) respectively, and constraints (40), (41), and 

(42) are added to the model. 

 

𝐌𝐚𝐱  Z1 =  ∑ 𝑝𝑟𝑜𝑠𝑠∈𝑆  ((�̅�1 × ∑ ∑ ∑ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑗𝑡𝑘 ÷ 𝐷𝑏𝑗𝑘𝑡
𝑠 )) × (�̅�2 × ∑ ∑ (𝑁𝑗𝑡

” 𝑠
𝑡𝑗 × 𝑢2𝑗𝑡 ÷ ∑ 𝐷𝑏𝑗𝑘𝑡

𝑠
𝑘 )) × (�̅�3𝑗𝑘𝑡

𝑠 ×

∑ ∑ (𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑡𝑘 ÷ 𝐷𝑏𝑘𝑗𝑡
𝑠 ))) + 𝜆 ∑ 𝑝𝑟𝑜𝑠𝑠∈𝑆 [((�̅�1 × ∑ ∑ ∑ 𝐶𝑏𝑗𝑘𝑡

′ 𝑠
𝑗𝑡𝑘 ÷ 𝐷𝑏𝑗𝑘𝑡

𝑠 )) × (�̅�2 × ∑ ∑ (𝑁𝑗𝑡
” 𝑠

𝑡𝑗 × 𝑢2𝑗𝑡 ÷

∑ 𝐷𝑏𝑗𝑘𝑡
𝑠

𝑘 )) × (�̅�3𝑗𝑘𝑡
𝑠 × ∑ ∑ (𝐶𝑏𝑗𝑘𝑡

′ 𝑠
𝑡𝑘 ÷ 𝐷𝑏𝑘𝑗𝑡

𝑠 ))) − ∑ 𝑝𝑟𝑜śś∈𝑆  ((�̅�1 ∑ ∑ ∑ 𝐶𝑏𝑗𝑘𝑡
′ ś

𝑗𝑡𝑘 ÷ 𝐷𝑏𝑗𝑘𝑡
ś )) × (�̅�2 ×

∑ ∑ (𝑁𝑗𝑡
” ś

𝑡𝑗 × 𝑢2𝑗𝑡 ÷ ∑ 𝐷𝑏𝑗𝑘𝑡
ś

𝑘 )) × (�̅�3𝑗𝑘𝑡
ś × ∑ ∑ (𝐶𝑏𝑗𝑘𝑡

′ ś
𝑡𝑘 ÷ 𝐷𝑏𝑘𝑗𝑡

ś ))) + 2𝜃1
𝑠]  

(38) 



Majid Motamedi & et al. / Designing a robust blood supply chain model under conditions of… 

224 

 

𝐌𝐢𝐧 Z2 =  ∑ 𝑝𝑟𝑜𝑠𝑠  ((∑ ∑ ∑ 𝐼𝑁𝑝𝑘𝑡
′ 𝑠

𝑡𝑘𝑝 × 𝐶𝐻𝑝𝑘𝑡
" ) + ((∑ ∑ ∑ 𝑁𝑗𝑡

" 𝑠
𝑡𝑗 × 𝑐𝑐𝑛𝑠 )) + (∑ ∑ ∑ 𝐼𝑁𝑝ℎ𝑡

"   𝑠
𝑡ℎ𝑝 × 𝐶𝐻𝑝ℎ𝑡

′ ) +

  (∑ ∑ ∑ ∑ 𝑄𝑝𝑘ℎ𝑡
𝑠

𝑡ℎ𝑘𝑝 × 𝐶𝑉𝑝𝑘ℎ𝑡) + (∑ ∑ ∑ 𝐷𝑒𝑝ℎ𝑡
′ 𝑠

𝑡ℎ𝑝 × 𝐶𝑆𝑝ℎ𝑡
′ ) + (∑ ∑ ∑ 𝐷𝑒𝑝𝑘𝑡

′′ 𝑠
𝑡𝑘𝑝 × 𝐶𝑆𝑝𝑘𝑡

" ) +

(∑ ∑ ∑ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑡𝑘𝑗 × 𝐶𝑉𝑗𝑘𝑡
′ ) + (∑ ∑ ∑ 𝑃𝑅𝑝𝑘𝑡

𝑠
𝑡𝑘𝑝 × 𝐶𝑃𝑝𝑘𝑡) + (∑ ∑ 𝐶𝑏𝑗𝑡

𝑠
𝑡𝑗 × 𝐶𝐶𝑗𝑡) + ∑ (𝛿�̅�

1 × (∑ 𝐶𝑏𝑗𝑡
𝑠 × 𝐶𝐶𝑗𝑡𝑡 ))𝑗 +

 ∑ (𝛿�̅�
2 × (∑ ∑ 𝑃𝑅𝑝𝑘𝑡

𝑠
𝑡 × 𝐶𝑃𝑝𝑘𝑡𝑝 ))𝑘 +  (∑ ∑ ∑ 𝑊𝐵𝑝𝑘𝑡

′ 𝑠
𝑡𝑘𝑝 × 𝐶𝑊𝑝𝑘𝑡

′ )) + 𝜆 ∑ 𝑝𝑟𝑜𝑠𝑠∈𝑆 [(((∑ ∑ ∑ 𝐼𝑁𝑝𝑘𝑡
′ 𝑠

𝑡𝑘𝑝 ×

𝐶𝐻𝑝𝑘𝑡
" ) + ((∑ ∑ ∑ 𝑁𝑗𝑡

" 𝑠
𝑡𝑗 × 𝑐𝑐𝑛𝑠 )) + (∑ ∑ ∑ 𝐼𝑁𝑝ℎ𝑡

"   𝑠
𝑡ℎ𝑝 × 𝐶𝐻𝑝ℎ𝑡

′ ) +  (∑ ∑ ∑ ∑ 𝑄𝑝𝑘ℎ𝑡
𝑠

𝑡ℎ𝑘𝑝 × 𝐶𝑉𝑝𝑘ℎ𝑡) +

(∑ ∑ ∑ 𝐷𝑒𝑝ℎ𝑡
′ 𝑠

𝑡ℎ𝑝 × 𝐶𝑆𝑝ℎ𝑡
′ ) + (∑ ∑ ∑ 𝐷𝑒𝑝𝑘𝑡

′′ 𝑠
𝑡𝑘𝑝 × 𝐶𝑆𝑝𝑘𝑡

" ) + (∑ ∑ ∑ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑡𝑘𝑗 × 𝐶𝑉𝑗𝑘𝑡
′ ) +  (∑ ∑ ∑ 𝑃𝑅𝑝𝑘𝑡

𝑠
𝑡𝑘𝑝 ×

𝐶𝑃𝑝𝑘𝑡) − (∑ ∑ 𝐶𝑏𝑗𝑡
𝑠

𝑡𝑗 × 𝐶𝐶𝑗𝑡) + ∑ (𝛿�̅�
1 × (∑ 𝐶𝑏𝑗𝑡

𝑠 × 𝐶𝐶𝑗𝑡𝑡 ))𝑗 +  ∑ (𝛿�̅�
2 × (∑ ∑ 𝑃𝑅𝑝𝑘𝑡

𝑠
𝑡 × 𝐶𝑃𝑝𝑘𝑡𝑝 ))𝑘 +

 (∑ ∑ ∑ 𝑊𝐵𝑝𝑘𝑡
′ 𝑠

𝑡𝑘𝑝 × 𝐶𝑊𝑝𝑘𝑡
′ ))) − ∑ 𝑝𝑟𝑜śś∈𝑆  (((∑ ∑ ∑ 𝐼𝑁𝑝𝑘𝑡

′ ś
𝑡𝑘𝑝 × 𝐶𝐻𝑝𝑘𝑡

" ) + ((∑ ∑ ∑ 𝑁𝑗𝑡
" ś

𝑡𝑗 × 𝑐𝑐𝑛ś )) +

(∑ ∑ ∑ 𝐼𝑁𝑝ℎ𝑡
"   ś

𝑡ℎ𝑝 × 𝐶𝐻𝑝ℎ𝑡
′ ) +   (∑ ∑ ∑ ∑ 𝑄𝑝𝑘ℎ𝑡

ś
𝑡ℎ𝑘𝑝 × 𝐶𝑉𝑝𝑘ℎ𝑡) + (∑ ∑ ∑ 𝐷𝑒𝑝ℎ𝑡

′ ś
𝑡ℎ𝑝 × 𝐶𝑆𝑝ℎ𝑡

′ ) +

(∑ ∑ ∑ 𝐷𝑒𝑝𝑘𝑡
′′ ś

𝑡𝑘𝑝 × 𝐶𝑆𝑝𝑘𝑡
" ) + (∑ ∑ ∑ 𝐶𝑏𝑗𝑘𝑡

′ ś
𝑡𝑘𝑗 × 𝐶𝑉𝑗𝑘𝑡

′ ) + (∑ ∑ ∑ 𝑃𝑅𝑝𝑘𝑡
ś

𝑡𝑘𝑝 × 𝐶𝑃𝑝𝑘𝑡) − (∑ ∑ 𝐶𝑏𝑗𝑡
ś

𝑡𝑗 × 𝐶𝐶𝑗𝑡) +

∑ (𝛿�̅�
1 × (∑ 𝐶𝑏𝑗𝑡

ś × 𝐶𝐶𝑗𝑡𝑡 ))𝑗 + ∑ (𝛿�̅�
2 × (∑ ∑ 𝑃𝑅𝑝𝑘𝑡

ś
𝑡 × 𝐶𝑃𝑝𝑘𝑡𝑝 ))𝑘 +  (∑ ∑ ∑ 𝑊𝐵𝑝𝑘𝑡

′ ś
𝑡𝑘𝑝 × 𝐶𝑊𝑝𝑘𝑡

′ ))) + 2𝜃2
𝑠]  

 

(39) 

Subject To:  

(�̅�1 × ∑ ∑ ∑ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑗𝑡𝑘 ÷ 𝐷𝑏𝑗𝑘𝑡
𝑠 ) × (�̅�2 × ∑ ∑ (𝑁𝑗𝑡

” 𝑠
𝑡𝑗 × 𝑢2𝑗𝑡 ÷ ∑ 𝐷𝑏𝑗𝑘𝑡

𝑠
𝑘 )) × (�̅�3𝑗𝑘𝑡

𝑠 × ∑ ∑ (𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑡𝑘 ÷ 𝐷𝑏𝑘𝑗𝑡
𝑠 )) −

∑ 𝑝𝑟𝑜śś∈𝑆 ((�̅�1 × ∑ ∑ ∑ 𝐶𝑏𝑗𝑘𝑡
′ ś

𝑗𝑡𝑘 ÷ 𝐷𝑏𝑗𝑘𝑡
ś )) × (�̅�2 × ∑ ∑ (𝑁𝑗𝑡

” ś
𝑡𝑗 × 𝑢2𝑗𝑡 ÷ ∑ 𝐷𝑏𝑗𝑘𝑡

ś
𝑘 )) × (�̅�3𝑗𝑘𝑡

ś × ∑ ∑ (𝐶𝑏𝑗𝑘𝑡
′ ś

𝑡𝑘 ÷

𝐷𝑏𝑘𝑗𝑡
ś )) + 𝜃1

𝑠 ≥ 0                     ∀𝑠  

(40) 

((∑ ∑ ∑ 𝐼𝑁𝑝𝑘𝑡
′ 𝑠

𝑡𝑘𝑝 × 𝐶𝐻𝑝𝑘𝑡
" ) + ((∑ ∑ ∑ 𝑁𝑗𝑡

" 𝑠
𝑡𝑗 × 𝑐𝑐𝑛𝑠 )) + (∑ ∑ ∑ 𝐼𝑁𝑝ℎ𝑡

"   𝑠
𝑡ℎ𝑝 × 𝐶𝐻𝑝ℎ𝑡

′ ) +

(∑ ∑ ∑ ∑ 𝑄𝑝𝑘ℎ𝑡
𝑠

𝑡ℎ𝑘𝑝 × 𝐶𝑉𝑝𝑘ℎ𝑡) + (∑ ∑ ∑ 𝐷𝑒𝑝ℎ𝑡
′ 𝑠

𝑡ℎ𝑝 × 𝐶𝑆𝑝ℎ𝑡
′ ) + (∑ ∑ ∑ 𝐷𝑒𝑝𝑘𝑡

′′ 𝑠
𝑡𝑘𝑝 × 𝐶𝑆𝑝𝑘𝑡

" ) +

(∑ ∑ ∑ 𝐶𝑏𝑗𝑘𝑡
′ 𝑠

𝑡𝑘𝑗 × 𝐶𝑉𝑗𝑘𝑡
′ ) + (∑ ∑ ∑ 𝑃𝑅𝑝𝑘𝑡

𝑠
𝑡𝑘𝑝 × 𝐶𝑃𝑝𝑘𝑡) − (∑ ∑ 𝐶𝑏𝑗𝑡

𝑠
𝑡𝑗 × 𝐶𝐶𝑗𝑡) + ∑ (𝛿�̅�

1 × (∑ 𝐶𝑏𝑗𝑡
𝑠 × 𝐶𝐶𝑗𝑡𝑡 ))𝑗 +

 ∑ (𝛿�̅�
2 × (∑ ∑ 𝑃𝑅𝑝𝑘𝑡

𝑠
𝑡 × 𝐶𝑃𝑝𝑘𝑡𝑝 ))𝑘 +  (∑ ∑ ∑ 𝑊𝐵𝑝𝑘𝑡

′ 𝑠
𝑡𝑘𝑝 × 𝐶𝑊𝑝𝑘𝑡

′ )) − ∑ 𝑝𝑟𝑜śś∈𝑆  (((∑ ∑ ∑ 𝐼𝑁𝑝𝑘𝑡
′ ś

𝑡𝑘𝑝 ×

𝐶𝐻𝑝𝑘𝑡
" ) + ((∑ ∑ ∑ 𝑁𝑗𝑡

" ś
𝑡𝑗 × 𝑐𝑐𝑛ś )) + (∑ ∑ ∑ 𝐼𝑁𝑝ℎ𝑡

"   ś
𝑡ℎ𝑝 × 𝐶𝐻𝑝ℎ𝑡

′ ) +  (∑ ∑ ∑ ∑ 𝑄𝑝𝑘ℎ𝑡
ś

𝑡ℎ𝑘𝑝 × 𝐶𝑉𝑝𝑘ℎ𝑡) +

(∑ ∑ ∑ 𝐷𝑒𝑝ℎ𝑡
′ ś

𝑡ℎ𝑝 × 𝐶𝑆𝑝ℎ𝑡
′ ) + (∑ ∑ ∑ 𝐷𝑒𝑝𝑘𝑡

′′ ś
𝑡𝑘𝑝 × 𝐶𝑆𝑝𝑘𝑡

" ) + (∑ ∑ ∑ 𝐶𝑏𝑗𝑘𝑡
′ ś

𝑡𝑘𝑗 × 𝐶𝑉𝑗𝑘𝑡
′ ) + (∑ ∑ ∑ 𝑃𝑅𝑝𝑘𝑡

ś
𝑡𝑘𝑝 ×

𝐶𝑃𝑝𝑘𝑡) − (∑ ∑ 𝐶𝑏𝑗𝑡
ś

𝑡𝑗 × 𝐶𝐶𝑗𝑡) + ∑ (𝛿�̅�
1 × (∑ 𝐶𝑏𝑗𝑡

ś × 𝐶𝐶𝑗𝑡𝑡 ))𝑗 +  ∑ (𝛿�̅�
2 × (∑ ∑ 𝑃𝑅𝑝𝑘𝑡

ś
𝑡 × 𝐶𝑃𝑝𝑘𝑡𝑝 ))𝑘 +

 (∑ ∑ ∑ 𝑊𝐵𝑝𝑘𝑡
′ ś

𝑡𝑘𝑝 × 𝐶𝑊𝑝𝑘𝑡
′ ))) + 𝜃2

𝑠 ≥ 0   ∀ 𝑠    

(41) 

𝜃1
𝑠, 𝜃2

𝑠 ≥ 0                                  ∀ 𝑠 (42) 

 

In order to combine the first and second robust objective 

functions and the degree of model stability, an appropriate 

weight is assigned to each objective according to the 

opinion of the decision-maker. The final objective 

function is obtained by minimizing the weighted sum of 

objectives as Eq. (43). 

 

𝑀𝑖𝑛 𝑍 = 𝑤1𝑧1 − 𝑤2𝑧2 + 𝑤3 ∑ ∑ ∑ 𝑃𝑠
𝑠∈𝑆

ξ𝑝ℎ𝑡𝑠
𝑡𝑝

 (43) 

 

 

4. Computational Results and Sensitivity Analysis 

4.1. Computational results of the robust scenario-based 

model  

In order to evaluate the ability to solve the robust model 

based on the scenario for different dimensions, 6 samples 

in different sizes were produced. Baron solver in GAMS 

software on a home computer was used to solve the 

proposed mathematical model. The values of the model 

parameters were taken from the real data of Davoudi Kia 

Kalate et al. (2012) and Nehfti Kohneh et al. (2016). The 

model was solved using the above data after normalizing 

the parameters. The related results are shown in Table 4. 

The second column of this table lists the number of 

members of each sample. The members are (j, k, h, t, p 

and s), where j is the number of blood collection facilities, 

k is the number of blood centers, h is the number of 

hospitals, t is the number of periods, p is the number of 

products, and s is a possible scenario. The results 

presented in Table 4 indicate that the model could to solve 

the samples in a reasonable time. To confirm the 

performance of the model, a sensitivity analysis was 

performed on the change in parameters of wastage cost, 

shortage cost, and performance of the objective functions, 

the results of which are shown in the next sections. 

 

 



Journal of Optimization in Industrial Engineering, Vol.17, Issue 2, Summer & Autumn 2024, 215-228 

  

225 

 

Table 4 

The ability to solve examples using the proposed model 
Number 

of 

samples 

Sample size The optimal value 

of the first objective 

function 

The optimal value of the second 

objective function 

The optimal value of the 

objective function of the 

problem (109) 

Solve time 

(the watch) 

1 (2, 2, 7, 2, 2, 2) 3.795 868.130 2.678798 02:36:30 

2 (3, 2, 7, 2, 2, 2) 4.174 814.901 2.656398 02:34:32 

3 (6, 2, 7, 2, 2, 2) 4.854 657.238 2.670948 02:24:54 

4 (6, 2, 10, 2, 3, 2) 6.086 720.655 5.767847 02:26:59 

5 (6, 2, 20, 2, 3, 2) 6.439 849.465 11.56960 01:40:14 

6 (6, 2, 30, 3, 3, 2) 5.235 700.675 11.57080 02:50:06 

 

4.2. Sensitivity analysis of wastage and shortage cost 

In this section, the sensitivity analysis of the model is 

carried out on two important parameters influencing 

decision-making to more precisely examine the validity of 

the proposed model: wastage and shortage costs. 

Sensitivity analysis was performed on the samples with 

dimensions (5, 2, 15, 2, 2 and 2). Tables 5 and 6 show the 

output results of the model for waste and shortage costs, 

respectively. 

As can be seen in Table 5, with the increase in the cost of 

waste, the amount of waste decreased, but it led to an 

increase in the cost of the supply chain in the relevant 

objective function (the second objective function). 

However, despite these changes and the increase in the 

second objective function, the total objective function 

remained constant and robust. As can be seen in Table 6, 

with the increase in the cost of shortage, the amount of 

shortages remained constant and did not increase the 

corresponding cost function (second objective function). 

The results presented in Tables 5 and 6 confirm the 

validity of the proposed model. Therefore, the results 

obtained from the sensitivity analysis were consistent with 

reasonable and logical expectations. 

 

Table 5 

 Sensitivity analysis of cost of waste products in the blood center 

Experiment 
Cost of waste product 

in the blood center 

Product 

type 

Blood 

Center 

The amount of product lost in 

the blood center 
Objective function values 

Period 1 Period 2 
Second 

objective 

function 

Total 

objective 

function 

(109) 
S1 S2 S1 S2 

1 0.00000 

P1 
1 K   210 290 

610.702 5.759197 
2 K 203  203  

P2 
1 K 203 290 22  
2 K  290  290 

2 0.00262 
P1 

1 K   210 290 

615.671 5.759197 
2 K 203  203  

P2 
1 K 203 290 22  
2 K  290  290 

3 0.00530 
P1 

1 K   203 290 

621.115 5.759197 
2 K  290   

P2 
1 K 203 290   
2 K 203  203 290 

4 0.02120 
P1 

1 K   203 261 

652.508 5.759197 
2 K 106  173  

P2 
1 K 203  319  
2 K 126 290 1 290 

5 0.04240 P1 
1 K 179   290 

696.007 5.759197 
2 K 124 319 203  

 

 

Table 6 

Sensitivity analysis of cost of product shortages in the hospitals 

Experiment 
Cost of product shortages 

in the hospital 

Product 

type 

The rate of product shortage in the 

hospital 

Objective function 

values 

Period 1 Period 2 
Second Objective 

Function S1 S2 S1 S2 

1 
0.00000 

 
P1 

1938.0 943.25 1854 958.0 621.153 

621.153 1934.0 990.50 1958 957.5 
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4.3. Sensitivity analysis of the objective function  

The proposed model is a non-linear multi-objective robust 

model of the blood supply chain with two objective 

functions of maximizing reliability and minimizing the 

total cost of the blood supply chain (transfusion, wastage, 

and shortage). The weight method is used to solve the 

model. To analyze the sensitivity of the objective 

function, different weights with a value between 0 and 1 

were considered for the objective functions of a problem 

with dimensions (2, 2, 2, 7, 2 and 4). The results obtained 

from this sensitivity analysis are shown in Figures 2 and 

3. The changes of the first objective function, i.e., 

maximization of reliability, compared with the changes of 

the second objective function, i.e., minimization of the 

total cost of the blood supply chain, according to different 

weight coefficients for the objectives, are shown in Figure 

2. The changes in reliability according to the number of 

blood collection facilities are shown in Figure 3. 

 

 
Fig. 2. Objective value of reliability (x-axis) relative to total cost of blood supply chain (y-axis) 

 

 
Fig. 3. Objective value of reliability relative to number of blood collection facilities 

4.4. Discussion 

Reliability modeling in the supply chain has been less 

investigated in the literature. Aghiani et al. (2015) 

proposed a robust optimization model for the reliable 

design of a blood supply chain network by considering 

possible disruptions in blood collection facilities, blood 

transfusion routes, and blood centers during crisis. Their 

goals included minimizing the lack of coverage of 

demand points and increasing the reliability of the blood 

supply chain in crisis situations. The results of this 

research are in accordance with those of Aghiani et al. 

(2015), and both studies demonstrated a direct 
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621.153 

 

621.153 

1934.0 990.50 1958 957.5 
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relationship between the number of blood collection 

facilities and the reliability of the supply chain. Zandedel, 

et al. (2014) also considered only the disturbance at a 

particular location, and their results showed the 

importance of reliability in a location discussion. Clay et 

al. (2018) concluded that only a small disturbance in the 

transportation of blood products causes instability and 

fluctuations in the model. They showed that modifications 

can be made to the structure of blood inventories to 

reduce these fluctuations. A reduction in the volatility of 

blood inventories has a concomitant effect on the supply 

of blood from donors. Therefore, the reduction in 

fluctuations leads to less shortages and waste. The results 

of this research indicate that by managing blood 

inventories in blood centers, the shortage can be reduced 

to zero, and waste can be minimized. 

 

5. Conclusion and Future Research 

Supply chain network design is one important and 

fundamental strategic decision. This research designed a 

three-level supply chain for blood and blood products, 

including: supply, processing, and distribution of blood. 

The aim of the supply chain is to reduce the costs of blood 

transfusion, shortages, and waste of blood and increase 

the reliability of the blood supply chain. For this purpose, 

a multi-objective non-linear mathematical model of the 

blood supply chain is presented under the condition of 

uncertainty in blood demand. The robust formulation 

based on Mulvey et al. (1995) was used to stabilize the 

research model in the face of fluctuations and uncertainty 

in demand. To validate the proposed model, sensitivity 

analyses were performed using real data with different 

dimensions in the Barron solver in GAMS software. 

Sensitivity analyses of the model were carried out on the 

costs of waste, shortages, and the objective function. The 

results showed that it is possible to increase the reliability 

of the supply chain by increasing the number of collection 

centers and the amount of blood sent from these centers 

and managing the blood inventory in these centers. In 

addition, the time required to solve the model increases 

significantly when the dimensions of the problem 

increase, especially if more products are considered. In 

future research, the proposed mathematical model can be 

developed from different perspectives. As a suggestion 

for future research, product life, delivery time, and 

reliability at other levels of the supply chain can be 

considered, although the problem would be very difficult 

to solve. Furthermore, due to the increasing dimension of 

the problem, the problem-solving time increases; thus, 

heuristic and meta-heuristic methods are suggested for 

future research. 
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